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Abstract

Adaptivity in space and time for the numerical simulation of stochastic and de-
terministic equations for intracellular calcium dynamics is presented. The modeling
of diffusion, reaction and membrane transport of calcium ions in cells leads to a sys-
tem of reaction-diffusion equations. We describe the modulation of cytosolic and ER
calcium concentrations close to the membrane of the cell organelle.

A conforming piecewise linear finite element method is used for the spatial dis-
cretization while linearly implicit methods, Rosenbrock type methods, are used for
the time integration. We adopt a hybrid algorithm to solve the stochastic part.
The space grid is adjusted to the strong localization of the calcium release following
stochastic channel transitions. By automatically adapting the spatial meshes and
time steps to the proper scales during the transition of channel states, the method
accurately resolves the evolution of intracellular calcium concentrations as well as
buffer concentrations. This article emphasizes the adaptive and efficient hybrid nu-
merical simulations in two space dimensions. The presented work establishes the
basis for future simulations in a realistic 3D geometry.
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1 Introduction

Calcium signalling is an important part of cellular information processing. The Ca2+ signal
employed by a variety of processes is a transient increase of the concentration in the cytosol
[5, 6, 26]. Increase of [Ca2+] is due to entry through the cell membrane or to Ca2+ release
from internal storage compartments, specifically the endoplasmic reticulum (ER) and the
sarcoplasmatic reticulum. It leads to the formation of spatio-temporal signals in the form of
waves of high Ca2+ concentration traveling across the cell [28, 20, 13] and global oscillations
[4, 29].

The multiplicity of length and time scales poses a specific challenge for any numerical
treatment of the problem. Physiologically, it is now well established that currents of
calcium through an individual channel lead to very localized calcium spots of nanometer
extension. On the other hand, the calcium is rapidly transported over distances of several
micrometers. Since calcium signals are generated by local feedback as well as coupling to
distant channels by transport over a µm scale, we need an efficient and accurate numerical
modeling of processes on both scales. We therefore choose a finite element method with
local grid adaptivity for the space discretization and linearly implicit Runge-Kutta methods
for the time discretization. Moreover, to solve the deterministic and stochastic simulations
we used a hybrid algorithm. Here, we will discuss the following important factors in the
numerical solution of the problem: space and time discretization, adapting the spatial
meshes and automatic time steps to the proper scales according to channel transitions, the
hybrid algorithm which couples the solving of deterministic and stochastic problems.

We will outline some of the problems which are encountered in the numerical simula-
tions. At first, due to the multiple length scales of channels and clusters in the membrane,
suitable numerical methods are mandatory. In this work we have chosen the finite element
method for solving this problem. To capture the original structure of the cell, adaptive
grid refinement is necessary to provide efficient and fast numerical solutions. Also adaptive
space and time discretization methods are efficient during the intermediate time steps for
this type of complex problems. The release of calcium through channel opening or closing
occurs on the order of microseconds. These small time scales cannot be ignored, therefore
an efficient time stepping method to capture these fast changes are needed. For this pur-
pose the linearly implicit Runge-Kutta methods, which are very suitable for solving stiff
ordinary differential equations, are used. The opening of channels occurs in the order of
microseconds and when all channels are closed then the time step size is nearly in order
of milliseconds, see [25]. For handling such fast changing step sizes an automatic time
step procedure is suitable. To control the spatial discretization error, a-posteriori error
estimators are computed to steer the mesh improvement by refinement and coarsening in
each time step during the primal and dual solves in optimization algorithm. Various other
forms of adaptive mesh refinement techniques were applied successfully for excitable media
by varying the spatial or temporal resolution or both [9, 22, 34].

By locally refining the regions in a grid where the solution data have large errors,
an adaptive mesh refinement algorithm can greatly reduce the size of grid points and
hence the number of unknowns. A both space and time adaptive strategy will further
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improve the simulation efficiency. The space and time adaptivity for the deterministic
simulation of calcium dynamics is well presented in Nagaiah et.al [24] where the coupling
of stochastic channel transition was not considered. The spatial grid adaptivity plays
important role in the hybrid numerical simulations which shows a good improvement over
the CPU time. The main motivation of the current article is that to present efficient
and accurate numerical simulations based on the space and time adaptivity for the hybrid
stochastic and deterministic simulations of calcium dynamics.

The high and fast concentration changes upon opening and closing of channels have a
strong impact on the stochastic dynamics of channel binding and unbinding. The stochastic
solver is based on the Gillespie method, but the usual Gillespie method solves stochastic
processes where the propensities are constant during the subsequent transitions. However,
the concentration and propensities are changes based on the channel opening and closing.
For this purpose we have adopted a hybrid algorithm which couples the deterministic and
stochastic equations, see Alfonsi et al. [2]. Two different types of time stepping methods are
considered for solving the deterministic and stochastic processes. One is a linearly implicit
Runge-Kutta method to solve the deterministic equations and the other is the Gillespie
method to solve the stochastic equations. In both parts, deterministic and stochastic, we
use the adaptive time scales to get fast and efficient numerical results.

