Fakultät für Mathematik Institut für Mathematische Stochastik Prof. Gerd Christoph

Übungsaufgaben zur Vorlesung Mathematik III, WS 2007

Serie 4 (Differenzialgleichungen, 1. Teil)

38. Prüfen Sie, ob die Funktionen $y=Cx^2-\frac{1}{4}(\ln x^2+1)$ die DGL $xy'-2y=\ln x$ erfüllen.

Bestimmen Sie C derart, dass die Bedingung y(1) = 0 erfüllt ist.

- 39. Zeichnen Sie das Bild der Schar aller Kreise $x^2 + y^2 = 2ax$ und stellen Sie die zugehörige Differentialgleichung auf.
- 40. Skizzieren Sie das Bild der Richtungsfelder mit einigen Lösungskurven für folgende Differentialgleichung: y' = y - 1 und bestimmen Sie deren allgemeine Lösung.
- 41. Man bestimme die allgemeine Lösung der linearen DGLen:
 - a) $y' + 6x^5y = x^5$
 - b) $y' ay = e^{mx}$ (Fallunterscheidungen für m = a und $m \neq a$)
- 42. Gegeben ist die DGL (x+1)y' + 2y = 3(x+1). Bestimmen Sie die Integralkurve, die durch den Punkt $P_0(1,1)$ geht und skizzieren Sie diese! Geben Sie die Gleichung der Tangente für $x_0 = 1$ an.
- $y' xy + y^3 e^{-x^2} = 0$. 43. Lösen Sie die Bernoullische DGL
- 44. Man zeige, dass folgende DGL in der Form $y' = f(\frac{y}{x})$ (Ähnlichkeits-DGL) angebbar ist und lösen Sie diese: $x^2y' y^2 + 6x^2 = 0$. angebbar ist und lösen Sie diese:
- $y' = (x+y)^2.$ 45. Man löse die Differentialgleichung Hinweis. Nach sinnvollem Substituieren sollten sich die Variablen trennen lassen.
- 46. Ermitteln Sie die allgemeine Lösung von:
 - -4y' + 3y

 - b) y'' 6y' + 13y = 0c) y''' y'' 5y' 3y = 0d) $y^{(4)} 8y'' 9y = 0$
- 47. Eine charakterisitische Gleichung besitzt die Lösungen $\lambda_{1/2} = \pm 1$ und $\lambda_{3/4} = -2 + 3i$. Wie lautet die zugehörige homogene DGL 4. Ordnung mit konstanten Koeffizienten?

- 48. Welcher Differentialgleichung genügen die gedämpften Schwingungen $y = f(t) = Ae^{-2t}\sin(t+\beta)$ mit den Parametern A und β ?
- a) Man bestimme die allgemeine Lösung der Dgl. 49.

$$y''' + 4y'' + 5y' + 2y = 0$$

- b) Man ermittle die Wronskische Determinante der drei die Lösung bildenden Funktionen und zeige, dass diese linear unabhängig sind.
- c) Wie lautet die spezielle Lösung, die die Anfangsbedingungen y(0) = 1; y'(0) = 0; y''(0) = 1 erfüllt? Skizzieren Sie die Bildkurve dieser speziellen Lösung!
- 50. Gegeben sei die inhomogene DGL

$$y''' + y'' - 5y' + 3y = s(x).$$

Bestimmen Sie die allgemeine Lösung der zugehörigen homogenen DGL. Welche speziellen Ansätze sind zur Ermittlung einer partikulären Lösung geeignet bei folgenden Störfunktionen s(x):

a)
$$s(x) = 4x - 2x^3$$

b)
$$s(x) = (3x+2)e^{-x}$$

c)
$$s(x) = 4x - e^{-3x}$$

d)
$$s(x) = x^2 e^{-3x}$$

c)
$$s(x) = 4x - e^{-3x}$$
 d) $s(x) = x^2 e^{-3x}$
e) $s(x) = 2e^x + \cos x$ f) $s(x) = -xe^x$

$$f$$
) $s(x) = -xe^x$

51. Aus der allgemeinen Lösung der Gleichung

$$y'' - 2y' = e^x(x^2 + x - 3)$$

ist diejenige Integralkurve zu ermitteln, die durch den Punkt $P_0(0;2)$ geht und dort die Tangente 2x - y + 2 = 0 hat.

52. (a) Lösen Sie das Anfangswertproblem:

$$y'' + y' = 4\sin x + 2\cos x$$
 $y(\frac{\pi}{2}) = 0$; $y'(\frac{\pi}{2}) = 1$

(b) Lösen Sie das Randwertproblem:

$$y'' + 4y = 2x$$
 $y(0) = 0$; $y(\frac{\pi}{4}) = 0$

(c) Wie lautet die Gleichung des Lösungsgraphen von $y'' + 2y' + y = \sin x$ der mit der Steigung $m = \frac{1}{2}$ durch den Ursprung verläuft.

2

(d) Lösen Sie die Randwertaufgabe:

$$\ddot{x}(t) + x(t) = 9\cos 2t \; ; \; x(0) = 1 \; ; \; x(\frac{\pi}{2}) = 2$$
 !

53. Gesucht sind die allgemeinen Lösungen von:

a)
$$y'' - 4y' + 4y = 12xe^{2x}$$

b)
$$2y'' + 8y - x = \cos 2x$$

c)
$$2y'' + 5y' = 5x^2 - 2x - 1$$
.