A Practical Method for
Computing Delaunay triangulations in the Euclidean
metric

Michael Jiinger Volker Kaibel Stefan Thienel

Institut fir Informatik
Universitat zu Koln

June 29, 2001

Abstract

The correctness of many algorithms for computing Delaunay triangulations for
the Euclidean metric (as well as for several other problems in Computational Geom-
etry) basically depends on the correct evaluation of the signs of certain arithmetical
expressions with integer operands. Since the numbers to deal with often exceed the
bounds up to which computers are able to calculate exactly, one has to employ ex-
pensive software arithmetic (“big integer packets”) to provide correctness in many
cases. We present a method to decide dynamically (i.e., for each evaluation occur-
ring during a run of the used algorithm) if it is necessary to perform it by software
arithmetic or if one can guarantee the correct evaluation when using a certain “in-
exact” hardware arithmetic, e.g., the floating point arithmetic of the used system.
We apply this method to the computation of Delaunay triangulations and report
about some computational experiments.

Keywords: Delaunay triangulation, Voronoi diagram, Computational Geometry,
Robust Algorithms

1 Introduction

A Voronoi diagram (with respect to the Euclidean metric d : R* x R* — R) of a set
Q={g1,...,9.} C R? of n generators gy, ..., gn is the collection of the n polygons

P :={peR’|dp,g) < dp,g;) Vi €{1,...,n}}.

The “skeleton” formed by the boundaries of these polygons can be viewed as a planar
graph, whose dual graph is called a Delaunay triangulation of). Because such a De-

launay triangulation contains much information about the neighborhood structure of the
generators it is used as a tool in several algorithms.

Many algorithms that compute Delaunay triangulations (via Voronoi diagrams), e.g.,
the divide-and-conquer method of SHAMOS AND HOEY [9], the sweepline algorithm of
FORTUNE [2] and the incremental approaches of GREEN AND SIBSON [3] or OHYA, IRI
AND MUROTA [8], use as basic numerical operation the intersection of two lines in the
plane. However, even when working with generators having only integer coordinates (as
we will presume in the sequel), these intersection points may have rational coordinates
that have nonending (periodical) binary representations, and hence cannot be represented
correctly as usual floating point numbers. This problem and the possibility of intersection
points “far outside”, in general, cause errors when computing Delaunay triangulations
with implementations of the algorithms mentioned above using floating point arithmetic.

SUGIHARA [11] proposed an algorithm for computing a Delaunay triangulation without
intersecting lines. His method needs numerical computations just to evaluate the three
functions we will describe next. For any three noncollinear points a, b, c € R? we call the
interior of the circle where they all are located on int(a, b, c) and its exterior ext(a, b, c).
By % we denote the directed line between a point ¢ € R* and a point b € R?, b # a. The
three functions are:

Closer(z,a,b) : TRUE if d(z,a) < d(z,b)
FALSE otherwise

CheckVP(z,a,b,c) : IN if z € int(a, b, c)
ouT if z € ext(a,b,c)
ON otherwise

OnLeftSide(z,a,b) : TRUE if z is on the left side of ab
FALSE otherwise

Proposition 1.1 shows the formulas given in JUNGER, REINELT AND ZEPF [5] to evaluate
these functions. We denote the z-coordinate of a point p € R? by p,, its y-coordinate by

Py-
Proposition 1.1 Let a,b,c,z € R2. Then
(i) Closer(z,a,b) = TRUE <

0 > 2(by — ag)(zs — bg) + (by — az)(by — az)
+2(by — ay)(2y — by) + (by — ay) (b, — ay)

IN <0
(i) CheckVP(z,a,b,c) =< OUT = g >0 p, where
ON =0

Q = (cz—ag)(by —ay) — (b — az)(cy — ay)
(i4i) OnLeftSide(z,a,b) = TRUE <
0 > (by —ay)(zz — az) — (2y — ay)(bs — az)

Using these formulas, one has not to perform any divisions, and hence (recall that we as-
sume integer generators) just has to deal with integers during the computations. However,
the (intermediate) results of the calculations required by the formulas of Proposition 1.1
may become rather large and cause overflows when using standard integer arithmetic.

For generators lying on a grid {0,1,...,A} x {0,1,..., A} JUNGER, REINELT AND
ZEPF [5] give the following guarantee for a b-bit 2-complement integer arithmetic.

Proposition 1.2 No numerical errors occur in the calculations required by the formulas
of Proposition 1.1 as long as

8 if b=16
A<{ 137 if b=32
35211 if b= 64

holds.

