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Abstract

The two-level local projection stabilization is considered as a one-

level approach in which the enrichments on each element are piecewise

polynomial functions. The dimension of the enrichment space can

be significantly reduced without losing the convergence order. For

example, using continuous piecewise polynomials of degree r ≥ 1, only

one function per cell is needed as enrichment instead of r in the two-

level approach. Moreover, in the constant coefficient case, we derive

formulas for the user-chosen stabilization parameter which guarentee

that the linear part of the solution becomes nodal exact.

∗This paper is dedicated to G.I. Shishkin on the occasion of his 70th birthday
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1 Introduction

It is well-known that standard Galerkin finite element discretizations applied
to convection-diffusion problems show spurious oscillations unless the mesh
is adapted to the boundary layers of the solutions [21]. But even in the
case of layer adapted meshes it makes sense to use stabilized finite element
schemes in order to reduce sensitivities of the solutions on the choice of mesh
parameters. Residual based stabilization methods like the streamline upwind
Petrov-Galerkin (SUPG) stabilization, proposed in [5] and at first analyzed
for a scalar convection-diffusion equation in [19], is a prominent example of
stabilized schemes. They rely on adding weighted residuals to the standard
Galerkin method to enhance stability without losing consistency.

Recently, local projection stabilization (LPS) [2, 3, 9, 10, 12, 13, 17, 18, 20]
methods have become quite popular, in particular because of their commu-
tative properties in optimization problems [4] and stabilization properties
similar to those of the SUPG method [11]. In contrast, to residual based
stabilization methods the LPS is no longer consistent. However, taking rich
enough projection spaces any desired consistency order can be achieved. As
shown in [17], the key issue in analyzing the error of LPS schemes is the ex-
istence of an interpolation for which the error is orthogonal to the projection
space. It turns out, that a local inf-sup condition for the approximation and
projection space is sufficient to modify an interpolation into the approxima-
tion space in such a way that the additional orthogonality property holds
[17]. Two main approaches of LPS have been considered in the literature to
fulfil the local inf-sup condition. In the one-level approach, a standard finite
element space is chosen as the projection space to guarantee the consistency
order. Then, the approximation space is (if necessary) enriched such that
the local inf-sup condition holds. In the two-level approach, a standard finite
element space is chosen as the approximation space and the projection space
is thinned out to a space on the next coarser mesh level to satisfy the local
inf-sup condition.

The main objective of this paper is to show that the two-level variant
of the LPS can be also considered as an enriched one-level method. This
enables us to reduce the degrees of freedom in the two-level method without
losing the convergence order. Although this observation is true for any space
dimension, we restrict our attention here to the one-dimensional case which
gives us the opportunity to study this reduced two-level approach in detail.
In particular, we show that in the constant coefficient case the stabilization
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parameter can be chosen such that the piecewise linear part of the LPS
becomes nodal exact.

In the following, we use the standard notations for Sobolev spaces Hk(D),
Hk

0 (D), L2(D) = H0(D) together with their norms and semi-norms ‖ · ‖k,D,
| · |k,D, and ‖ · ‖0,D. We will drop D when D = (0, 1). Throughout this paper
C denotes a generic positive constant that is independent of the mesh size.

2 Two Variants of Local Projection Stabiliza-

tion

We consider the two-point boundary value problem

−εu′′ + bu′ + cu = f in (0, 1), u(0) = u(1) = 0, (2.1)

under the assumption

c−
1

2
b′ ≥ γ > 0, (2.2)

which guarantees a unique weak solution u ∈ H1
0 (0, 1). Note that in the

interesting case 0 < ε ≪ 1, the solution exhibits boundary and interior
layers whose positions depend on the convection field b.

