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Abstract. The paper deals with the convergence analysis of the cell average technique
given by J. Kumar et al. [3] to solve the nonlinear aggregation population balance equations.
Similarly to our previous paper Giri et al. [1], which considered the fixed pivot technique,
the main emphasis here is to check the convergence for five different types of uniform and
non-uniform meshes. First, we observed that the cell average technique is second order
convergent on a uniform, locally uniform and non-uniform smooth meshes. Secondly, the
scheme is examined closely on an oscillatory and non-uniform random meshes. It is found
that the scheme is only first accurate there. In spite of this, the cell average technique gives
one order higher accuracy than the fixed pivot technique for locally uniform, oscillatory
and random meshes. Several numerical simulations verify the mathematical results of the
convergence analysis. Finally the numerical results obtained are also compared with those
for the case of the fixed pivot technique.
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1 Introduction

The population balance equations (PBEs) are analytically solvable only for some restricted class
of kernels. Because of restrictions, it has been of great interest to develop new numerical meth-
ods and assess them by means of mathematical analysis. As noticed by Kostoglou [2] among all
numerical sectional methods for solving PBE, the fixed pivot technique [7] is the most popular
and widely used in the literature. A new step in the development of sectional methods is due
to the recently introduced cell average technique developed by J. Kumar et al. [3]. In a recent
paper by Giri et al. [1], convergence analysis of the fixed pivot technique has been discussed for
solving aggregation PBE. It has been observed that the fixed pivot technique is second order

∗Corresponding author. Tel +49 391 6711629; Fax +49 391 6718073
Email address: ankik.giri@ovgu.de

1



accurate on uniform and non-uniform smooth meshes. Moreover, it has been shown that the
scheme is first order accurate on a locally uniform mesh. Quite surprising results have been
found on oscillatory and random meshes. The analysis clearly shows that the scheme does not
converge on oscillatory and non-uniform random meshes.
The purpose of this work is to demonstrate the convergence analysis of the cell average tech-
nique and to compare mathematical as well as numerical results with the fixed pivot technique
discussed in [1]. A general idea of the sectional methods and some basic definitions and theorems
used in further analysis will be directly taken from [1]. Before proceeding to the next section, it
is recommended that readers review the Section 2 in [1].
Let us briefly organize the content of this paper. The mathematical formulation of the cell
average technique is reviewed in Section 2. The consistency and convergence are investigated
in Section 3 and 4, respectively. Numercial justification of the mathematical results is given in
section 5. The all observations presented in this paper are summerized in the last section.

2 The cell average technique

Let us begin with the following truncated version aggregation population balance equation

∂n(t, x)
∂t

=
1
2

∫ x

0
β(x− ε, ε)n(t, x− ε)n(t, ε)dε−

∫ xmax

0
β(x, ε)n(t, x)n(t, ε)dε, (1)

with initial condition

n(x, 0) = nin(x) ≥ 0, x ∈ Ω :=]0, xmax].

Let I stand for the total number of cells. The total number of particles in the ith cell Λi :=
]xi−1/2, xi+1/2] is given as

Ni(t) =
∫ xi+1/2

xi−1/2

n(t, x)dx.

Integrating the continuous equation (1) over the ith cell we obtain

dNi

dt
= Bi −Di, i = 1, . . . , I,

The total birth rate Bi and death rate Di are given as

Bi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0
β(x− ε, ε)n(t, x− ε)n(t, ε)dεdx. (2)

and

Di =
∫ xi+1/2

xi−1/2

∫ xI+1/2

0
β(x, ε)n(t, ε)n(t, x)dεdx. (3)

The total discrete birth and death rates of particles are calculated by substituting the number
density approximation
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n(t, x) ≈
I∑

i=1

Ni(t)δ(x− xi)

into equations (2) and (3) as

B̂i =
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
β(xk, xj)NjNk, (4)

and

D̂i = Ni

I∑

j=1

β(xi, xj)Nj . (5)

Here B̂i and D̂i denote the discrete birth and death rates in the ith cell respectively. The total
volume flux Vi into cell i as a result of aggregation is given by

Vi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0
xβ(x− ε, ε)n(t, x− ε)n(t, ε)dεdx. (6)

Similarly to the discrete birth rate the discrete volume flux can be obtained as

V̂i =
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
β(xk, xj)NjNk(xj + xk). (7)

Consequently, the average volume vi ∈ [xi−1/2, xi+1/2] of all new born particles in the ith cell
can be evaluated as

vi =
V̂i

B̂i

, B̂i > 0. (8)

