Institut für Mathematische Stochastik Prof. Dr. G. Christoph

Übungsaufgaben zu Mathematik I für Ingenieure, WS 2006/07 Serie 3, Gleichungssysteme, Gaußscher Algorithmus, Eigenwerte, Eigenvektoren, Vektorrechnung

Die Aufgaben finden Sie auch auf meiner Homepage: http://www.math.uni-magdeburg.de/~christop/ unter Lehre.

Hinweis: Mit **Wichtig!** habe ich die Aufgaben gekennzeichnet, die unbedingt zu üben sind, die anderen sind zum selbständigen Üben!

36. (Wichtig!) Lösen Sie das lineare Gleichungssystem

$$9x_1 + 8x_2 + x_3 = -2$$

 $3x_1 + 4x_2 + x_3 = 2$
 $6x_1 - 4x_2 + 3x_3 = 1$

- a) mit Hilfe einer inversen Matrix;
- b) mit Hilfe der Cramerschen Regel;
- c) mit Hilfe des Gaußschen Algorithmus!
- 37. (Wichtig a), c) und e)!) Lösen Sie mit Hilfe des Gauß-Algorithmus folgende Gleichungssysteme. Geben Sie jeweils den Rang der Koeffizientenmatriz und der erweiterten Koeffizientenmatriz an:

a)
$$x_1 + x_2 + 3x_3 + 4x_4 = -3$$
 b) $x + 2y + 3z = -4$
 $2x_1 + 3x_2 + 11x_3 + 5x_4 = 2$ $5x - y + z = 0$
 $2x_1 + x_2 + 3x_3 + 2x_4 = -3$ $7x + 3y + 7z = -8$
 $x_1 + x_2 + 5x_3 + 2x_4 = 1$ $2x + 3y - z = 11$

c)
$$x_1 + 5x_2 + 2x_3 = 3$$
 d) $7x_1 + 8x_2 + 5x_3 = 3$
 $2x_1 - 2x_2 + 4x_3 = 5$ $3x_1 - 3x_2 + 2x_3 = 1$
 $x_1 + x_2 + 2x_3 = 1$ $18x_1 + 21x_2 + 13x_3 = 8$

e)
$$x_1 - 2x_2 - 3x_3 = -7$$

 $2x_1 - x_2 + 2x_3 + 7x_4 = -3$
 $-2x_1 + x_2 + 3x_3 + 3x_4 = 8$
 $x_1 + 4x_2 + 5x_3 - 2x_4 = 7$

f)
$$-x_1 + x_2 + x_3 - x_5 = 0$$

 $x_1 - x_2 - 3x_3 + 2x_4 - x_5 = 2$
 $3x_2 - x_3 - 5x_4 - 7x_5 = 9$
 $3x_1 - 3x_2 - 5x_3 + 2x_4 + 5x_5 = 2$

38. (Wichtig!) Gegeben ist das Gleichungssystem

$$\alpha$$
) genau eine Lösung,

$$\beta$$
) keine Lösung und γ) unendlich v

 β) keine Lösung und γ) unendlich viele Lösungen? Lösen Sie das System für a = 1 und b = 4.

Für welche Werte a und b besitzt das System

39. Für welche Werte von a besitzt das Gleichungssystem

$$\begin{array}{rcl}
(2+a^2)x & - & 3ay & = & 0 \\
ax & + & (2-a^2)y & = & 0
\end{array}$$

außer der trivialen Lösung x = y = 0 noch andere Lösungen? Geben Sie dann alle Lösungen an!

40. (Wichtig!) Lösen Sie die vier Gleichungssysteme der Form $A \vec{x}_i = \vec{b}_i, i =$ 1,..., 4, gleichzeitig mit Hilfe des vollständigen Gauß-Algorithmus. Nachdem Sie unterhalb der Hauptdiagonale Nullen erzeugt haben, müssen Sie auch Nullen oberhalb der Hauptdiagonale erzeugen. Wenn Sie richtig gerechnet haben, ergibt sich auf Grund der besonderen Wahl der Vektoren $b_1, ..., b_4$ die Inverse der Matrix A.