Let 0 = x0 < x1 < · · · < xN = 1 be a decomposition Mh of [0, 1] into
macro cells M ∈ Mh and hM the diameter of M ∈ Mh. In the one-level
approach we set Th = Mh, i.e. we do not distinguish between a macro
cell M ∈ Mh and a cell K ∈ Th. In the two-level approach, each macro
cell M = [xi, xi+1] is subdivided into two son-cells K− = [xi, xi+1/2] and
K+ = [xi+1/2, xi+1] each of diameter hK = hM/2. Then, all son-cells build the
decomposition Th. Let Vh ⊂ H1

0 (0, 1) be a finite element space living on Th,
Dh be a discontinuous projection space associated with the decomposition
Mh, πh : L2(0, 1) → Dh be the L2 projection, and κh := id − πh be a
fluctuation operator. The stabilized discrete problem is:

Find uh ∈ Vh such that for all vh ∈ Vh

ε(u′h, v
′

h) + (bu′h + cuh, vh) +
∑

M∈Mh

τM(κh(bu
′

h), κh(bv
′

h))M = (f, vh).

Herein, (·, ·) and (·, ·)M denote the inner product in L2(0, 1) and L2(M),
respecticvely and τM is a user-chosen stabilization parameter. The bilinear
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form associated with the left-hand side is coercive with respect to the mesh-
dependent norm

|||v||| :=

(
ε|v|21 + γ‖v‖2

0 +
∑

M∈Mh

τM‖κh(bv
′)‖2

0,M

)1/2

.

In contrast to residual based stabilizations, a consistency error appears whose
order depends on chosing τM and the projection space Dh.

The key idea in the analysis of the LPS lies in the existence of a special
interpolant jh : H1

0 (0, 1) → Vh that displays the usual interpolation properties
and satisfies in addition the orthogonality property

(w − jhw, qh) = 0 ∀w ∈ H1
0 (0, 1), ∀qh ∈ Dh.

Using the coercivity of the underlying bilinear form, a rich enough projection
space Dh, and the properties of the interpolant jh, we end up with the error
estimate

|||u− uh||| ≤ C (ε1/2 + h1/2) hr |u|r+1 (2.3)

for τM ∼ hM [1, 3, 16, 17]. The existence of an interpolation jh with addi-
tional orthogonality properties is guaranteed by the following result (adjusted
to 1d) [17]:

Theorem 2.1. Let the local inf-sup condition

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh, qh)M

‖vh‖0,M ‖qh‖0,M

≥ β1 > 0, ∀M ∈ Mh (2.4)

with Yh(M) = {wh|M : wh ∈ Vh, wh = 0 on (0, 1) \M} and Dh(M) = {rh|M :
rh ∈ Dh} be satisfied. Then there is an interpolation jh : H1

0 (0, 1) → Vh with
the orthogonality property

(w − jhw, qh) = 0, ∀qh ∈ Dh, ∀w ∈ H1
0 (0, 1)

and the usual interpolation error estimates.

In order to fulfil all assumptions of the convergence analysis, two different
requirements for the pair (Vh, Dh) have to be reconciled:

• Dh has to be rich enough to guarantee a certain order of consistency,
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• Dh should be small enough w.r.t. Vh to guarantee jhu− u ⊥ Dh.

From this two different approaches can be derived:

one-level (V +
h , Dh) ⇔ two-level (Vh, D2h).

In the one-level approach, a standard finite element space is chosen as the
projection space Dh to guarantee the consistency order. Then, the approxi-
mation space Vh is (if necessary) enriched to V +

h such that the assumptions
of Theorem 2.1 are fulfilled. In the two-level approach, a standard finite
element space is chosen as the approximation space Vh and the projection
space Dh is thinned out to a space D2h on the next coarser mesh level.

3 Two-level LPS as an Enriched One-level

LPS

3.1 Discrete Problem

For some r ∈ N, let the solution and projection spaces of the two-level LPS
be defined by

Vh :=
{
vh ∈ H1

0 (0, 1) : vh

∣∣
K
∈ Pr(K) ∀K ∈ Th

}
,

D2h :=
{
q2h ∈ L2(0, 1) : q2h

∣∣
M

∈ Pr−1(M) ∀M ∈ Mh

}
.

Our stabilized two-level method is:

Find uh ∈ Vh such that for all vh ∈ Vh

a(uh, vh) + S(uh, vh) = (f, vh) (3.5)

where the bilinear form a and the stabilizing term S are given by

a(uh, vh) = ε(u′h, v
′

h) + (bu′h + cuh, vh),

S(uh, vh) =
∑

M∈Mh

τM (κ2h(bu
′

h), κ2h(bv
′

h))M .