We do not need volume average vi in case of B̂i = 0. However, for the sake of simplicity of the
algorithm, we can set vi = xi for B̂i = 0. It is assumed that all of the B̂i particles are assigned
temporarily at the average volume v̂i. If the average volume v̂i is same as the pivot size xi then
the total birth B̂i can be assigned to the node xi. But this is rarely possible and hence the
total particle birth B̂i has to be assigned to the neighboring nodes in such a way that the total
number and mass remain conserved during this reassignment. Finally, the resultant set of ODEs
takes the following form

dN̂i

dt
= B̂CA

i − D̂CA
i (9)

Let us consider the Heaviside function

H(x) :=





1 if x > 0,
1
2 if x = 0,

0 if x < 0.
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and

λ±i (x) =
x− xi±1

xi − xi±1
. (10)

Then the birth and death terms are given as

B̂CA
i =B̂i−1λ

−
i (vi−1)H(vi−1 − xi−1) + B̂iλ

+
i (vi)H(vi − xi)

+ B̂iλ
−
i (vi)H(xi − vi) + B̂i+1λ

+
i (vi+1)H(xi+1 − vi+1) (11)

and

D̂i = Ni

I∑

j=1

β(xi, xj)Nj . (12)

The first and the fourth terms on the right hand side of equation (11) can be set to zero for i = 1
and i = I respectively. The numerical approximation of Ni(t) is defined by N̂i(t). In the rest of
this paper, for the sake of simplicity, we suppress the notation of parameter t and use Ni instead
of Ni(t). The set of equations (9) is a discrete formulation for solving a general aggregation
problem. The form of aggregation kernel and type of grids can be chosen arbitrarily. The set
of equations (9) together with an initial condition can be solved with any higher order ODE
solver to obtain number of particles in a cell N̂i. An appropriate solver to solve such equations
is recommended in Giri et al. [1]. All other details can be found in [3, 4].
By using (4) and (5) the cell average technique (9) can be written as

dN̂i

dt
=λ−i (vi−1)H(vi−1 − xi−1)

j≥k∑

xi−3/2≤xj+xk<xi−1/2

(
1− 1

2
δj,k

)
β(xk, xj)NjNk

+ [λ+
i (vi)H(vi − xi) + λ−i (vi)H(xi − vi)]

j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
β(xk, xj)NjNk

+ λ+
i (vi+1)H(xi+1 − vi+1)

j≥k∑

xi+1/2≤xj+xk<xi+3/2

(
1− 1

2
δj,k

)
β(xk, xj)NjNk

−Ni

I∑

j=1

β(xi, xj)Nj . (13)

Before proceeding to the next section let us assume

∆xmin ≤ ∆xi = xi+1/2 − xi−1/2 ≤ ∆x and
∆x

∆xmin
≤ K,

where K is a positive constant.

3 Consistency

We need the following lemma to investigate the consistency of the cell average technique.
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Lemma 3.1. If Bi, Di, B̂i, D̂i, Vi and V̂i are given by equations (2)-(7) respectively, then we
have the following error estimates
1. Bi = B̂i +O(∆x3),
2. Di = D̂i +O(∆x3) = D̂CA

i +O(∆x3),
3. Vi = V̂i +O(∆x3).

Proof. Let us first consider

Bi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0
β(x− ε, ε)n(t, x− ε)n(t, ε)dεdx.

By changing the order of integration we get

Bi =
1
2

∫ xi−1/2

0

∫ xi+1/2

xi−1/2

β(x− ε, ε)n(t, x− ε)n(t, ε)dxdε

+
1
2

∫ xi+1/2

xi−1/2

∫ xi+1/2

ε
β(x− ε, ε)n(t, x− ε)n(t, ε)dxdε.

This can be rewritten as

Bi =
1
2

i−1∑

j=1

∫ xj+1/2

xj−1/2

∫ xi+1/2

xi−1/2

β(x− ε, ε)n(t, x− ε)n(t, ε)dxdε

+
1
2

∫ xi+1/2

xi−1/2

∫ xi+1/2

ε
β(x− ε, ε)n(t, x− ε)n(t, ε)dxdε.

Now we apply the midpoint rule to the outer integrals in both terms on the right hand side to
obtain

Bi =
1
2

i−1∑

j=1

∫ xi+1/2

xi−1/2

β(x− xj , xj)n(t, x− xj)dx · n(t, xj)∆xj

+
1
2

∫ xi+1/2

xi

β(x− xi, xi)n(t, x− xi)n(t, xi)∆xidx +O(∆x3),

and use the relationship Ni = n(t, xi)∆xi +O(∆x3) for the midpoint rule to get the form

Bi =
1
2

i−1∑

j=1

Nj

∫ xi+1/2

xi−1/2

β(x− xj , xj)n(t, x− xj)dx

+
1
2
Ni

∫ xi+1/2

xi

β(x− xi, xi)n(t, x− xi)dx +O(∆x3),

=:B̃i +O(∆x3). (14)

Let us denote the integral terms in B̃i by I1 and I2 respectively and evaluate them separately.
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The integrals I1.
We consider the first integral in (14) as

I1 =
1
2

i−1∑

j=1

Nj

∫ xi+1/2

xi−1/2

β(x− xj , xj)n(t, x− xj)dx.