Briefly, the adaptivity of the spatial grid is controlled by the error estimator by Zien-
kiewicz and Zhu [37], which is based on the average of local gradients of the solution. The
classical embedding technique for ordinary differential equation integrators is employed to
estimate the error in time. An automatic step size selection procedure ensures that the step
size is as large as possible to guarantee the desired precision. We find that the PI-controller
proposed by Gustafsson, Lundh and Söderlind [16] works very well for this problem. Our
numerical realization is based on the public domain software package DUNE [3].

The paper is organized as follows: In the second section we present the model which
comprises calcium-buffer binding, diffusion and transport through the ER membrane. We
will then introduce our method and strategies for grid adaptation, finite-element discretiza-
tion and time-stepping. Section 5 presents different simulation of test cases. The final
section gives a short discussion of our work.

2 Deterministic equations

In this section we present the mathematical model equations in 2D which describe the
evolution of calcium concentrations during the channel transitions, see for more details
Falcke [12]. The model consists of equations for the following deterministic quantities:
calcium concentration in the cytosol and the ER as well as concentrations of several buffers
in the cytosol. As a simplification we do not consider the full three dimensional cytosolic
and ER space but instead consider thin sheets below and above an idealized planar ER
membrane. All concentrations are therefore two dimensional in space.

The evolution of concentrations will be determined by diffusion, transport of calcium
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through the ER membrane, and the binding and unbinding of buffer molecules to calcium

∂c

∂t
= Dc∆c+ (Pl + Pc(r, t))(E − c)− Pp

c2

K2
d + c2

,

−(k+
b,s(Bs − bs)c− k−

b,sbs)− (k+
b,m(Bm − bm)c− k−

b,mbm) , (1)

∂E

∂t
= DE∆E + γ

[

(Pl + Pc(r, t))(E − c)− Pp
c2

K2
d + c2

]

, (2)

∂bm
∂t

= Db,m∇
2bm + k+

b,m(Bm − bm)c− k−
b,mbm , (3)

∂bs
∂t

= Db,s∇
2bs + k+

b,s(Bs − bs)c− k−
b,sbs . (4)

Here c is the concentration of Ca2+ in the cytosol, E is the concentration in the ER. The
transport through the ER membrane comprises three contributions. Calcium is moved from
the ER into the cytosol through a leak current Pl(E− c) and the channels: Pc(r, t)(E− c).
The latter term will be discussed in more detail below. Calcium is resequestered into the
ER by pumps, the term proportional to Pp. The action of the pumps was found to be
cooperative in calcium. The parameter Kd is the dissociation constant of the pumps.

The term proportional to Pc in Eqs. (1) and (2) models the current through an open
channel. This current was found to depend on the cross-membrane concentration difference.
For differences found in cell-physiological conditions, the current can be approximated by a
linear dependence on (E− c). The current is modeled as a source with constant density in
a specified channel cluster region. The radius Ri of the cluster i with Nopen,i open channels
is then given by

Ri = Rs

√

Nopen,i .

Clusters are situated at fixed position xi. The flux term is given by

Pc(r, t) =

{

Pch if ‖r− xi‖ < Ri for a cluster i,
0 otherwise.

Note that in a model including the dynamics of channel gating the number of open channels
is time-dependent. The corresponding value of Pch can be found in Table 2. Altogether,
the model equations are a system of reaction-diffusion equations. A well established theory
exists for the system of reaction-diffusion equations in the literature [8, 27, 32, 33].

The concentrations of the mobile and stationary buffers bound to calcium in the cytosol
are given by bm and bs, respectively. All buffers are assumed to be distributed homoge-
neously in the initial state. Total buffer concentrations in the cytosol are denoted by Bm or
Bs, respectively. Experimentally, the total amounts of some buffers are known quite well,
see [21, 36]. However, the amount of other buffers as for example the stationary buffer,
comprising contributions from different calcium stores such as mitochondria, are not well
known.
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3 Stochastic channel dynamics

One of the principal reasons that modelers and computational scientists have become
more interested in Ca2+ dynamics is that the concentration of Ca2+ shows highly complex
spatio-temporal behavior. Many cell types respond to agonist stimulation with oscillations
in the concentration of Ca2+ . The process causing random behavior in intracellular Ca2+

dynamics is the transition between the different states of the channel subunits and the
channel. Channels open and close randomly. The opening and closing probability depends
on the state of the channel subunits.

In this subsection, the stochastic model for the gating of subunits is explained. This
model is based on the DeYoung-Keizer (DYK) model for the subunit dynamics, see [11].
Details of the modified DYK model which is used in our numerical calculations can be
found in [30]. It is known that a subunit has binding sites for Ca2+ and IP3 . Based on the
results of Bezprozvanny et al. [7], DeYoung and Keizer [11] proposed a model for a single
subunit. The model by DeYoung and Keizer was set up as a deterministic model and used
later on as a stochastic scheme by Falcke et al. [12, 14]. The subunit has three binding
sites: an activating and an inhibitory Ca2+ as well as an activating IP3 binding sites.

In this work the stochastic solver is based on the Gillespie method [15]. The Gillespie
algorithm uses random pairs (r1, r2) and the equations

a0 · τ = ln(1/r1) ,
i
∑

j=1

aj ≤ a0 · r2 <
i+1
∑

j=1

aj . (5)

Using this random pair we can find the next event Ri and that it will occur after time τ .
The Gillespie method is based on the assumption that during successive stochastic

events the propensities ai do not change. Indeed, over those successive stochastic events,
there must be a significant activity in all reaction channels. However, when linking the
stochastic channel dynamics to the calcium dynamics, we expect the propensity ai to
change in time due to its dependence on the local calcium concentration c. This effect
will be particularly strong for openings and closings of channels, since after such events
the local calcium concentration c changes dramatically by orders of magnitude. So the
propensities can change too rapidly over small time intervals.