Herein, π2h : L2(0, 1) → D2h denotes the L2 projection and κ2h := id −
π2h the fluctuation operator. Since the pair (Vh, D2h) of spaces satisfies the
assumption of Theorem 2.1 we conclude the error estimate

|||u− uh||| ≤ C(ε1/2 + h1/2)hr|u|r+1 (3.6)
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for the solution uh of (3.5) in the mesh-dependent norm

|||v||| :=

(
ε|v|21 + γ‖v‖2

0 +
∑

M∈Mh

τM‖κ2h(bv
′)‖2

0,M

)1/2

.

As already mentioned, the keypoint in the error analysis is the existence
of an interpolation satisfying an additional orthogonality property. We will
see that such an interpolation can be already constructed for a subspace of
Vh which allows to create a method with less degrees of freedom than the
two-level method but with the same convergence rate. We will construct
such a subspace and the associated interpolation on the reference macro in
the next subsection.

3.2 Splitting of the Approximation Space

Let M̂ = (−1,+1) be the reference macro, K̂− = (−1, 0), K̂+ = (0,+1), and

FM : M̂ →M the affine mapping of M̂ onto M ∈ Mh. We define the spaces

P̂r,h =
{
v̂ ∈ H1(M̂) : v̂| bK−

∈ Pr(K̂−), v̂| bK+
∈ Pr(K̂+)

}
, P̂r,2h = Pr(M̂),

where dim P̂r,h = 2r + 1 and dim P̂r,2h = r + 1. Consider the set of nodal
functionals

Ni(v̂) =

∫ +1

−1

v̂(ξ)Li(ξ) dξ, i = 0, 1, . . . , r − 1,

Nr(v̂) = v̂(−1), Nr+1(v̂) = v̂(+1)

where Li, i = 0, 1, . . . , denote the Legendre polynoms of degree i on (−1,+1)
normalized such that Li(1) = 1. The first r nodal functionals guarantee that

a local interpolation Ĵ : H1(M̂) → P̂r,h, defined by Ni(v̂ − Ĵ v̂) = 0 for
i = 0, . . . , r + 1, satisfies the orthogonality property

(v̂ − Ĵ v̂, q)cM = 0, ∀q ∈ Pr−1(M̂), v̂ ∈ H1(M̂).

The last two nodal functionals secure that the interpolation can be extended
to a global continuous interpolation jh : H1

0 (0, 1) → Vh with the desired

properties. However, because of dim P̂r,2h < r + 2 we cannot hope to find

an interpolation Ĵ : H1(M̂) → P̂r,2h into the coarse space P̂r,2h satisfying all
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Figure 1: Standard nodal basis of piecewise quadratic functions.

r+2 conditions. We will show that a suitable enrichment of P̂r,2h by just one
additional function is enough to meet these requirements. This additional
function is uniquely determined if it is orthogonal (with respect to a certain

inner product) to P̂r,2h. Let us consider the following functions

ϕ̂r(x) =

{
Λr(x) + Λr−1(x) x ∈ [−1, 0]

Λr(−x) + Λr−1(−x) x ∈ [0,+1]
r odd,

ϕ̂r(x) =

{
Λr(x) − Λr−2(x) x ∈ [−1, 0]

−(Λr((−x) − Λr−2(−x)) x ∈ [0,+1]
r even,

where Λr denotes the Legendre polynom of degree r on (−1, 0) given by

Λr(x) = Lr(2x+ 1) x ∈ (−1, 0)

Furthermore, we introduce the linear mapping Φ : P̂r,h → R
r+2 given by

Φ(v̂) = (N0(v̂), . . . , Nr+1(v̂)).

Lemma 3.1. There is the unique splitting

P̂r,h = P̂r,2h ⊕ span (ϕ̂r) ⊕ ker(Φ). (3.7)
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The set of nodal functionals N0, . . . , Nr+1 is P̂+
r,2h-unisolvent, where the en-

riched space is given by P̂+
r,2h = P̂r,2h ⊕ span (ϕ̂r). Furthermore, the orthogo-

nality property
(ϕ̂′

r, v̂)cM = 0 for all v̂ ∈ P̂r−1,2h

holds true.