By using the substitution x− xj = x′ we obtain

I1 =
1
2

i−1∑

j=1

Nj

∫ xi+1/2−xj

xi−1/2−xj

β(x′, xj)n(t, x′)dx′. (15)

We now define li,j and γi,j to be those indices such that the following hold

xi−1/2 − xj ∈ Λli,j and γi,j := sgn[(xi−1/2 − xj)− xli,j ] (16)

where

sgn(x) :=





1 if x > 0,

0 if x = 0,

-1 if x < 0.

By the definition of the indices li,j and γi,j in (16), the equation (15) can be rewritten as

I1 =
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑

j=1

Nj

li+1,j+
1
2
(γi+1,j−1)∑

k=li,j+
1
2
(γi,j+1)

∫ xk+1/2

xk−1/2

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′. (17)

Let us assume there are total p terms in

li+1,j+
1
2
(γi+1,j−1)∑

k=li,j+
1
2
(γi,j+1)

∫ xk+1/2

xk−1/2

β(x′, xj)n(t, x′)dx′

and set
li,j +

1
2
(γi,j + 1) =: k1.

By using the definition of the indices li,j and γi,j in (16), we can write

∆xk2 + ∆xk3 + . . . + ∆xkp−1 ≤ ∆xi ≤ ∆x

which implies that

(p− 2) ≤ ∆x

∆xmin
≤ K ⇒ p ≤ K + 2.
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This means the above sum has finite number of terms. So one can apply the midpoint rule in
the second term on the right hand side to get

I1 =
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑

j=1

Nj

li+1,j+
1
2
(γi+1,j−1)∑

k=li,j+
1
2
(γi,j+1)

β(xk, xj)n(t, xk)∆xk

+
1
2

i−1∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′ +O(∆x3).

This can be further rewritten as

I1 =
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑

j=1

Nj

∑

xi−1/2≤(xj+xk)<xi+1/2

β(xk, xj)Nk

+
1
2

i−1∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′ +O(∆x3). (18)

The integrals I2.
Let us consider the second integral in (14) as

I2 =
1
2
Ni

∫ xi+1/2

xi

β(x− xi, xi)n(t, x− xi)dx.

By using the substitution x− xi = x′ we obtain

I2 =
1
2
Ni

∫ xi+1/2−xi

0
β(x′, xi)n(t, x′)dx.

Again by the definition of the indices li,j and γi,j in (16) we split the above integral as

I2 =
1
2
Ni

li+1,i+
1
2
(γi+1,i−1)∑

k=1

∫ xk+1/2

xk−1/2

β(x′, xi)n(t, x′)dx′

+
1
2
Ni

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

β(x′, xi)n(t, x′)dx′.

Analogously as before, one can easily show that the summation in the first term on the right
hand side has finite number of terms. So one can apply the midpoint rule in the first term to
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obtain

I2 =
1
2
Ni

li+1,i+
1
2
(γi+1,i−1)∑

k=1

β(xk, xi)n(t, xk)∆xk

+
1
2
Ni

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

β(x′, xi)n(t, x′)dx′ +O(∆x3).

This can be further rewritten as

I2 =
1
2
Ni

∑
xi+xk<xi+1/2

β(xk, xi)Nk

+
1
2
Ni

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

β(x′, xi)n(t, x′)dx′ +O(∆x3). (19)

By substituting (18), (19) into (14) we get

Bi =
1
2

i−1∑

j=1

Nj

∑

xi−1/2≤(xj+xk)<xi+1/2

β(xk, xj)Nk

+
1
2
Ni

∑
xi+xk<xi+1/2

β(xk, xi)Nk

+
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′

+
1
2
Ni

∫ xi+1/2−xi

x
li+1,i+

1
2 γi+1,i

β(x′, xi)n(t, x′)dx′ +O(∆x3).

The terms on the right hand side can be combined as

Bi =
j≥k∑

xi−1/2≤xj+xk<xi+1/2

(
1− 1

2
δj,k

)
β(xk, xj)NjNk

+
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′ +O(∆x3).
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i.e.

Bi =B̂i +
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

β(x′, xj)n(t, x′)dx′

+
1
2

i∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

β(x′, xj)n(t, x′)dx′ +O(∆x3).