To overcome those problems, a hybrid method is adopted which was introduced by
Alfonsi et al. [2]. In their hybrid algorithm, the stochastic reaction equations are partitioned
into deterministic and stochastic equations, to reduce the computational time and increase
the efficiency. To adapt this hybrid algorithm to current problem, we used that the spatial-
temporal equations are deterministic and the opening/closing of channels is considered as
stochastic part. Here we will give a brief explanation of the hybrid method.

Within their setting the time τ to the next stochastic event is determined by solving

gi(t+ τ |t) =

∫ t+τ

t

ai(c(t), s) ds = ξ , (6)

with ξ = ln(1/r1), where the sum of propensities a0 may explicitly depend both on time and
the local calcium concentration. The function gi(t + τ |t) is non-decreasing for t + τ > t,

5



since the propensities ai are non-negative by definition. Note that the above equation
simplifies to the equation determining τ in Eq. (5) in the case of constant a0. To determine
the time of next reaction τ , condition Eq. (6) is conveniently rewritten in differential form
by introducing a variable g(t) and solving

ġ(s) = a0(c, s) (7)

with initial condition g(0) = 0, along with the deterministic equations for c and buffers.
To calculate the propensities we follow the dynamics of the DYK model.

We would like to give the brief outline of the algorithm here. A special feature of
the calcium system is that not all stochastic events change the open/closed state of a
channel. A channel transition has a major impact on the local calcium concentration c,
while non-channel transitions do not change the local calcium concentration. During the
computation of the deterministic part of the calcium dynamics the stochastic events are
traced via Eq. (6) respectively Eq. (7). During the simulation the stochastic system is
updated for every stochastic time step dt. The time step dt is determined using the first
random number generation, see Eq. (5), and by fulfilling the requirement a0dt ≤ 1, where
a0 is the sum of the propensities. Using the second random number the reaction event Ri

is determined, see Eq. (5). In this way we can determine the next reaction event Ri and
it will occur after the time τ . If a non-channel transition occurs, the stochastic event is
performed. The stochastic channel dynamics is updated correspondingly, while there is no
influence on the calcium concentration. On the other hand, if a channel transition takes
place, both the channel and the calcium dynamics do change. This typically requires a
readjustment of the deterministic time step which will be explained in later sections. The
algorithmic realization of our hybrid approach is given in [30, 23] and the extension of the
algorithm by using the spatial grid adaptivity is given at the end of section 4. .

4 Numerical method

4.1 Spatial discretization using finite elements

The state variables c(x, t), E(x, t), bm(x, t) and bs(x, t) are functions of space and time
on in Ω × [0, T ] where the domain Ω ⊆ R

2 is a convex polygonal subset. In this section
we describe the finite element method for solving the coupled reaction-diffusion system
(1-4). We will first consider a so-called semi-discrete analogue of the full system where
we have discretized in space using the continuous piecewise linear finite elements. The
formulation and subsequent discretization of such an integral form requires the definition
of some function spaces and associated norms. Consider a spatial domain Ω ⊂ R

2 with
piecewise smooth boundary Γ. We shall denote by L2(Ω) the space of functions that are
square-integrable over the domain Ω, see Adams [1] for other notations.
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4.2 Semi discretization in space

Consider the parabolic prototype problem

∂u(x,t)
∂t

−∇ · (D∇u(x, t)) + s(u,x, t) = 0 in Ω× (0, T ] ,
u(x, t) = u0(x) on Ω× t = 0 ,
n · ∇u(x, t) = 0 on ∂Ω × [0, T ] ,

(8)

where u(x, t) is unknown, D ∈ R
2×2 is assumed to be diagonal with positive coefficients

and s(u,x, t) is the reaction function. The discretization process using the finite element
method is based on a reformulation of the given differential equation in the more general,
variational formulation. Let V = H1(Ω) and Vh be a finite dimensional subspace of V with
basis {w1, . . . , wN}. Specifically we take continuous functions that are piecewise linear on
a quasi-uniform triangulation of Ω with mesh size h. Replacing the space V by the finite
dimensional subspace Vh we get the following semi discretization in space find uh ∈ Vh s.t.

〈∂uh

∂t
, vh〉+ 〈D∇uh,∇vh〉+ 〈s(uh,x, t), vh〉 = 0 for all vh ∈ Vh ,

uh(x, t) = u0,h(x) on Ω× t = 0 .
(9)

In particular, since Vh is a linear space of dimension N with basis {wi}
N
i=1, taking vh = wj,

we get a system of ordinary differential equations in the form

Mu̇ = −Au− S , (10)

where M is the mass matrix, A is the stiffness matrix and S is a vector depending on the
reaction term. The matrices are defined as follows

M = 〈wi, wj〉 , A = 〈D∇wi,∇wj〉 ,

S = 〈s(
∑N

i=1 ui(t)wi(x)), wj〉 .