Proof. From the definition of the linear mapping Φ we have

ker(Φ) = {v̂ ∈ P̂r,h : Ni(v̂) = 0, i = 0, . . . , r + 1}

which implies dim ker(Φ) ≥ (2r + 1) − (r + 2) = r − 1.

Now, P̂r,2h ∩ ker(Φ) = ∅, since any function v̂ ∈ P̂r,2h can be represented as

v̂ =

r∑

i=0

αiLi,

the orthogonality of the Legendre polynoms yields α0 = · · · = αr−1 = 0, and
finally we get 0 = Nr+1(v̂) = αr. Thus, we have dim ker(Φ) ≤ r.

We prove that dim ker(Φ) = r − 1 by showing that ϕ̂r 6∈ P̂r,2h and P̂+
r,2h ∩

ker Φ = ∅. Then, the unique splitting follows immediately. From Rodriguez’
formula [6] we get the expansion with respect to powers of x

Λr(x) = Lr(2x+ 1) =
(2r)!

2r(r!)2
(2x+ 1)r + · · · =

(2r)!

(r!)2
xr + . . . ,

showing that ϕ̂
(r)
r (−0) 6= ϕ̂

(r)
r (+0) and thus ϕ̂r cannot be a polynomial on

[−1,+1], i.e. ϕ̂r 6∈ P̂r,2h. Now we show that P̂+
r,2h ∩ ker Φ = ∅. This is

equivalent to the fact that the set of nodal functionals is P̂+
r,2h-unisolvent.

Since dim P̂+
r,2h = r + 2 and r + 2 nodal functionals are given, it suffices to

show that

v̂ ∈ P̂+
r,2h, Ni(v̂) = 0, i = 0, . . . , r + 1, ⇒ v̂ = 0.

We represent an arbitrary element of P̂+
r,2h as

v̂ =

r∑

i=0

αiLi + βϕ̂r.
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Consider the case r odd first. The orthogonality property of Λr and Λr−1 on
[−1, 0] and of Lk on [−1,+1] imply for k = 0, 1, . . . , r − 2

0 = Nk(v̂) = αk + β

(∫ 0

−1

ϕ̂r(x)Lk(x) dx+

∫ +1

0

ϕ̂r(x)Lk(x) dx

)
= αk.

Now, from ϕ̂r(±1) = 0 we conclude

0 = Nr(v̂) = (−1)r−1(αr−1 − αr)

0 = Nr+1(v̂) = αr−1 + αr,

consequently αr−1 = αr = 0. From the orthogonality properties of Λk on
[−1, 0] we obtain for r odd

Nr−1(ϕ̂r) =

∫ 0

−1

Λr−1(x)Lr−1(x) dx+

∫ +1

0

Λr−1(−x)Lr−1(x) dx

=

∫ 0

−1

Λr−1(x)Lr−1(x) dx+

∫ 0

−1

Λr−1(x)(−1)r−1Lr−1(x) dx

= 2

∫ 0

−1

Λr−1(x)Lr−1(x) dx 6= 0.

As Nr−1(ϕ̂r) 6= 0 but Nr−1(v̂) = βNr−1(ϕ̂r) = 0 we get β = 0.
Consider now the case r even. Again, from orthogonality properties of Λr

and Λr−1 on [−1, 0] and of Lk on [−1,+1] we get for k = 0, 1, . . . , r − 3

0 = Nk(v̂) = αk + β

(∫ 0

−1

ϕ̂r(x)Lk(x) dx+

∫ +1

0

ϕ̂r(x)Lk(x) dx

)
= αk.

Orthogonality of Λr to Lr−2 on [−1, 0] yields

Nr−2(ϕ̂r) = −

∫ 0

−1

Lr−2(x)Λr−2(x) dx+

∫ +1

0

Lr−2(x)Λr−2(−x) dx

= −

∫ 0

−1

Lr−2(x)Λr−2(x) dx+

∫ 0

−1

(−1)r−2Lr−2(x)Λr−2(x) dx = 0.