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 5 & 0 & -1 \\ -1 & 0 & 6 & -5 \\ -2 & -1 & 10 & -6 \end{bmatrix}; \ b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \ b_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}; \ b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}; \ b_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

- 41. (Wichtig a)!) Von folgenden Gleichungssystemen bestimme man
 - (α) die allgemeine Lösung des zugehörigen homogenen Systems,
 - (β) die allgemeine Lösung des inhomogenen Systems.

a)
$$\begin{bmatrix} -2 & 1 & 3 & -1 \\ 4 & -2 & -1 & 2 \\ -2 & 1 & 8 & -1 \\ -10 & 5 & 25 & -5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -9 \\ -3 \\ 0 \end{bmatrix}, b) \begin{bmatrix} x_1 - x_2 + x_3 = 4 \\ x_1 + 2x_2 + x_3 = 13 \\ 2x_1 + 4x_2 + 2x_3 = 26 \\ 4x_1 + 5x_2 + 4x_3 = 43 \end{bmatrix}$$

42. (Wichtig b)!) Für welche Werte λ besitzen die homogenen linearen Gleichungssysteme nichttriviale Lösungen? Geben Sie alle nichttrivialen Lösungen an!

a)
$$2x_1 - x_2 + 4x_3 = 0$$

 $x_1 + 3x_2 - x_3 = 0$
 $7x_1 + 7x_2 + (4 - \lambda)x_3 = 0$
b) $x + y + 2z = \lambda x$
 $2x + 2y + 2z = \lambda y$
 $2x + 2y + 5z = \lambda z$

43. (Wichtig!) Lösen Sie die Eigenwertaufgabe $Ax = \lambda x$. Geben sind jeweils alle Eigenvektoren an.

a)
$$A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & -4 \\ -2 & 1 & -2 \end{bmatrix}$

44. (Selbststudium!) Bestimmen Sie für die Matrix A die aus den Eigenvektoren von A bestehende Matrix C mit der Eigenschaft, dass $C^{-1}AC = D$ ist, wobei D die Diagonalmatrix aus den Eigenwerten von A ist.

$$A = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 5 \end{array} \right]$$

45. (Selbststudium!) Gegeben sind die Matrizen

$$A = \begin{bmatrix} 5 & 7 & 6 \\ 7 & 10 & 8 \\ 6 & 8 & 10 \end{bmatrix} \quad ; \quad b = \begin{bmatrix} 18 \\ 25 \\ 24 \end{bmatrix} \quad ; \quad c = \begin{bmatrix} 18, 1 \\ 24, 9 \\ 23, 9 \end{bmatrix}$$

- a) Bestimmen Sie die Matrix A^{-1} !
- b) Berechnen Sie die Kondition des Gleichungssystems Ax = b!
- c) Das System Ax = b hat die Lösung $x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Welche Lösung besitzt das System Ax = c?
- 46. Gegeben sind die Vektoren

$$\vec{a} = 2\vec{e}_1 + \vec{e}_2 + 4\vec{e}_3 = [2, 1, 4]^T \text{ und } \vec{b} = \vec{e}_1 - 2\vec{e}_2 + 3\vec{e}_3 = [1, -2, 3]^T.$$

Berechnen Sie: $|\vec{a}|$; $\vec{a} + 2\vec{b}$; $3\vec{a} - 2\vec{b}$; $\vec{a} \cdot \vec{b}$!

- 47. (Wichtig!) Gegeben ist ein Viereck mit den Ecken A(-2;-2), B(2;-1), C(2;2), D(-2;1).

 Man bestimme: die "Seitenvektoren" \vec{AB} , \vec{BC} , \vec{CD} , \vec{DA} ; die "Diagonalvektoren" \vec{AC} , \vec{BD} und die Länge dieser Vektoren; die Winkel α , β , γ , δ .
- 48. Anfangspunkte und Endpunkte zweier Vektoren \vec{a} und \vec{b} seien durch Strecken miteinander verbunden. Die Halbierungspunkte der beiden Verbindungsstrecken seien Anfangs- und Endpunkt eines Vektors \vec{c} . Es soll gezeigt werden, daß der Vektor \vec{c} derselbe bleibt, wenn die Vektoren \vec{a} und \vec{b} unabhängig voneinander parallel zu sich verschoben werden.
- 49. Ein Vektor bildet mit der x-Achse und der z-Achse Winkel von 40° und 80°. Ermitteln Sie seinen Winkel mit der y-Achse!
- 50. (Wichtig) Man beweise mit Hilfe von Vektoren!
 - a) Wenn in einem Parallelogramm die Diagonalen aufeinander senkrecht stehen, dann ist es ein Rhombus.
 - b) Satz des Thales: Der Umfangswinkel über dem Durchmesser eines Kreises ist ein rechter Winkel.