In our numerical simulations we considered the free calcium concentration in the cytosol,
the free calcium concentration in the ER, and the stationary and mobile buffers in the
cytosol. We can apply the analogous spatial discretization to Eqs. (1-4). Then we get the
ordinary differential equation system as follows

Mu̇ = −Au− S ,

where the block diagonal matrices M = diag(M,M,M,M), A = diag(A,A,A,A) and
S is a 4N × 1 vector depending on reaction terms.

4.3 Temporal time-stepping of continuous equations

The discretization in time of Eq. (10) can be accomplished in several possible ways. We have
mainly concentrated on implicit methods for solving these equations. For solving problem
we used higher order linearly implicit methods of Rosenbrock type. These methods offer
several advantages. They completely avoid the solution of nonlinear equations, which
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means that no Newton iteration has to be controlled. More detailed expositions of these
methods can be found in [17, 18]. Moreover, for computation of adaptive time step a
simple embedding technique can be utilized to estimate the error part arising from the
time discretization. An automatic step size selection procedure ensures that the step size
is as large as possible while guaranteeing the desired precision.

We considered the ODE problem

M
∂u

∂t
= F(t,u), u(t0) = u0. (11)

To start with, we partition the time [0, T ] into discrete steps 0 = t0, t1, . . . , tn = T , that
are not necessarily equidistant. The notation for time step is τ i = ti+1 − ti and ui to be
the numerical solution at time ti. For computation an s-stage Rosenbrock method of order
p with embedding of order p̂ 6= p has the form

(
1

τ iγ
M− J)kj = F

(

ti + τ iαj,u
i +

j−1
∑

l=1

ajlkl

)

−M

j−1
∑

l=1

clj
τ i

kl , j = 1, . . . , s , (12)

ui+1 = ui +

s
∑

l=1

mlkl , (13)

ûi+1 = ui +
s
∑

l=1

m̂lkl . (14)

Here J = ∂F/∂u is the Jacobian matrix. For the construction of the Jacobian matrix we
used exact derivatives of the vector F(t,u). The method coefficients γ, αj , ajl, cjl, ml, and
m̂l are chosen such a way that certain order conditions are fulfilled to obtain a sufficient
consistency order and good stability properties. Replacing the coefficients in Eq. (13)
by different coefficients m̂l a second solution ûi+1 of lower order p̂, where p̂ < p, can be
constructed [17, 18] .

Usually, for the complex dynamical behavior problems, for instance the current problem
under consideration, the fixed time steps are not adequate to do longer time horizon which
require a huge number of small time steps. Thus, time step adaptation is an important
and should be efficient in order to control the temporal error. After the i-th integration
step the value ǫi+1 = ‖ui+1 − ûi+1‖L2 is taken as an estimator of the local temporal error.
A new time step τnew, see Gustafsson et al. [16], is computed by

τ̄ := β
τ i

τ i−1

(

TOLt

ǫi+1

)

p2
p
(

ǫi

ǫi+1

)

p1
p

τ i, τnew =







βmaxτ
i, τ̄ > βmaxτ

i,
βminτ

i, τ̄ < βminτ
i,

τ̄ , otherwise.
(15)

The parameter β > 0 is safety factor. The factors βmin and βmax restrict time step jumps.
In our computations we have chosen the parameters p1 = 1 and p2 = 1. If ǫ < TOLt,
where TOLt is a desired tolerance prescribed by the user, we proceed to the next time
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step, otherwise the time step has to be shortened according to Eq. (15) and a new try is
performed.

The simulations are performed using the ROS2 method [10] which is a 2nd order method
with 2(1) internal stages, and ROS3P [19], W-method [31] as well as ROWDA [18] which
are 3(2) order methods with 3 internal stages. Finally, after time discretization, we get a
system of algebraic equations in each internal stage. For solving the algebraic system in
each stage we used the BiCGSTAB method with ILU preconditioning.

4.4 Spatial grid adaptivity

The adaptive mesh refinement(AMR) algorithm try to automatically refine or coarsen the
mesh to achieve a solution having a specified accuracy in an optimal fashion and it uses
a hierarchy of properly nested levels. For this problem we considered the AMR technique
based on the Z2 error indicator of Zienkiewicz and Zhu [37] which is based on the averaging
gradients of the solution. See also [35] for a more detailed description of error estimators.
The full spatial and temporal discretization leads to an approximate solution ut

h with
ut
h(·, ti) ∈ Vh at the discrete time points ti, i = 0, . . . ,M where the time integration scheme

is evaluated. Here we will recall the Z2 error indicator.
We denote by Wh the space of all piecewise linear vector-fields and set Xh := Wh ∩

C(Ω,R2). Denote u and uh the unique solution of problems (8) and (9), respectively. Let
Guh ∈ Xh be the 〈·, ·〉h-projection of ∇uh onto Xh. In this case ‖Guh −∇uh‖L2(T ) can be
used as an error estimator, where Guh is an easily computable approximation of ∇uh, see
[35] for more details. It can be computed by a local averaging of ∇uh|T (xi) as follows

Guh(xi) =
∑

T⊂Dxi

|T |

|Dx|
∇uh|T (xi) . (16)

Here, Dxi
is the union of the triangles having xi as a vertex and |T | denotes the area of

triangle T . Thus, Guh may be computed by a local averaging of ∇uh. We finally set

ηZ,T := ‖Guh −∇uh‖L2(T ) , (17)

and

ηZ :=

{

∑

T∈Th

η2Z,T

}1/2

. (18)

The Z2 indicator ηZ,T is an estimate for ‖∇ut
h(·, ti)−∇ut(·, ti)‖L2(T ), see Verfürth [35].

