1. Lösen Sie das Anfangswertproblem

$$y'' + y' - 6y = 3 - 18x + 10e^{2x}$$
; $y(0) = 1$; $y'(0) = -3$!

- 2. Gegeben ist die Funktion $f(x,y) = \ln \sqrt{x^2 2y + 2} + e^{y\sqrt{x}}$.
 - a) Ermitteln Sie den Definitionsbereich (Ungleichungen, die den Bereich beschreiben und Skizze des Bereiches).
 - b) Geben Sie die Tangentialebene z_T zur gegebenen Oberfläche f(x,y) im Punkte (1,0,f(1,0)).
- 3. Zwei Widerstände R_1 und R_2 sind parallel geschaltet. Für den Gesamtwiderstand gilt $R = \frac{R_1 \cdot R_2}{R_1 + R_2}$. Ermitteln Sie den relativen Fehler für den Gesamtwiderstand, wenn $R_1 = (450 \pm 2) \,\Omega$ und $R_2 = (150 \pm 1) \,\Omega$ gemessen wurde.
- 4. Man berechne die relativen Extrema der Funktion

$$z = f(x,y) = 4x^3 - 12x^2 + 3xy^2 - 3y^2 + 2$$
.

- 5. Berechnen Sie $\int_{(B)} \int (2x+2y+1)dx dy$, wobei der Bereich B ein Dreieck mit den Eckpunkten (1,3), (5,3) und (5,5) ist. Berechnen Sie die Fläche des Dreiecks B.
- 6. Im Kraftfeld $\overline{F}=(2x+y\,,\,y-x+1)$ wird eine Masse von A(0,1) nach B(1,0) transportiert. Man berechne die Arbeit bei folgenden Wegen
 - a) Strecke \overline{AB}
 - b) Viertelkreis mit dem Mittelpunkt M(0,0).