Thus, Nr−2(v̂) = 0 implies αr−2 = 0. From ϕ̂r(±1) = 0 we get

0 = Nr(v̂) = (−1)r−1(αr−1 − αr)

0 = Nr+1(v̂) = αr−1 + αr,
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i.e. αr−1 = αr = 0. A similar computation as above but now for even r
shows

Nr−1(ϕ̂r) = −

∫ 0

−1

Λr−2(x)Lr−1(x) dx+

∫ +1

0

Λr−2(−x)Lr−1(x) dx

= −2

∫ 0

−1

Lr−2(2x+ 1)Lr−1(x) dx = −

∫ +1

−1

Lr−2(t)Lr−1

(
t− 1

2

)
dt

= −
(2r − 2)!

2r−1((r − 1)!)2

∫ +1

−1

[(
t

2

)r−1

−
r − 1

2

(
t

2

)r−2
]
Lr−2(t) dt 6= 0.

Here, we used the orthogonality properties of the Legendre polynomial Λr

on [−1, 0] and Lr−2 on [−1,+1], respectively. Now β = 0 follows from
Nr−1(ϕ̂r) 6= 0.

It remains to show the orthogonality property. Since ϕ̂r ∈ H1
0 (M̂), we

obtain by integration by parts

(ϕ̂′

r, v̂)cM = −(ϕ̂r, v̂
′)cM .

For r odd, the right hand side vanishes due to v̂′ ∈ P̂r−2,2h and the orthog-

onality of Λr and Λr−1 to P̂r−2,2h on [−1, 0], respectively. For even r, we
have

(ϕ̂′

r, v̂)cM = −(ϕ̂r, v̂
′)cM =

∫ 0

−1

Λr−2(x)v̂
′(x) dx−

∫ +1

0

Λr−2(−x)v̂
′(x) dx

= A

∫ 0

−1

Λr−2(x) x
r−2 dx+ A

∫
−1

0

Λr−2(x) x
r−2 dx = 0.

where we assumed an expansion in the form v̂′(x) = Axr−2 + . . . .

For the case r = 2 we have

v̂2(x) =

{
6x(1 + x) if x ∈ [−1, 0],
6x(1 − x) if x ∈ [0,+1],

and the kernel of Φ is represented by the function

ŵ(x) =

{
3
2
(1 + x)(1 + 3x) if x ∈ [−1, 0],

3
2
(1 − x)(1 − 3x) if x ∈ [0,+1].

For P̂2,h we show the standard nodal basis and a basis corresponding to the
splitting of Lemma 3.1 in Figures 1 and 2 .
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Figure 2: The splitting P̂2,h = P̂2,2h ⊕ span(ϕ̂2) ⊕ ker Φ. The circles and
squares indicate the functions ϕ̂2 and ŵ ∈ ker Φ.

3.3 Reduced Two-level Approach

The results of the previous section motivate us to consider a subspace of Vh

for the approximation space combined with the unchanged projection space
D2h. Since there is only one function per macro cell added to the same space
on the next coarser mesh we consider this type of reduced two-level approach
as a one-level approach on Mh with enrichments of piecewise polynomial
functions. Thus, we define the approximation and projection space by

V +
2h :=

{
vh ∈ H1

0 (0, 1) : vh

∣∣
M

∈ P+
r,2h(M) ∀M ∈ Mh

}
,

D2h :=
{
q2h ∈ L2(0, 1) : q2h

∣∣
M

∈ Pr−1(M) ∀M ∈ Mh

}

where P+
r,2h(M) is just the mapped finite element space P̂+

r,2h introduced in
Lemma 3.1. Our reduced two-level discretization is

Find u+
2h ∈ V +

2h such that for all v+
2h ∈ V +

2h

a(u+
2h, v

+
2h) + S(u+

2h, v
+
2h) = (f, v+

2h). (3.8)

Essential for the error estimation of a solution u+
2h of (3.8) is the existence

of the special interpolation into the reduced finite element space V +
2h ⊂ Vh.
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Lemma 3.2. There is an interpolation operator jh : H1
0 (0, 1) → V +

2h such
that

(jhw − w, q2h) = 0 ∀q2h ∈ D2h, w ∈ H1
0 (0, 1) (3.9)

|jhw − w|m,M ≤ C hℓ+1−m
M ‖w‖ℓ+1,M ∀w ∈ Hℓ+1(M), M ∈ Mh (3.10)

for ℓ = 0, . . . , r, m = 0, 1.