Let λ(T ) ∈ N0 be the refinement level of triangle T ∈ T , λmax ∈ N0 be a given maximum
refinement level, and φ1, . . . , φλmax

be given real numbers satisfying 0 ≤ φ1 . . . ≤ φλmax
.

We set φ0 = 0 and φλmax
= ∞. With the choice of φ1, . . . , φλmax

one controls the structure
of the grid. If we set φ1 = . . . = φλmax

= 0 this leads to a uniform triangulation of level
λmax.
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In our numerical computations, the fully coupled space-time adaptive algorithm is in-
troduced as follows. Suppose that an initial coarse triangular grid is constructed using grid
generator. To generate the initial coarse adaptive grid, we use a strongly localized function
as initial solution in the vicinity of the cluster area for error estimator. To account for the
exponential decay of calcium away from the source we generate a succession of localized
functions with decreasing spatial extent. Then we refine the mesh until a minimum of 9
grid points lie in the area of each channel. A triangle T is marked for

1. refinement if ηZ,T > φλ(T ) and λ(T ) < i for i = 0, . . . , λmax,

2. coarsening if ηZ,T <
φλ(T )

100
and λ(T ) > i for i = 0, . . . , λmax,

where ηZ,T is calculated according to Eq. (17). At this level, the constructed mesh is
assumed as a coarse mesh when simulation starts, denoted by L0, and it will be the central
part of the root level of the hierarchical system. It is fixed during the process of adaptive
mesh refinement. Finer levels Li for i > 0 are constructed recursively from the coarser
levels Li−1. In our numerical computations, the tolerance for spatial grid refinement is
set Tolx = 10−3. The Z2 error estimator is called for every 3 time intervals while solving
the deterministic part and adapt the grid if the spatial error is greater than the given
prescribed tolerance Tolx. Thus, it adjusts the spatial grid by refining and coarsening,
depending on the estimated spatial solution error of the elements. Accordingly, the new
solution is updated based on the new grid construction via linear interpolation. After
advancing the solution data to the new grids, the time discretization step has been applied
and the new solution is computed. If the computed time error, based on a simple embedding
technique, is less than the prescribed tolerance then step has to be proceeded further. If
not, time step has to be shortened based on the time step controller and repeated the time
step procedure again. In this way, both time step control and dynamic mesh refinement
based on a posteriori error estimation can be simultaneously realized in our numerical
experiments.

Here we present algorithmic aspects of hybrid stochastic and deterministic numerical
simulations by utilizing the spatial grid adaptivity as follows where u represent the solution
vector (c, E, bm, bs).

1. Initialization

• Choose uold = u0 X = X0, gold = 0, told = 0, ∆t > 0, and draw a uniform
random number r1 in [0,1] defining ξ = ln(1/r1).

2. Deterministic step

• Update the new solution unew and gnew by utilizing the AMR technique which
was explained in section 4.4.

• If the tolerance for the temporal adaptation procedure is not met, reduce the
step size ∆t and go to 2 where the fine (refined) grid is considered for this step.
Otherwise update the tnew = told + ∆t and set the new step size ∆t according
to the time stepping code prediction.
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3. If gnew < ξ (no stochastic event)

• Set uold = unew, gold = gnew, told = tnew, and go to 2.

4. If gnew ≥ ξ (some stochastic event in the time interval [told, tnew])

• Determine the event time ts ∈ [told, tnew] by (linear) interpolation, and compute
the corresponding calcium concentration cs at the event time ts by (linear)
interpolation.

• Draw a uniform random number r2 in [0, 1] and determine the stochastic event
Ri according to Eq. (5) based on cs.

5. If the next event Ri is non-channel transition

• Perform the stochastic event Ri to determine the new channel state X .

• Set gold = 0 and recompute gnew based on cs, gold and the remaining time
(tnew − ts).

• Draw a new uniform random number r1 in [0, 1] defining ξ = ln(1/r1), and go
to 3.

6. If the next event Ri is a channel transition

• Perform the channel transition Ri to determine the new state X .

• Set gnew = 0, and draw a new uniform random number r1 in [0, 1] defining
ξ = ln(1/r1).

• Set tnew = ts, and define new step size ∆t = ∆tchannel (a sufficiently small
number).

• Set uold = us, and go to 2.

5 Numerical results

In this section we describe numerical simulations that are performed on a squared geometry,
[0 , 33000]× [0 , 33000] nm2, as computational domain with refinement by using triangular
elements. This domain represents the ER membrane. In the following subsections we
show the convergence of numerical solutions with different time stepping methods as well
as adaptive grids. The parameters that have been used in the numerical simulation are
shown in Table 2. The initial solution for concentrations and buffers is considered as
constants over the computational domain.

