Fakultät für Mathematik, Institut für Mathematische Stochastik Prof. G. Christoph

Tutorial Stochastic Processes

(Serie 2, 2013/14)
6. Example 2.3: Let X_{1}, X_{2}, \ldots be independent identically distributed (i.i.d.) random variables and $S_{0}=0, S_{k}=X_{1}+\ldots+X_{k}, k \geq 1$, $k=1,2, . ., n$. The sequence $\left\{S_{n}\right\}_{n \geq 0}$ is also called a random walk, too. Show that the random process $\left\{S_{n}\right\}_{n \geq 0}$ has stationary and independent increments.
7. In Ex 1.8 the two-dimensional Gaussian density was defined as
$f_{\left(X_{1}, X_{2}\right)}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}$
$\times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho \frac{\left(x_{1}-\mu_{1}\right)}{\sigma_{1}} \frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2}}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\}$.
Show that it coincides with formula (2.1) of the n-dimensional Gaussian density in case $n=2$.
8. Let N_{T} be a homogeneous Poisson process with parameter $\lambda>0$. Calculate the expectation function $m_{N}(t)=E N(t)$, the covariancefunction $\operatorname{Cov}_{N}(s, t)$ and $E(N(t) N(s))$.
9. Let N_{T} be a homogeneous Poisson process with parameter $\lambda>0$. Calculate for $t_{1}<t_{2}$
a) $\quad P\left(N\left(t_{2}\right)=k_{2} \mid N\left(t_{1}\right)=k_{1}\right)$,
b) $\quad P\left(N\left(t_{1}\right)=k_{1} \mid N\left(t_{2}\right)=k_{2}\right)$.
10.) Let $N_{t}, t \geq 0$ be a homogeneous Poisson process with intensity $\lambda>0$ and τ the time till the first event. For $s<t$ find $P(\tau \leq s \mid N(t)=1)$!
11.) Suppose that $\left\{N_{1}(t), t \geq 0\right\}$ and $\left\{N_{2}(t), t \geq 0\right\}$ are independent Poisson processes with rates λ_{1} and $\lambda_{2} .\left\{N_{1}(t)+N_{2}(t), t \geq 0\right\}$ is a Poisson process with rate $\lambda_{1}+\lambda_{2}$. (Show it!). Prove that the probability that the first event of the combined process $\left\{N_{1}(t)+N_{2}(t), t \geq 0\right\}$ comes from the first one $\left\{N_{1}(t), t \geq 0\right\}$ is $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$!

