Otto-von-Guericke-Universität Magdeburg

Fakultät für Mathematik, Prof. Dr. G. Christoph

Problems from Examinations Stochastic Processes 2010 and 2013

- You do not have to solve the individual problems completely, partial solutions are also possible. You should clearly display your approach and way to solution.
- You are allowed to use: Pocket calculators, text books, mathematical and/or statistical tables, manuscripts and notes from lectures and/or exercises.
- 1.) (10 points) Suppose $X_1 \sim N(0,9), X_2 \sim N(3,1), X_3 \sim N(1,4)$ and let X_1, X_2, X_3 be independent. Define $Y_1 = 2X_2 3X_1 2$ and $Y_2 = 3X_3 X_2$.
 - a) Find EY_2 and $Var(Y_1)!$
 - b) Calculate the covariance-matrix $\Sigma_{(Y_1,Y_2)} = \left(E[(Y_i EY_i)(Y_j EY_j)] \right)_{i,j=1,2}$
 - c) Calculate the correlation coefficient $\rho(Y_1, Y_2)!$
 - d) Find $E((Y_2)^2 | \sigma(X_1, X_2))!$
- 2.) (6 points) Let N_t , $t \ge 0$ is a homogeneous Poisson process with intensity $\lambda > 0$. Suppose $t_1 < t < t_2$. Calculate $p = P(N_{t_1} = 1, N_t = 3 | N_{t_2} = 4)!$
- 3.) (6 points) Let W_t , $t \ge 0$ be a standard Wiener process ($\sigma^2 = 1$). Define $X_t = 1 + W_t^2$, $t \ge 0$. Calculate $Cov(X_s, X_t)$ for s < t. Hint: Note $EW_u^4 = 3 u^2$ for u > 0.
- 4.) (5 points) Let W_t, t ≥ 0 be a standard Wiener process (σ² = 1). Define Y_t = W_t e^{2W_t 2t}. Find dY_t !
 Hint: Use Extension I of the Ito Lemma

Hint: Use Extension I of the Ito Lemma.

5.) (5 points) Put $Y_t = t + \ln(X_t) = f(t, X_t), t \ge 0$, where

$$X_t = X_0 + \int_0^t (2s^2 - 1) X_s \, ds + \int_0^t 2s X_s \, dW_s \quad \text{with} \quad X_0 = 1 \,,$$

where W_t , $t \ge 0$, is the standard Wiener process ($\sigma^2 = 1$). Find with Extension II of the Ito Lemma, that the process Y_t is a martingale with respect to the filtration, generated by $(W_t)_{t\ge 0}$.

Hint: Prove that the process Y_t is a Ito integral!

- 6.) (8 points) The following statements are TRUE or FALSE. So just answer TRUE, since ... or FALSE, since giving only a short explanation.
 - a) The random variables X_3 and Y_1 in **Problem 1** are uncorrelated.
 - b) Let N(t), $t \ge 0$ is a homogenuous Poisson process with intensity $\lambda > 0$ and $t_1 < t < t_2$ (see **Problem 2**). Then $q = P(N(t_1) = 2, N(t) = 2 | N(t_2) = 5) = 0$.
 - c) The process X_t in **Problem 3** is a stationary process!
 - d) Let $N_t, t \ge 0$ be a Poisson process with intensity 2. The process $X_t = N_t 4t$ is a martingale with respect to its natural filtration $\mathcal{F}_t = \mathcal{F}(N(u), 0 \le u \le t)$!

- 1.) (10 points) Suppose $X_1 \sim N(3, 4)$, $X_2 \sim N(2, 9)$, $X_3 \sim N(-1, 1)$ and let X_1, X_2, X_3 be independent. Define $Y_1 = X_1 - 2X_2 + 1$ and $Y_2 = X_2 + X_3$. a) Find the distribution of Y_1 !
 - b) Calculate the covariance-matrix $\Sigma_{(Y_1,Y_2)} = \left(E[(Y_i EY_i)(Y_j EY_j)] \right)_{i,i=1,2}$
 - c) Calculate the correlation coefficient $\rho(Y_1, Y_2)$.
 - d) Find $E(Y_1 Y_2 | \sigma(X_1, X_2))$.
- 2.) (6 points) Let N(t), $t \ge 0$, is a homogeneous Poisson process with intensity $\lambda > 0$ and let X_1 denote the time of the first event. Calculate $P(X_1 \le s, N(t) = 1 | N(u) = 2)$ for $0 \le s < t < u$.
- 3.) (8 points) Let W(t), $t \ge 0$ be a standard Wiener process. Show that $X_t = W_{t+3} W_{t+1}$, $t \ge 0$, is a stationary process.
- 4. (6 points) Let Z be a random variable with $E|Z| < \infty$ and $\{\mathcal{F}_n\}_{n\geq 1}$ an increasing stream of information (filtration), i.e. $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Define $X_n = E(Z|\mathcal{F}_n)$, $n \geq 1$, which may be interpreted as successive forecasts. Prove that (X_n) is a martingale with respect to the filtration $\{\mathcal{F}_n\}$, $n \geq 1$, i.e. show $E(X_{n+1}|\mathcal{F}_n) = X_n$ for $n \geq 1$.
- 5.) (8 points) Let W_t , $t \ge 0$ be a standard Wiener process. Define

$$X_t = (W_t + t) e^{-(W_t + t/2)}, \quad t \ge 0.$$

Prove with Extension I of the Ito Lemma, that the process X_t is a martingale with respect to the filtration, generated by $(W_t)_{t\geq 0}$.

6.) (8 points) Let W_t , $t \ge 0$ be a standard Wiener process and let μ, σ , and r be positive constants. Consider the geometric Wiener process S_t given by the stochastic differential equation

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
, $S_0 = 1$ and $Y_t = f(t, S_t) = e^{-rt} S_t$,

a) Find dY_t . (Hint: Use the Extension II of the Ito Lemma!)

b) Under which conditions on the parameters μ, σ , and r the process Y_t is a martingale with respect to the filtration, generated by $(W_t)_{t\geq 0}$.

- 7.) (8 points) The following statements are TRUE or FALSE. So just answer TRUE, since ... or FALSE, since giving only a short explanation.
 - a) Let Z_1 and Z_2 be identical distributed random variables with $EZ_k = 0$ and $Var(Z_k) < \infty$, k = 1, 2. Then $Z_1 + Z_2$ and $Z_1 Z_2$ are uncorrelated.
 - b) Let N(t), $t \ge 0$ is a homogeneous Poisson process with intensity $\lambda \ge 0$. Suppose $t_1 < t_2 < t_3$. Then $P(N(t_2) = 3, N(t_3) = 3 | N(t_1) = 3) = 0$.
 - c) Let $N(t), t \ge 0$ is a homogeneous Poisson process with intensity $\lambda \ge 0$. The process $Y_t = N(t+L) N(L), t \ge 0$, is a stationary process.
 - d) Let $W_t, t \ge 0$ be a Wiener process and let $A \sim N(2, 9)$. The process $X_t = At + W_t$ is a martingale!