Using the properties λ+
i (x′ + xj) + λ−i+1(x

′ + xj) = 1, the integral terms on the right hand side
can be rewritten as

Bi =B̂i +
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

λ+
i (x′ + xj)β(x′, xj)n(t, x′)dx′

+
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

λ−i+1(x
′ + xj)β(x′, xj)n(t, x′)dx′

+
1
2

i∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

λ+
i (x′ + xj)β(x′, xj)n(t, x′)dx′

+
1
2

i∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

λ−i+1(x
′ + xj)β(x′, xj)n(t, x′)dx′ +O(∆x3). (20)

Let us denote the remaining integrals on the right hand side in (20) by E1, . . . , E4 respectively
and calculate them separately.

The integrals E1 and E2.

E1 =
1
2

i−1∑

j=1

Nj

∫ x
li,j+1

2 γi,j

xi−1/2−xj

λ+
i (x′ + xj)β(x′, xj)n(t, x′)dx′. (21)

By the definition of the indices li,j in (16) we can write the following inequality

|E1| ≤ 1
2

i−1∑

j=1

Nj

∫ x
li,j− 1

2
+2∆1

x
li,j− 1

2

λ+
i (x′ + xj)β(x′, xj)n(t, x′)dx′.

where ∆1 = (xi+1 − xj)− xli,j−1/2. By applying the midpoint rule and using λ+
i (xi+1) = 0, we

get

|E1| ≤ 0 +O(∆x3).

Similarly as before in E1, we use ∆2 = (xi − xj) − xli,j−1/2 in place of ∆1 and λ−i+1(xi) = 0 to
get

|E2| ≤ 0 +O(∆x3).
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The integral E3.
Now we consider

E3 =
1
2

i∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

λ+
i (x′ + xj)β(x′, xj)n(t, x′)dx′.

By the definition of the indices li,j in (16) one can write

|E3| ≤ 1
2

i∑

j=1

Nj

∫ xli+1,j−1/2+2∆3

xli+1,j−1/2

λ+
i (x′ + xj)β(x′, xj)n(t, x′)dx′

where ∆3 = (xi+1 − xj) − xli+1,j−1/2. By applying the midpoint rule and using λ+
i (xi+1) = 0,

we obtain

|E3| ≤ 0 +O(∆x3).

The integral E4.

E4 =
1
2

i∑

j=1

Nj

∫ xi+1/2−xj

x
li+1,j+1

2 γi+1,j

λ−i+1(x
′ + xj)β(x′, xj)n(t, x′)dx′.

By the definition of the indices li,j in (16) we obtain

|E4| ≤ 1
2

i∑

j=1

Nj

∫ xli+1,j+1/2

xli+1,j+1/2−2∆4

λ−i+1(x
′ + xj)β(x′, xj)n(t, x′)dx′

where ∆4 = xli+1,j+1/2 − (xi − xj). By applying the midpoint rule and using λ−i+1(xi) = 0, we
obtain

|E4| ≤ 0 +O(∆x3).

Finally all these values can be substituted in equation (20)

Bi = B̂i +O(∆x3).

Now we consider the integrated death term as

Di =
∫ xi+1/2

xi−1/2

∫ xI+1/2

0
β(x, ε)n(t, ε)n(t, x)dεdx.

This can be rewritten as

Di =
∫ xi+1/2

xi−1/2

I∑

j=1

∫ xj+1/2

xj−1/2

β(x, ε)n(t, ε)n(t, x)dεdx.
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Applying the midpoint rule in both integrals, we obtain

Di = Ni

I∑

j=1

β(xi, xj)Nj +O(∆x3).

Thus,

Di = D̂i +O(∆x3) = D̂CA
i +O(∆x3).

Now we consider the volume flux

Vi =
1
2

∫ xi+1/2

xi−1/2

∫ x

0
xβ(x− ε, ε)n(t, x− ε)n(t, ε)dεdx.

Proceeding as in Bi one can get

Vi =
1
2

i−1∑

j=1

Nj

∫ xi+1/2

xi−1/2

xβ(x− xj , xj)n(t, x− xj)dx

+
1
2
Ni

∫ xi+1/2

xi

xβ(x− xi, xi)n(t, x− xi)dx +O(∆x3),

=:Ṽi +O(∆x3). (22)

Analogously, we can easily obtain

Vi = V̂i +O(∆x3).