All numerical computations were performed by using a Linux machine with 2 GB RAM,
2.33 GHz processor, gcc-4.1.0 compiler and the program package DUNE [3] which is a public
domain and written in C++.
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5.1 Results for deterministic opening and closing of channels

In this subsection we present the numerical tests based on the deterministic opening and
closing of one channel in one cluster arrangement with a static grid and temporal adaptive
grids. The initial coarse grid is shown in Figure 1(a) which is used in the case of adaptive
grid refinement. The static (fine) grid is shown in Figure 1(b).

(a) (b)

Figure 1: Different grids considered for the simulation of arrangement of 1 cluster setup
1(a)) coarse grid which is considered as initial grid for adaptive grid refinement simulations,
1(b)) fixed grid for other simulations.

methods accepted time steps rejected time steps total CPU time (hours)
ROS2 23446 63 38.78

ROS3p 9844 1151 30.83
ROWDA 5446 31 27.20

W-method 8794 366 27.37

Table 1: Comparison between different methods.

These results are presented for the opening and closing of one channel in one cluster
arrangement for short period of times. The channel is opened at times t = 0 s, t = 1.0 s
and so on, whereas closing of the channel occurs at times t = 0.7 s, 1.7 s, . . . and so on.
The numerical results are presented till time t = 5 s for different time stepping methods,
like ROS2, ROS3p, ROWDA and W-methods. For these methods the accepted time steps,
rejected time steps and total CPU time for the simulation is presented in Table 1. For
the sake of examination of the convergence of solutions and the performance of several
Rosenbrock methods we used the same tolerance TOLt = 10−5 for all methods which is a
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small tolerance for the automatic time step selection procedure. Also, it is well known that
each method shows a computational efficiency by properly adjusting the tolerance for time
adaptivity. The maximum and average cytosolic calcium concentrations are presented for
these methods in Figure 2. We can observe that for all integrators the maximum cytosolic
calcium concentration lies on one curve except for the W-method. A closer look in the
solution interval [7.0, 8.8] reveals that the W-method produces a slower propagation of
excitation of calcium wave front compared to the other Rosenbrock solvers. The reason for
this behavior might be a insufficient resolution in space or time for the W-method. The best
performance with respect to accuracy and computing time is obtained by ROWDAmethod.
Also, in a few other simulations, we experienced that ROWDA method works very well for
smaller tolerances which is used in automatic time step selection, say TOLt = 10−4 to 10−3

, and saves a lot computational time to obtain the accurate solution. From Table 1, we
can observe that ROWDA reaches the final time in 5,446 steps, Ros3p needs 9,844 steps,
W-method 8,794 steps, and Ros2 even 23,446 steps. Due to the small tolerance and lower
order of Ros2 method, it takes more accepted steps compare to other methods. In each
accepted time step, for this method, the linear solver takes less number of iterations to
converge the solution. We have experienced that if we increase the tolerance for time step
control the Ros2 method also takes less accepted time steps and computational time is
saved up to about 6%. Due to the 3 stages of the ROWDA method, it takes less accepted
time steps and needs more linear solver iterations to converge the solution in comparison
to Ros2 method.
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Figure 2: The maximum and average cytosolic calcium concentration in 2(a) and 2(b)
respectively for all time integrators.

For further numerical computations, we used the ROWDA method as a time integrator.
Next, we examine the performance of different space resolution grids (different fine grid
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levels) and the AMR grid and the numerical results are presented till time t = 3 s. The
difference between the solutions of maximum cytosolic calcium concentration for the fine
grid levels 17, 18, 19, 20, and 21 which consists of 749, 837, 1,669, 2,061 and 3,225 grid
points respectively within the area of one channel, and the AMR grid is presented in
Figure 3(a). The zoom of this solution is shown in Figure 3(b). From these plots, it can be
observed that the solution converges for finer meshes as well as for temporal adaptive grid.
Also the average cytosolic calcium concentration and average ER calcium concentration are
presented in Figure 3(c) and Figure 3(d) respectively. When a channel opens, the maximum
cytosolic Ca2+ concentration raises rapidly and stays for a while. When an open channel
closes the Ca2+ concentration falls immediately and recovers the stationary solution. These
presented numerical results show that the temporal adaptive grid refinement solution is
accurate as the fine grids during the intermediate time steps.

The corresponding number of elements, nodes and intermediate levels are shown in
Figure 4. Here we can see that grid refinement strategy refines many elements after opening
of a channel and this leads to more accurate solutions for this problem instead of considering
the fixed grid. Refined elements are coarsened when all channels are closed. Also it
proves that it saves more CPU time for the higher cluster set ups which we will present
in later subsections. In our numerical implementation we have a flexibility to restrict
the maximum number of elements and/or maximum number of refinement levels for grid
refinement strategy, which is more useful to perform computations for higher cluster setups
while considering the stochastic channel transition with moderate CPU time.

To give the comparison of CPU times for static grid and AMR grid, we considered the
time interval for channel transition is 0.02s and total simulation time is 0.16s. Here the
finest level of AMR mesh, during the intermediate time steps, is considered as static grid.
In this case, the static grid takes 4300.57 seconds and AMR grid 3157.07 seconds of CPU
time. It shows clearly that for one cluster setup the AMR method is faster. These results
strive forward to apply AMR technique for more cluster setup considering the stochastic
channel opening and closings.