- 51. Gegeben sind drei aufeinanderfolgende Eckpunkte eines Parallelogramms: A(-3; -2; 0), B(3; -3; 1), C(5; 0; 2). Bestimmen Sie:
 - a) den vierten Eckpunkt,
 - b) je einen Vektor in Richtung der Winkelhalbierenden!
- 52. (Wichtig!) Man zerlege den Vektor $\vec{c} = -\vec{e_1} + 8\vec{e_2}$ in Komponenten in Richtung der Vektoren $\vec{a} = \vec{e_1} + 2\vec{e_2}$ und $\vec{b} = -2\vec{e_1} + \vec{e_2}$.
- 53. (Wichtig!) a) Zeigen Sie die lineare Unabhängigkeit von

$$\vec{x_1} = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$$
 ; $\vec{x_2} = \begin{bmatrix} 4\\1\\3 \end{bmatrix}$ und $\vec{x_3} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$!

- b) Stellen Sie $\vec{y} = \begin{bmatrix} 5 \\ 7 \\ 4 \end{bmatrix}$ als Linearkombination von $\vec{x_1}$; $\vec{x_2}$ und $\vec{x_3}$ dar !
- 54. Sind die Vektoren

$$\begin{bmatrix} 2\\4\\1\\3 \end{bmatrix} ; \begin{bmatrix} -4\\1\\-1\\1 \end{bmatrix} ; \begin{bmatrix} 3\\-3\\5\\-2 \end{bmatrix} ; \begin{bmatrix} -4\\1\\8\\2 \end{bmatrix}$$
linear unabhängig?

- 55. (Wichtig!) Zeigen Sie, dass die Vektoren $\vec{a}=\vec{e_1}+\vec{e_2}$; $\vec{b}=\vec{e_3}$ und $\vec{c}=\vec{e_1}+\vec{e_3}$ eine Basis bilden. Stellen Sie den Vektor $\vec{p}=5\vec{e_1}+\vec{e_2}+0,5\vec{e_3}$ bzgl. der Basis \vec{a},\vec{b},\vec{c} dar.
- 56. Zerlegen Sie den Vektor $\vec{F} = (7; -7; 12)$ in drei Komponenten, die parallel zu $\vec{a} = (1; -2; 3)$, $\vec{b} = (2; 3; 1)$ und $\vec{c} = (3; 1; 2)$ verlaufen!
- 57. (Wichtig!) Eine Kraft $\vec{F} = [8, 11, -5]^T$ ist in Komponenten parallel und senkrecht zur Richtung $\vec{a} = [2, 1, -3]^T$ zu zerlegen.
- 58. Gegeben sind die Vektoren

$$\vec{a} = \vec{e_1} - 2\vec{e_2} + \vec{e_3}; \ \vec{b} = \vec{e_1} + \vec{e_3} \text{ und } \vec{c} = \vec{e_1} - \vec{e_3}.$$
Man berechne $\vec{a} \cdot \vec{b}; \ \vec{b} \cdot \vec{c}; \ \vec{a} \times \vec{c}; \ |\vec{a} \times \vec{c}|; \ (\vec{a} \times \vec{b}) \cdot \vec{c}; \ (\vec{a} \times \vec{b}) \times \vec{c}; \ (\vec{a} + \vec{c}) \times (\vec{b} + \vec{c}).$

- 59. (Wichtig!) Wie groß ist der Flächeninhalt des Dreiecks mit den Eckpunkten $P_1(2;9;6), P_2(3;2;1), P_3(4;3;2)$?
- 60. Vereinfachen Sie:

a)
$$(2\vec{a} + \vec{b}) \times (\vec{a} + 2\vec{b})$$
; b) $(\vec{a} + 2\vec{b} - \vec{c}) \cdot [(\vec{a} - \vec{b}) \times (\vec{a} - \vec{b} - \vec{c})]$!