Proof. On eachM = (xi, xi+1) a local interpolant jM
h w ∈ Pr,2h(M) is uniquely

defined by the r + 2 conditions

jM
h w(xi) = w(xi), jM

h w(xi+1) = w(xi+1), (jM
h w−w, q)M = 0, ∀q ∈ Pr−1(M)

due to Lemma 3.1. The global interpolant jhw defined by

jhw|M = jM
h (w|M) ∀M ∈ Mh

belongs to V +
2h by construction. Since jM

h w = w for all w ∈ Pr,2h(M),
we obtain (3.10) by means of the Bramble-Hilbert-Lemma. Using q2h|M ∈
Pr−1(M), we have (jM

h w − w, q2h)M = 0 for all M ∈ Mh from which (3.9)
follows by summation.

Theorem 3.3. Let u be the weak solution of (2.1) and u+
2h the the solution

of the reduced two-level method (3.8) for τM ∼ hM , respectively. Then, the
error estimate

|||u− u+
2h||| ≤ C

(
∑

M∈Mh

(ε+ hM) h2r
M‖u‖2

r+1,M

)1/2

holds provided that u ∈ H1
0 (0, 1) ∩Hr+1(0, 1).

Proof. The proof is analog to that given in [24, Theorem 2].

3.4 Elimination of Enrichments

In the following, we consider the reduced two-level approach (V +
2h, D2h) in

the special case that b = const, c = 0, and f piecewise Pr−1,2h. As in [24] we
want to eliminate the enrichments locally. However, in contrast to the one-
level approach, we have to deal with enrichments by piecewise polynomial
functions

ϕr,M(x) := ϕ̂r

(
2x− xi − xi+1

xi+1 − xi

)
, x ∈M = [xi, xi+1],
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which need more care compared to polynomials.
Clearly, we have ϕr,M |M ∈ H1

0 (M). We split the approximation space
into the direct sum

V +
2h = V2h ⊕Bh, Bh =

⊕

M∈Mh

span ϕr,M ,

V2h :=
{
v2h ∈ H1

0 (0, 1) : v2h

∣∣
M

∈ Pr(M) ∀M ∈ Mh

}
.

The direct sum V +
2h = V2h ⊕ Bh generates a unique splitting of the solution

u+
2h ∈ V +

2h of the local projection stabilization in the same way

u+
2h = u2h +

∑

M∈Mh

uMϕr,M .

Our aim is to reformulate the reduced two-level scheme in terms of this split-
ting. For this we consider first some terms appearing in the LPS approach.
Taking into consideration that for any v2h ∈ V2h we have v′2h|M ∈ Pr−1(M),
the L2 projection becomes π2hv

′
2h = v′2h thus the fluctuation κ2h(v

′
2h) van-

ishes. Furthermore, we obtain

(b ϕ′

r,M , ϕr,M) =
1

2
(b, (ϕ2

r,M)′) = −
1

2
(b′, ϕ2

r,M) = 0.

Now, the reduced two-level discretization (3.8) can be rewritten as

Find u2h ∈ V2h and {uM} ∈ R
N such that for all v2h ∈ V2h, M ∈ Mh

ε(u′2h, v
′

2h) + (bu′2h, v2h) +
∑

M∈Mh

uM(b ϕ′

r,M , v2h) = (f, v2h),

uM

[
ε(ϕ′

r,M , ϕ
′

r,M) + τM(κ2h(bϕ
′

r,M), κ2h(bϕ
′

r,M))
]

= (f − bu′2h, ϕr,M).

(3.11)

Using the orthogonality ϕ′
r,M ⊥ Pr−1(M) stated in Lemma 3.1, we can see

that
(π2hϕ

′

r,M , q)M = (ϕ′

r,M , q)M = 0 ∀q ∈ Pr−1(M),

thus the projection π2hϕ
′
r,M vanishes and κ2hϕ

′
r,M = ϕ′

r,M . Then, the second
set of equations of the reduced two-level discretization (3.11) reads

uM

[
ε+ τMb

2
]
(ϕ′

r,M , ϕ
′

r,M) = (f − bu′2h, ϕr,M) ∀M ∈ Mh. (3.12)

Next we intend to apply following Lemma to the right hand side of (3.12).