5.2 Hybrid numerical results

In this subsection, the adaptive numerical solutions of calcium concentrations with stochas-
tic channel transition are presented. To find a suitable time step is a very crucial task in
these stochastic simulations to obtain a moderate overall computational time. In our nu-
merical simulations deterministic and stochastic equations are coupled and require two
different time steps. One time step for solving the deterministic equations, which is solved
by using the linearly implicit Runge-Kutta method and the other for solving the stochastic
part, where we use the Gillespie algorithm. Both are adaptive with regard to time stepping.

5.2.1 Numerical results with one cluster set up

In this subsection, the hybrid numerical results are shown based on the one cluster set up
which consists of 20 channels. The simulation time is taken to be t = 30 s and results are

14



0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

time [s]

m
ax

im
um

 c
yt

os
ol

ic
 C

a2+
 [µ

M
]

 

 

no.of nodes − 5,129
no.of nodes − 6,033
no.of nodes − 10,189
no.of nodes − 13,685
no.of nodes − 18,553
AMR grid

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
7

7.5

8

8.5

time [s]

m
ax

im
um

 c
yt

os
ol

ic
 C

a2+
 [µ

M
]

 

 

no.of nodes − 5,129
no.of nodes − 6,033
no.of nodes − 10,189
no.of nodes − 13,685
no.of nodes − 18,553
AMR grid

(b)

0 0.5 1 1.5 2 2.5 3 3.5
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

time [s]

av
er

ag
e 

va
lu

e 
of

 c
yt

os
ol

ic
 C

a2+
 [µ

M
]

 

 

no.of nodes − 5,129
no.of nodes − 6,033
no.of nodes − 10,189
no.of nodes − 13,685
no.of nodes − 18,553
AMR grid

(c)

0 0.5 1 1.5 2 2.5 3 3.5
699.1

699.2

699.3

699.4

699.5

699.6

699.7

699.8

699.9

700

time [s]

av
er

ag
e 

va
lu

e 
of

 E
R

 C
a2+

 [µ
M

]

 

 

no.of nodes − 5,129
no.of nodes − 6,033
no.of nodes − 10,189
no.of nodes − 13,685
no.of nodes − 18,553
AMR grid

(d)

Figure 3: Comparison results over time for fine grids and temporal adaptive grids, max-
imum cytosolic calcium concentration and local zoom of this solution in 3(a)) and 3(b))
3(c)) average value of cytosolic calcium concentration, 3(d)) average value of ER calcium
concentration over the simulation time.

presented for a fine grid and adaptive grid. The concentration changes occur rapidly when
a channel opens and closes. It stays constant when all channels are closed, as is shown
in Figures 5(a) for maximum cytosolic concentration over time and maximum number of
open channels over time in Figures 5(b). Figure 5(a) shows that the Ca2+ concentration
is constant until approximately t = 1 s because no channel is opened during this time
and after this time the Ca2+ concentration rapidly changes due to channel opening and
closings. The corresponding maximum concentration over time and maximum number of
open channels over time are given in Figures 5(c) and Figures 5(d) respectively for adaptive
grids.

Typically, in these simulations the time step reduces to 10−8 s during the channel
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Figure 4: 4(a)) Number of refined elements, 4(b)) number of refined nodes and 4(c)) number
of intermediate levels during the intermediate time steps for the adaptive grid refinement
strategy over the simulation time.

opening and it returns to 10−2 s when all channels are closed. During this fast change
the adaptive time step control plays an important role to maintain the accuracy of the
solution. The corresponding average cytosolic and ER calcium concentrations, as well as
the mobile and stationary buffer concentrations are plotted in Figure 6.

The evolution of the number of elements and number of points are shown in Figure 7
during the stochastic channel transition. The tolerances for the time TOLt = 10−4 and
space TOLx = 10−3 are fixed. The behavior of local error control works as optimal as
during the stochastic channel transition.
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Figure 5: Stochastic opening and closing of channels in one cluster arrangement, 5(a))
maximum cytosolic calcium concentration over the simulations time for fixed grid, 5(b))
number of opened/closed channels for fixed grid, 5(c)) maximum cytosolic calcium con-
centration over the simulation time for adaptive grid and 5(d)) number of opened/closed
channels for adaptive grids over the simulation time.

5.2.2 Numerical results with many cluster set up

The numerical results of stochastic opening and closing of channels in an arrangement with
36 clusters are presented in this subsection. The initial coarse grid is shown in Figure 8(a)
which is used in the case of adaptive grid refinement, conducted during the intermediate
time steps. This mesh consists of 18,792 elements and 9,541 nodal points at mesh level 10.
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Figure 6: Stochastic Opening and closing of channels in the one cluster arrangement, 6(a))
average value of cytosolic calcium concentration, 6(b)) average value of cytosolic calcium
concentration, 6(c)) average value of mobile buffer concentration, 6(d)) average value of
stationary buffer concentration for adaptive grids over the simulation time.

The fine (fixed) grid is shown in Figure 8(b) which is used for the other simulations and
consists of 62,836 elements and 31,635 nodal points at mesh level 10.

In Figure 9 the maximum cytosolic calcium concentration is plotted for a static grid
and a temporal adaptive grid. We can see that with a static grid the maximum Ca2+

concentration is about 21.6 µM in Figure 9(a) and the maximum number of open clusters
is 30 (Figure 9(c)). In case of a temporal adaptive grid the maximum cytosolic calcium
concentration is about 23 µM (see Figure 9(b)) and the maximum number of open clusters
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Figure 7: The evolution of the number of elements in 7(a) and number of points in 7(b)
for stochastic channel for 1 cluster arrangement.