Now we simplify the each term in (11) separately. Consider the first term without Heaviside
function H(x) and substitute the value of λ from the expression (10), we get

λ−i (vi−1)B̂i−1 =
vi−1 − xi−1

xi − xi−1
B̂i−1 =

2
∆xi + ∆xi−1

[(vi−1 − xi−1)B̂i−1]. (23)

Let us take

(vi−1 − xi−1)B̂i−1 =(vi−1 − xi−1)(B̃i−1 +O(∆x3))

=vi−1B̃i−1 − xi−1B̃i−1 +O(∆x4)

=
V̂i−1

B̂i−1

B̃i−1 − xi−1B̃i−1 +O(∆x4). (24)

Since V̂i−1 = Ṽi−1 +O(∆x3), B̂i−1 = B̃i−1 +O(∆x3) and B̃i−1, B̂i−1 6= 0, then

V̂i−1

B̂i−1

=
Ṽi−1

B̃i−1

+O(∆x3).

11



Substituting this value in (24), we obtain

(vi−1 − xi−1)B̂i−1 =Ṽi−1 − xi−1B̃i−1 + B̃i−1O(∆x3) +O(∆x4)

=Ṽi−1 − xi−1B̃i−1 + [B̂i−1 +O(∆x3)]O(∆x3) +O(∆x4)

=Ṽi−1 − xi−1B̃i−1 +O(∆x4)

because B̂i−1 is of first order. Now we put this value in (23) to get

λ−i (vi−1)B̂i−1 =
2

∆xi + ∆xi−1
[Ṽi−1 − xi−1B̃i−1 +O(∆x4)].

Again, Substituting the values of B̃i−1 from (14) and Ṽi−1 from (22) into the preceding equation
we obtain

λ−i (vi−1)B̂i−1 =
1

∆xi + ∆xi−1

[ i−2∑

j=1

Nj

∫ xi−1/2

xi−3/2

(x− xi−1)β(x− xj , xj)n(t, x− xj)dx

+
∫ xi−1/2

xi−1

(x− xi−1)β(x− xi−1, xi−1)n(t, x− xi−1)n(t, xi−1)∆xi−1dx

+O(∆x4)
]
.

Set f(x, y) := β(x, y)n(t, x). Then the above equation becomes

λ−i (vi−1)B̂i−1 =
1

∆xi + ∆xi−1

[ i−2∑

j=1

Nj

∫ xi−1/2

xi−3/2

(x− xi−1)f(x− xj , xj)dx

+
∫ xi−1/2

xi−1

(x− xi−1)f(x− xi−1, xi−1)n(t, xi−1)∆xi−1dx

+O(∆x4)
]
. (25)

We use Taylor series expansions about xi−1 of each integrand in equation (25)as

(x− xi−1)f(x− xj , xj) =0 + f(xi−1 − xj , xj)(x− xi−1) + fx(xi−1 − xj , xj)(x− xi−1)2

+O(∆x3),

(x− xi−1)f(x− xi−1, xi−1) =0 + f(xi−1 − xi−1, xi−1)(x− xi−1) +O(∆x2).

The substitution of the above Taylor series expansion in equation (25) gives

λ−i (vi−1)B̂i−1 =
1

∆xi + ∆xi−1

[
1
12

i−2∑

j=1

Njfx(xi−1 − xj , xj)∆x3
i−1

+
1
8
f(xi−1 − xi−1, xi−1)n(t, xi−1)∆x3

i−1 +O(∆x4)
]
.

12



This can be further simplified using Taylor series expansion as

λ−i (vi−1)B̂i−1 =
∆x3

i−1

∆xi + ∆xi−1

[
1
12

i−2∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3).

Now we consider the second term

λ+
i (vi)B̂i =

vi − xi+1

xi − xi+1
B̂i =

(
1− vi − xi

xi+1 − xi

)
B̂i = B̂i − 2

∆xi+1 + ∆xi
[viB̂i − xiB̂i].

Proceeding as before we obtain the following simplified form

λ+
i (vi)B̂i = B̂i − ∆x3

i

∆xi+1 + ∆xi

[
1
12

i−1∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3).

Similarly the other two terms can be easily obtained as

λ−i (vi)B̂i = B̂i +
∆x3

i

∆xi + ∆xi−1

[
1
12

i−1∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3),

and

λ+
i (vi+1)B̂i+1 = − ∆x3

i+1

∆xi+1 + ∆xi

[
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3).

Without loss of generality the summation appearing in all four terms can be taken up to i since
the terms we are adding are third order accurate. Further if use Lemma 3.1 then all the terms
can be rewritten in a more simplied form as

λ−i (vi−1)B̂i−1 =
∆x3

i−1

∆xi + ∆xi−1

[
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3). (26)

λ+
i (vi)B̂i = Bi − ∆x3

i

∆xi+1 + ∆xi

[
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3). (27)
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λ−i (vi)B̂i = Bi +
∆x3

i

∆xi + ∆xi−1

[
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3), (28)

λ+
i (vi+1)B̂i+1 = − ∆x3

i+1

∆xi+1 + ∆xi

[
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj)

+
1
8
f(xi − xi, xi)n(t, xi)