13



Lemma 3.4. There is a ψM ∈ Hr(M) with ψM |K±
∈ P2r−1(K±) satisfying

ψ
(r−1)
M = ϕr,M in M, ψ

(j)
M = 0 on ∂M, j = 0, 1, . . . , r − 1.

Proof. We show that on the reference macro M̂ = [−1,+1] there is a function

ψ̂ ∈ Hr(M̂) with

ψ̂(r−1) = ϕ̂r in M̂, ψ̂(j)(±1) = 0, j = 0, . . . , r − 1. (3.13)

Thanks to the formula of Rodriguez we derive an explicit representation.
Consider the case of odd r first. Then, a careful check shows that

ψ̂(x) =






1

r!

d

dx
[x(1 + x)]r +

1

(r − 1)!
[x(1 + x)]r−1 x ∈ [−1, 0],

1

r!

d

dx
[x(1 − x)]r +

1

(r − 1)!
[x(1 − x)]r−1 x ∈ [0,+1]

satisfies all requirements of the Lemma. Similarly, for even r we derive a
formula starting with

ψ̂(r)(x) = v̂′r(x) = 2(2r − 1)

{
Lr−1(1 + 2x) x ∈ [−1, 0],
Lr−1(1 − 2x) x ∈ [0,+1],

integrating this representation (r − 1)-times, and using the conditions at
x = −1. As a result we obtain

ψ̂′(x) =
2(2r − 1)

(r − 1)!

{
[x(1 + x)]r−1 x ∈ [−1, 0],

[x(1 − x)]r−1 x ∈ [0,+1].

Taking into consideration that ψ̂′(−t) = −ψ̂′(t) and setting

ψ̂(x) :=

∫ x

−1

ψ̂′(t) dt

we have ψ̂ satisfying (3.13).

Using the transformation FM : M̂ →M , we see that the function

ψM (x) =

(
hM

2

)r−1

ψ̂

(
2x− xi − xi+1

xi+1 − xi

)

satisfies all requirements of the Lemma.
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Now, using the fact that f − bu′2h is a piecewise polynomial function of
degree less than or equal to r − 1 with respect to Mh, we can integrate by
parts

(f − bu′2h, ϕr,M) = (f − bu′2h, ψ
(r−1)
M ) = (−1)r−1((f − bu′2h)

(r−1), ψM)

and obtain from (3.12) the representation

uM = (f − bu′2h)
(r−1)|M

(−1)r−1(1, ψM)

(ε+ τKb2)|ϕr,M |21,M

.

Using this to eliminate uM in (3.11) we end up with the following method:

Find u2h ∈ V2h such that for all v2h ∈ V2h

ε(u′2h, v
′

2h) + (bu′2h, v2h) +
∑

M∈Mh

γM((bu′2h)
(r−1), (bv′2h)

(r−1))M

= (f, v2h) +
∑

M∈Mh

γM(f (r−1), (bv′2h)
(r−1))M

(3.14)

where the parameter γM is related to the parameter τM of the LPS in the
following way

γM =
(1, ψM)2

(ε+ τMb2) hM |ϕr,M |21,M

. (3.15)

For the considered case b = const, c = 0, and f piecewise polynomial of
degree r − 1, the method (3.14) is identical with the differentiated residual
method (DRM) which has been studied already in [23, 24].

Theorem 3.5. Assume b = const, c = 0, and f piecewise Pr−1,2h and let the
approximation space V2h = Pr,2h ∩H1

0 (0, 1) on each cell M ∈ Mh be locally
enriched by ϕr,M . Then, eliminating the enrichment in the reduced two-level
LPS results in the Pr,2h-DRM. The associated stabilization parameter τM and
γM are related by (3.15).

Remark. It is well-known that by an appropriately chosen stabilization
parameter γM nodal exactness of the piecewise linear part of the solution can
be achieved for the DRM in the case b = const, c = 0, f = const. Therefore,
the formula (3.15) allows to choose the stabilization parameters τM in the
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reduced two-level LPS is such a way that the piecewise linear part of the
P+

r,2h solution is nodal exact. For this we compute

(1, ψM) =






2(r − 1)!

