Fakultät für Mathematik, Institut für Mathematische Stochastik Prof. G. Christoph, Lora Todorova

Tutorial Stochastic Processes, (Serie 5)

21.) Prove with Extension I of the Ito Lemma, that

a)
$$X_t = (W_t + t) e^{-W_t - t/2},$$
 b) $Y_t = e^{t/2} \cos W_t$
c) $Z_t = W_t^4 - 6t (W_t^2 - t) - 3t^2$

are martingales with respect to the filtration, generated by $(W_t)_{t\geq 0}$. Hint: Prove that the processes X_t , Y_t and Z_t are Ito integrals!

Since Z_t in c) is a martingale and $Z_t = W_t^4 + A_t$ with $A_t = -6t(W_t^2 - t) - 3t^2$ we find the stochastic process A_t in **Problem 20***.

22.) Let W_t be a standard Wiener process and η_t a bounded and adapted to W_t process, $0 \le t \le T < \infty$. The process ξ_t is defined by the integral equation

$$\xi_t = \int_0^t \eta_u dW_u - \frac{1}{2} \int_0^t (\eta_u)^2 du \, du$$

a) Put $Z_t = \exp(\xi_t), 0 \le t \le T < \infty$. Prove that Z_t satisfies the stochastic integral equation $Z_t = 1 + \int_0^t Z_u \eta_u dW_u$.

b) Put $Y_t = 1/Z_t$, $0 \le t \le T < \infty$. Prove that Y_t satisfies the stochastic differential equation $dY_t = Y_t(\eta_t)^2 dt - Y_t \eta_t dW_t$. Hint: Use the Extension II of the Ite Lemma

Hint: Use the Extension II of the Ito Lemma.

23.) Let B_t and W_t be two independent standard Wiener processes on [0, T]. a.) Show that $X_t = (B_t + W_t)/\sqrt{2}$ is also a standard Wiener process and calculate the correlation coefficient between W_t and X_t . b.) Show the product rule

$$d(W_t B_t) = W_t dB_t + B_t dW_t.$$

Note that there is no correction term dt since W_t and B_t are independent. In case of $P(W_t = B_t) = 1$ we obtained $d(W_t^2) = 2W_t dW_t + dt$.

- 24.) Let W_t be a standard Wiener process and $\alpha > 0$ a constant. Define $X_t = e^{-\alpha t} W(e^{2\alpha t})$. Find its mean and covariance function. Show, that X_t is a stationary process.
- 25.) Let W_t be a standard Wiener process. Find dX_t for

a) $X_t = t \exp\{W_t\}$, b) $X_t = 2 + t + W_t^2$.

Examination Stochastic Processes

Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik, Prof. Dr. G. Christoph

Please note the following:

- The exam consists of 6 problems. You do not have to solve the individual problems completely, partial solutions are also possible. You should clearly display your approach and way to solution.
- You can reach a maximum of **40 points**. For passing the exam a total of **13 points** is sufficient.
- You are allowed to use: Pocket calculators, text books, mathematical and/or statistical tables, manuscripts and notes from lectures and/or exercises.
- 1.) (10 points) Suppose $X_1 \sim N(0,9)$, $X_2 \sim N(3,1)$, $X_3 \sim N(1,4)$ and let X_1, X_2, X_3 be independent. Define $Y_1 = 2X_2 3X_1 2$ and $Y_2 = 3X_3 X_2$.
 - a) Find EY_2 and $Var(Y_1)!$
 - b) Calculate the covariance-matrix $\Sigma_{(Y_1,Y_2)} = \left(E[(Y_i EY_i)(Y_j EY_j)] \right)_{i,i=1,2}$
 - c) Calculate the correlation coefficient $\rho(Y_1, Y_2)!$
 - d) Find $E((Y_2)^2 | \sigma(X_1, X_2))!$
- 2.) (6 points) Let N_t , $t \ge 0$ is a homogeneous Poisson process with intensity $\lambda > 0$. Suppose $t_1 < t < t_2$. Calculate $p = P(N_{t_1} = 1, N_t = 3 | N_{t_2} = 4)!$
- 3.) (6 points) Let W_t , $t \ge 0$ be a standard Wiener process ($\sigma^2 = 1$). Define $X_t = 1 + W_t^2$, $t \ge 0$. Calculate $Cov(X_s, X_t)$ for s < t. **Hint:** Note $EW_u^4 = 3 u^2$ for u > 0.
- 4.) (5 points) Let $W_t, t \ge 0$ be a standard Wiener process ($\sigma^2 = 1$). Define $Y_t = W_t e^{2W_t 2t}$. Find dY_t ! **Hint:** Use Extension I of the Ito Lemma.
- 5.) (5 points) Put $Y_t = t + \ln(X_t) = f(t, X_t), t \ge 0$, where

$$X_t = X_0 + \int_0^t (2s^2 - 1) X_s \, ds + \int_0^t 2s X_s \, dW_s \quad \text{with} \quad X_0 = 1 \,,$$

where $W_t, t \ge 0$, is the standard Wiener process ($\sigma^2 = 1$). Find with Extension II of the Ito Lemma, that the process Y_t is a martingale with respect to the filtration, generated by $(W_t)_{t\ge 0}$.

Hint: Prove that the process Y_t is a Ito integral!

- 6.) (8 points) The following statements are TRUE or FALSE. So just answer TRUE, since ... or FALSE, since giving only a short explanation.
 - a) The random variables X_3 and Y_1 in **Problem 1** are uncorrelated.
 - b) Let N(t), $t \ge 0$ is a homogenuous Poisson process with intensity $\lambda > 0$ and $t_1 < t < t_2$ (see **Problem 2**). Then $q = P(N(t_1) = 2, N(t) = 2 | N(t_2) = 5) = 0$.
 - c) The process X_t in **Problem 3** is a stationary process!
 - d) Let $N_t, t \ge 0$ be a Poisson process with intensity 2. The process $X_t = N_t 4t$ is a martingale with respect to its natural filtration $\mathcal{F}_t = \mathcal{F}(N(u), 0 \le u \le t)$!