]
+O(∆x3). (29)

Let us calculate the local discretization error in the case vi−1 > xi−1, vi > xi and vi+1 ≥ xi+1

as

B̂CA
i = Bi +

(
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj) +
1
8
f(xi − xi, xi)n(t, xi)

)

×
(

∆x3
i−1

∆xi + ∆xi−1
− ∆x3

i

∆xi+1 + ∆xi

)
+O(∆x3). (30)

Similarly for the case vi−1 ≤ xi−1, vi+1 < xi+1 and vi < xi we have

B̂CA
i = Bi +

(
1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj) +
1
8
f(xi − xi, xi)n(t, xi)

)

×
(

∆x3
i

∆xi + ∆xi−1
− ∆x3

i+1

∆xi+1 + ∆xi

)
+O(∆x3). (31)

We need the following useful corollary to investigate the order of consistency.

Corollary 3.2. Let β(x, ε) : C(Ω2) → R and n(t, ε) : C(R, Ω) → R. If the function

B(t, x) =
1
2

∫ x

0
β(x− ε, ε)n(t, x− ε)n(t, ε)dε.

has finitely many oscillations (at the most a finite number of maxima and minima) in Ω at any
time t, then the expression xi − v̄i, i = 1, . . . , I defined using (4), (7) and (8) by

xi − v̄i =
xiB̂i − V̂i

B̂i

changes its sign at most finitely many times for ∆x sufficiently small.

Proof. The proof can be done in the same manner as Corollary 2.4 in [6].
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Let us now go back to the discussion of the local discretization error σi(t) = (Bi−Di)− (B̂CA
i −

B̂CA
i ). From the equations (26-31) we can estimate that

σi(t) =





Ci

(
∆x3

i−1

∆xi + ∆xi−1
− ∆x3

i

∆xi+1 + ∆xi

)
+O(∆x3), v̄i−1 > xi−1, v̄i > xi, v̄i+1 ≥ xi+1

Ci

(
∆x3

i

∆xi + ∆xi−1
− ∆x3

i+1

∆xi+1 + ∆xi

)
+O(∆x3), v̄i−1 ≤ xi−1, v̄i < xi, v̄i+1 < xi+1,

O(∆x3), v̄i−1 ≤ xi−1, v̄i = xi, v̄i+1 ≥ xi+1,

O(∆x2), elsewhere (i = I1, . . . , Im, 1, I).

where

Ci =
(

1
12

i∑

j=1

n(t, xj)∆xjfx(xi − xj , xj) +
1
8
f(xi − xi, xi)n(t, xi)

)
.

We have four cases for the order of the local error. The last case comes due to the sign change of
xi− v̄i and due to boundaries. As discussed before in Corollary 3.2, the number of sign changes
depends on the properties of birth rate function B(t, x) and is finite for finitely oscillating
function. Here due to the sign change of xi − v̄i we have taken m cells, say I1, . . . , Im, in which
the order may deteriorate. Since this number m remians finite, this does not lower the order of
the scheme. For simplicity let us denote set of indices in each case as follows

J1 = {i ∈ N | v̄i−1 > xi−1, v̄i > xi, v̄i+1 ≥ xi+1} ,

J2 = {i ∈ N | v̄i−1 ≤ xi−1, v̄i < xi, v̄i+1 < xi+1} ,

J3 = {i ∈ N | v̄i−1 ≤ xi−1, v̄i = xi, v̄i+1 ≥ xi+1} ,

J4 = {i ∈ N | i = I1, . . . , Im, 1, I} .

Then, the order of consistency is given by

‖σ(t)‖ =
∑

i∈J1

|σi(t)|+
∑

i∈J2

|σi(t)|+
∑

i∈J3

|σi(t)|+
∑

i∈J4

|σi(t)|

=
∑

i∈J1

Ci

(
∆x3

i−1

∆xi + ∆xi−1
− ∆x3

i

∆xi+1 + ∆xi

)

+
∑

i∈J2

Ci

(
∆x3

i

∆xi + ∆xi−1
− ∆x3

i+1

∆xi+1 + ∆xi

)
+O(∆x2). (32)

As stated before we consider the order of consistency on five different meshes. Details can be
found in J. Kumar and Warnecke [6].

Uniform mesh: For a uniform mesh, ∆xi = ∆x for any i = 1, . . . , I, the equation (32) clearly
gives

‖σ(t)‖ = O(∆x2). (33)

Similarly to the fixed pivot technique, the cell average technique is second order consistent.
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Figure 1: Non-uniform smooth mesh.
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Figure 2: Locally uniform smooth mesh.