(2r − 1)!

(
hM

2

)r

r odd

−
(r − 2)!

(2r − 3)!

(
hM

2

)r

r even

, |ϕr,M |21,M =






16r2

hM

r odd

16(2r − 1)

hM
r even

and use the formulas defining γr,M from [24]:

τr,M =
hM

αrbΦr(qM)
−

ε

b2
, qM =

bhM

2ε
, αr =

{
22r+1r2 r odd,

22r+1/(2r − 1) r even,

Φr+1(q) =
1

Φr(q)
−

2r + 1

q
, Φ1(q) = coth q −

1

q
.

4 Numerical Examples

In our first test example we choose b = 1, c = 0, f = 1, and ε = 10−7. Apart
from an exponential layer near x = 1 the solution can be approximated by
uasymp(x) = x. The stabilization parameter τr,M depends on the polynomial
degree r ≥ 1 and is chosen as in Section 3.4. In Figure 3 we present the re-
sults for piecewise quadratic approximations on a uniform macro mesh with
2h = 1/N , N = 20 and N = 40. We clearly see the nodal exactness of the
linear part (marked by stars) of the computed solution and that oscillations
are restricted to the boundary layer region for the reduced two-level approach
(left). For the classical two-level variant (right) we have taken also the formu-
las for τr,M given in Section 3.4 but with a modified (experimentally fitted)
α2 = 13.856 instead of α2 = 32/3. Note that for this variant nodal exact-
ness cannot be guaranteed. The localization of oscillations on the boundary
layer region seems to be less pronounced. For the case of piecewise cubic
approximations both variants show a similar localization behaviour, however
the amplitudes are much larger for the reduced two-level approach. Next we
study the influence of layer adapted meshes. We computed the solution on
a uniform mesh of N = 10 macro cells and subdivided the last element into
two cells, and repeated this approach resulting into eleven and twelve macro
cells, respectively. The first three diagrams of Figure 4 show the results for
the piecewise cubic reduced two-level method. Oscillations are concentrated
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Figure 3: Piecewise quadratic two-level reduced (left) and two-level (right)
method. The stars display the linear part of the solutions.

on the last macro cell and their amplitudes are almost constant. The fourth
diagram shows the result on a Shishkin mesh with the same number of de-
grees of freedom N = 12. A Shishkin mesh is a piecewise uniform mesh with
a transition point at 1 − (3/2)ε logN , see [7, 8, 14, 15, 22]. Thus, the LPS
is able to localize oscillations on the layer region but in order to suppress
their amplitudes layer adapted meshes seem to be necessary. In the second
example we choose Ω = (−1,+1), b = −|x|, c = 1/2, f = 0, u(−1) = 1,
u(1) = 2. An exponential layer is located near x = −1, there is also an inner
layer in the first derivative at x = 0. In Figure 5 we present the results for
the two-level method for a piecewise cubic approximation on a macro mesh of
N = 80 cells. The main characteristic of LPS, to localize oscillations on layer
regions, holds true also in the case of non-constant coefficients. Moreover,
no oscillation near the inner layer in the derivative are observed.
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Figure 4: Piecewise cubic reduced two-level method on adapted refined
meshes and on a Shishkin mesh (see the right most panel).

5 Conclusions

We have exposed the close relationship of the two variants of the local pro-
jection stabilization. In particular, the two-level method can be regarded
as a one-level approach on the coarser mesh using piecewise polynomial en-
richments. It turns out that from this point of view the two-level approach
uses larger enrichments than needed to construct a certain interpolant which
guarantees optimal order of convergence. One additional degree of freedom
per macro cell is sufficient which corresponds to the one-level approach stud-
ied in [24]. Eliminating the enrichments in the constant coefficient case (b, f
constant, c = 0), we obtain the differentiated residual method [23] for which
optimal choices of the stabilization parameters are known [24] leading to the
nodal exactness of the linear part of the solution.

Although these investigations are restricted to the one-dimensional case
we think they provide some insight into the better understanding of the sta-
bilizing properties of the popular local projection stabilization in the multi-
dimensional case.
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Figure 5: Piecewise cubic two-level method for a non-constant coefficient
case and the close-up range of the layer region.
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