(a) (b)

Figure 8: Different grids considered for the arrangement of the 36 clusters setup 8(a))
coarse grid which is considered as a initial grid for AMR simulations, 8(b)) fixed grid.

is 28 (see Figure9(d)). In this case the difference of Ca2+ concentration is at least magnitude
of 1.4 µM even though the number of open clusters is less. The corresponding number of
open channels for static and temporal adaptive grid is shown in Figure 9(e) and Figure 9(f),
respectively. The numbers of refined/coarsened elements and nodal points are depicted in
Figure 10. We can see a refinement to about 44,000 elements which consists of 22,000 nodal
points when the maximum number of clusters are open. The temporal grid is adjusted
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according to opening and closing of clusters and channels in the simulation.
For the comparison of CPU times we found that for the static grid setup the simulation

takes 8.897372 days, while for the temporal adaptive grid it takes 6.01 days. For this
problem we observed that the temporal adaptive grid performs well over the static grid in
terms of an accurate solution as well as computational time.

The contour plots of the solution and the corresponding grid at the different time steps
are presented in Figure 11. During this simulation, four clusters are open which consists of
19 open channels at time t = 0.78262 s are shown in Figure 11(a) and corresponding grid
in Figure 11(b). At this time the grid consists of 38,418 number elements which consists
of 19,354 nodes. Likewise, 18 clusters are open which consists of 5 open channels at time
t = 1.75061 s are shown in Figure 11(c). At time t = 3.38817 s, 29 clusters are open which
consists of 77 open channels are shown in Figure11(e) and corresponding grid is shown in
Figure 11(f).

6 Conclusions

In this article, we have presented an efficient numerical simulation for intracellular calcium
dynamics. First we presented numerical results for deterministically opening and closing
channels for static and temporal adaptive grids. We have compared several linearly implicit
one step methods of Rosenbrock type methods and ROWDA method performed best for
this problem. The temporal adaptive numerical solution is accurate as the static grid and
more efficient in CPU time as well as in computer memory use. Later, the hybrid numerical
solutions are presented for one cluster and 36-cluster arrangements. These numerical results
demonstrate that temporal adaptivity is more efficient for higher cluster set ups. We
observed that temporal adaptivity is important when channels are opening and closing in
the stochastic regime and it is challenging to extend this to higher numbers of clusters
in the stochastic regime for three spatial dimensions. Also it is more challenging to find
a suitable time stepping method to obtain efficient numerical results in stochastic regime
for this type of particular problems. In this case linearly implicit Runge-Kutta methods
suit well for this problem. Based on the presented a fully adaptive approach, we are in
the process of extending the present implementation to a three dimensional space hybrid
model.
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Parameter Value Unit
leak flux coefficient Pl 0.025 s−1

channel flux coefficient Pch 3.0× 103 µm s−1

single channel radius Rs 0.018 µM
pump flux coefficient Pp 100 µm µM s−1

pump dissociation coefficient Kd 0.04 µM
diffusion coefficient D of free cytosolic Ca2+ 200 µm2 s−1

diffusion coefficient D of free ER Ca2+ 200 µm2 s−1

diffusion coefficient Dm of mobile buffer 40 µm2 s−1

diffusion coefficient Ds of stationary buffer 0.01 µm2 s−1

on-rates of fast buffers:
k+s 200 (µM s)−1

k+m 400 (µM s)−1

dissociation constants of buffers Ki =
k−i
k+i

:

Ks 2 µM
Km 0.25 µM
total concentrations of buffers:
Bs 80 µM
Bm 1 µM
subunit kinetics, note bi=aidi, i=1,. . .,5
IP3 binding
a1, a3 20 (µM s)−1

d1 0.13 µM
d3 0.13 µM
inhibiting, with IP3
a2 0.030373 (µM s)−1

d2 3.776 µM
inhibiting, without IP3
a4 0.303073 (µM s)−1

d4 0.5202 µM
activating
a5 2.222 (µM s)−1

d5 0.3 µM

Table 2: Parameters used in the numerical simulations.
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Figure 9: Stochastic Opening and closing of channels in the 36 clusters arrangement,
maximum cytosolic calcium concentration over the simulations time for fixed grid in 9(a))
and for temporal adaptive grid in 9(b)), number of opened/closed clusters for fixed grid in
9(c) and for temporal adaptive grid in 9(d), number of opened/closed channels for fixed
grid in 9(e) and for temporal adaptive grid in 9(f), over the simulation time.
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Figure 10: Stochastic Opening and closing of channels in the 36 clusters arrangement for
temporal adaptive grid, the number of refined/coarsened elements at left and nodal points
at right.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: The contour and grid plots of the stochastic channel transition for the 36 clusters
arrangement, the contour plot of the cytosolic Ca2+ at time t = 0.78262 s in 11(a)) and
corresponding grid in 11(b)), the contour plot of the cytosolic Ca2+ at time t = 1.75061 s
in 11(c)) and corresponding grid in 11(d)), the contour plot of the cytosolic Ca2+ at time
t = 3.38817 s in 11(e)) and corresponding grid in 11(f)).
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