Non-uniform smooth mesh: If we chose the mesh fulfilling the following conditions
(

∆x3
i

∆xi+1 + ∆xi
− ∆x3

i−1

∆xi + ∆xi−1

)
= O(∆x3),

and
(

∆x3
i+1

∆xi+1 + ∆xi
− ∆x3

i

∆xi + ∆xi−1

)
= O(∆x3),

then we will get again the second order consistency. An example of such mesh was already given
in [5].Let us consider a variable ξ with uniform grids and a smooth transformation x = g(ξ) to get
non-uniform smooth mesh, see Figure 1. The equations (32) can be simplified by using Taylor
series expansion in the smooth transformation, see J. Kumar and Warnecke [6]. So analogously
to the uniform mesh we obtain ‖σ(t)‖ = O(∆x2), i.e. the technique is second order consistent.

Locally uniform mesh: Similar to the fixed pivot and the cell average techniques discussed
in [1, 5, 6], according to the Figure 2 we obtain

σi(t) =

{
O(∆x2), i = 1, I, I1, I2, . . .

O(∆x3), elsewhere.

Therefore we have ‖σ(t)‖ = O(∆x2). In this case the consistency order differs that what we got
in the case of fixed pivot technique in [1] for such grids. The cell average technique becomes one
order higher consistent than the fixed technique in case of pure aggregation also.

Oscillatory mesh: Let us now consider oscillatory mesh i.e.

∆xi+1 :=

{
2∆xi if i is odd,
1
2∆xi if i is even.
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From the equations (32), we have ‖σ(t)‖ = O(∆x). Thus the cell average technique is only first
order consitent on oscillatory meshes.

Non-uniform random mesh: From the equation (32) it is clear that the technique is again
only a first order consistent method i.e., ‖σ(t)‖ = O(∆x). It should be pointed out here that
the fixed pivot technique was inconsistent on oscillatory and non-uniform random meshes.

4 Convergence

First of all we shall prove the Lipschitz condition on B̂(N(t)) and D̂(N(t)) as follows:
Let us consider the birth term for 0 ≤ t ≤ T and for all N, Ñ ∈ RI , we get from (11)

‖B̂(N)− B̂(Ñ)‖ ≤
I∑

i=1

λ−i (vi−1)H(vi−1 − xi−1)|B̂i−1(N)− B̂i−1(Ñ)|

+
I∑

i=1

[λ+
i (vi)H(vi − xi) + λ−i (vi)H(xi − vi)]|B̂i(N)− B̂i(Ñ)|

+
I∑

i=1

λ+
i (vi+1)H(xi+1 − vi+1)|B̂i+1(N)− B̂i+1(Ñ)|.

The definitions of λ±i (x) and H(x) give 0 ≤ λ±i (x)H(x) ≤ 1 and by using this upper bound the
above inequality becomes

‖B̂(N)− B̂(Ñ)‖ ≤
I∑

i=1

|B̂i−1(N)− B̂i−1(Ñ)|+
I∑

i=1

|B̂i(N)− B̂i(Ñ)|

+
I∑

i=1

|B̂i+1(N)− B̂i+1(Ñ)|.

Using βj,k ≤ C, due to the continuity of β and the finiteness of the domain, we obtain from (4)

‖B̂(N)− B̂(Ñ)‖ ≤1
2
C

I∑

i=1

i−1∑

j=1

∑

xi−3/2≤xj+xk<xi−1/2

|NjNk − ÑjÑk|

+
1
2
C

I∑

i=1

i∑

j=1

∑

xi−1/2≤xj+xk<xi+1/2

|NjNk − ÑjÑk|

+
1
2
C

I∑

i=1

i+1∑

j=1

∑

xi+1/2≤xj+xk<xi+3/2

|NjNk − ÑjÑk|

≤3
2
C

I∑

j=1

I∑

k=1

|NjNk − ÑjÑk|.
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Now we apply a useful equality NjNk − ÑjÑk = 1
2 [(Nj + Ñj)(Nk − Ñk) + (Nj − Ñj)(Nk + Ñk)]

to get

‖B̂(N)− B̂(Ñ)‖ ≤ 3
4
C

I∑

j=1

I∑

k=1

[
|(Nj + Ñj)||(Nk − Ñk)|+ |(Nj − Ñj)||(Nk + Ñk)|

]
. (34)

It can be easily shown that the total number of particles decreases in a coagulation process, i.e.

I∑

j=1

Nj ≤ N0
T := Total number of particles which are taken initially.

The equation (34) can be rewritten as

‖B̂(N)− B̂(Ñ)‖ ≤ 3
2
N0

T C

[ I∑

k=1

|(Nk − Ñk)|+
I∑

j=1

|(Nj − Ñj)|
]

≤ 3N0
T C‖N− Ñ‖. (35)

Similarly as before we can easily show the Lipschitz condition for death term as

‖D̂(N)− D̂(Ñ)‖ ≤ 3N0
T C‖N− Ñ‖. (36)

So we can apply Theorem 2.3 in [1] to check the positivity of the solution obtained by the cell
average technique.

