Fakultät für Mathematik, Institut für Mathematische Stochastik Prof. G. Christoph, Lora Todorova

Tutorial Stochastic Processes (Series 3, 2011/2012)

- 11.) Let $N_t, t \ge 0$ be a homogeneous Poisson process with intensity $\lambda > 0$ and τ the time till the first event. For s < t find $P(\tau \le s | N(t) = 1)!$
- 12.) Suppose that $\{N_1(t), t \ge 0\}$ and $\{N_2(t), t \ge 0\}$ are independent Poisson processes with rates λ_1 and λ_2 . $\{N_1(t) + N_2(t), t \ge 0\}$ is a Poisson process with rate $\lambda_1 + \lambda_2$. (Show it!). Prove that the probability that the first event of the combined process $\{N_1(t) + N_2(t), t \ge 0\}$ comes from the first one $\{N_1(t), t \ge 0\}$ is $\lambda_1 / (\lambda_1 + \lambda_2)$!
- 13.) Let W(t) be a standard Wiener process. Using the fact, that a Gaussian process is determined by its expectation and covariance functions, prove: the following processes are standard Wiener processes, too $W_1(t) = -W(t), t \in [0, \infty),$ $W_2(t) = c \cdot W(t \cdot c^{-2}), c > 0, t \ge 0,$ $W_3(t) = t \cdot W(1/t)$ for $t > 0, (W_3(0) = 0), t \in [0, \infty)$ and $W_4(t) = W(h-t) - W(h), h$ fixed, $t \in [0, h].$
- 14.) Let W(t) be a Wiener process, L > 0 a constant and $A \sim N(\mu, \tau^2)$ be a random variable independent of $\{W(t)\}_{t \in [0,\infty)}$. Calculate mean vector and covariance function of the vectors $(X_k(s), X_k(t)), s < t$, where

a)
$$X_1(t) = W(t+L) - W(L)$$
, b) $X_2(t) = W(t+L) - W(t)$
c) $X_3(t) = A \cdot t + W(t)$, d) $X_4(t) = \begin{cases} (1-t)W\left(\frac{t}{1-t}\right) &, & 0 \le t < 1\\ 0 & , & t \ge 1 \end{cases}$

15.) Let $(W_t, t \ge 0)$ be a standard Wiener Prozess, then $B(t) = W_t - t W_1$ for $0 \le t \le 1$ is a Brownian bridge.

a) Prove EB(t) = 0 and $Cov_B(t, s) = \min\{t, s\} - ts$.

b) Prove, that the Process $X_t = (1+t) B(\frac{t}{1+t})$ for $0 \le t < \infty$ is a Wiener process, too.