Proposition 4.1. The numerical solution by the cell average technique is non-negative.

Proof. The proof is same as Proposition 5.1 in [1].

Now we shall prove the following convergence theorem.

Theorem 4.2. Let us assume that the Lipschitz conditions on B̂(N(t)) and D̂(N(t)) are satisfied
for 0 ≤ t ≤ T and for all N, N̂ ∈ RI where N and N̂ are two different solutions respectively.
More precisely, there exists a Lipschitz constant L := 3N0

T C < ∞ such that (35) and (36) hold.
Then a consistent discretization method is also convergent and the convergence is of the same
order as the consistency.

Proof. The proof is same as Theorem 5.1 in [1].

5 Numerical Examples

This section deals with a few numerical examples where we evaluate the experimental order of
convergence (EOC) to validate our mathematical observations. Similarly to the mathematical
analysis we consider five different type of meshes for the computation. All test cases are taken
from [1]. All numerical results of convergence from [1] are repeated to see the difference between
two techniques. All computational details of the test case can be found in [1]. Here we discuss
only numerical results for the test cases presented in [1].
Let us begin with the first test case of a uniform mesh. The numerical results are presented
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in Table 1. As expected from the mathematical analysis both techniques show convergence of
second order. In case of uniform mesh, the cell average and the fixed pivot techniques are same
for aggregation problems. Since analytical solutions are not available in this case we can see the
relative errors in numerical results are same for both the schemes.
Now we consider the second test case of non-uniform smooth meshes. The numerical results of

the convergence analysis have been summarized in Table 2. Once again, as expected, both the
techniques clearly converge to second order.
The third test case has been performed on a locally uniform mesh. The EOC for both the
techniques has been summarized in Table 3. As estimated from the mathematical analysis,
the table clearly shows that the cell average technique is of second order while the fixed pivot
technique is only first order accurate.
Now let us consider the fourth case of an oscillatory mesh. The numerical results have been
shown in Table 4. As expected from the mathematical analysis, the table shows that the cell
average technique is first order convergent while the fixed pivot technique is not convergent.
Now we consider the fifth case of random grids. The numerical results of convergence analysis
have been summarized in Table 5. We obtain the same result as in case of oscillatory grids.

6 Conclusions

In this paper, we have presented a detailed convergence analysis of the cell average technique
for aggregation PBEs. The mathematical and numerical results are compared with those for the
case of the fixed pivot technique in [1]. It is remarked that the cell average technique is second
order convergent on uniform, non-uniform smooth and locally uniform meshes. However, it gives
only a first order convergence on oscillatory and random meshes. It should be pointed out that
the fixed pivot technique is only first order convergent on locally uniform mesh and zero order
convergent on oscillatory and random meshes. All mathematical observation have been justified
numerically.
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(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
200 - -
400 0.0598 -
800 0.0178 1.75
1600 5.0E-3 1.82
3200 1.3E-3 1.95

(b) cell average technique

Relative Error L1 EOC
- -
0.0598 -
0.0178 1.75
5.0E-3 1.82
1.3E-3 1.95

Table 1: Uniform grids

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 6.4E-3 -
120 1.6E-3 1.98
240 4.0E-4 1.98
480 1.0E-4 1.99

(b) cell average technique

Relative Error L1 EOC
6.1E-3 -
1.7E-3 1.86
5.0E-4 1.88
1.0E-4 1.87

Table 2: Non-uniform smooth grids

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 0.0303 -
120 0.0156 0.96
240 7.7E-3 1.02
480 3.8E-3 1.03

(b) cell average technique

Relative Error L1 EOC
0.025 -
8.8E-3 1.51
2.1E-3 2.08
5.0E-4 2.15

Table 3: Locally uniform grids

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 - -
120 0.0565 -
240 0.0580 -0.03
480 0.0655 -0.17
960 0.0824 -0.33

(b) cell average technique

Relative Error L1 EOC
- -
0.08E-3 -
0.02E-3 1.54
0.01E-3 1.34
0.05E-4 1.05

Table 4: Oscillatory grids

(a) Fixed pivot technique

Grid Points Relative Error L1 EOC
60 0.0174 -
120 0.0220 -0.34
240 0.0263 -0.25
480 0.0325 -0.30

(b) cell average technique

Relative Error L1 EOC
0.0127 -
8.3E-3 0.61
4.2E-3 0.99
2.6E-3 0.70

Table 5: Non-uniform random grids
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