But, considering the fact that on many current computers (e.g., on the SPARCstations of
SUN where our implementation runs) the integer arithmetic works with a word length of 32
bits, the consequence of Proposition 1.2 is the restriction of the grid size to A < 137. Even
on systems with an integer arithmetic of word length 64 bits coordinates of the generators
must not exceed 35211. Of course, many real world problems have distinctively larger
coordinates after scaling the (usually rational) coordinates of the generators to integer
numbers (e.g., the problems in the TSPLIB of REINELT [10]).

There seem to be two ways out:

1. Instead of using the integer arithmetic of the system, it is possible to perform
the calculations by the floating point arithmetic of the computer. Normally, this
arithmetic permits the representation of sufficiently large numbers, but it becomes
inaccurate at a certain size of the numbers, which depends on the length of fraction
in the floating point representation. Consequently, one is able to run the algorithm
with larger coordinates this way, however without a guarantee of correctness (and
even without a guarantee of termination, when using an incremental algorithm that
is based on the fact that the current Delaunay triangulation is a correct one at each
incremental step).

2. Tt is possible to make the word length for integer calculations as large as desired
(limited only by the storage capacity of the machine) by using a software-arithmetic,
which represents integer numbers in blocks of words of the integer arithmetic of the
used system. Hence, the algorithm works correctly with arbitrarily large coordi-
nates.

To be able to guarantuee by Proposition 1.2 that the algorithm produces the expected
result, it is necessary to employ (comparatively slow) software arithmetic from a certain
(comparatively small) size of the coordinates on. Nevertheless, it is not necessary (even
in cases of very large coordinates) to perform every calculation by software arithmetic,
because Proposition 1.2 is a worst case estimation. For that reason, our approach is
to decide for every call of one of the three functions Closer, CheckVP or OnLeftSide
by examining the parameters z,a, b(,c), if the required computation can be performed
correctly by (floating point) hardware arithmetic, or if the use of software arithmetic is
necessary. The main goal of this paper is to present our criterion for this decision, which
we will do in the following section. The third section will give some of our computational
results.

Independently, FORTUNE AND VAN WYCK [1] developed a similar approach. They pro-
pose a general framework for the exact evaluations of “primitives for geometric algorithms”
and applied it to the computation of Delaunay triangulations.

2 The routine sign_of expression

Our method was motivated by the following observation. When using floating point
arithmetic, our implementation of an incremental algorithm based on OHYA, IRI AND
MUROTA [8] and SUGIHARA [11] computes the correct results for nearly all instances,
even if the coordinates of the generators are very large. The reason is that floating point
arithmetic gives the possibility to perform integer computations (as addition, subtraction
and multiplication) with very large (intermediate) results and with relatively small errors
in comparison to the big errors that occur in case of an overflow in integer arithmetic.
The careful estimation of those “small” errors, together with the fact that according
to Proposition 1.1 we are only interested in the signs of the values of some numerical
expressions, will give us a very effective criterion that requires only a few calls of the
software arithmetic even for instances with very large coordinates.

4

The idea of our technique is the following: According to Proposition 1.1 we have to
evaluate expressions of the form

> (si 11 tz’j),
1<i<r | 1<5<y
where ;; are certain coordinate differences and s; € {—1,+1}. Let P,; be the exact sum
of the positive summands in the expression above and V., the exact sum of the negative
summands. First of all we compute all the summands (i.e., the products s; ® (®1<j<ytij),
where ® is the floating point multiplication on the machine) and after that we add up
the positive ones to obtain a value P, and the negative ones to obtain a value N. The
sign of the expression which we have to evaluate only depends on the relation of the sizes
of P, and |Ng;|. In the sequel we will give an estimation for the error |P — P,;| (resp.
||N| — [Nez||) which one can obtain easily from P (resp. N). Having an estimation of
these errors one can deduce a criterion that guarantees that P and |N| have the same
(<, =, >)-relation as P,; and |Ng,|.

Our approach does not directly access to floating point representations. It only requires a
(hardware) arithmetic which has some features that are especially satisfied by the IEEE
STANDARD [4] (cf. Proposition 2.2). But one can use our method also with any other
arithmetic which shares these features. By abuse of notation we call the used arithmetic
“floating point arithmetic” anyway. We formulate these features mentioned above in the
following

Conventions and Assumptions:

Let
M,L € N.

M will become the storing size of the fraction and L the value of the maximal exponent
of a floating point number. Moreover, let

D c {-2%,...,2"}

be a set of integer numbers. In our case it will be the set of integer numbers which
are representable in the floating point arithmetic. Then D can be a proper subset of
{=2%,...,2L}, because mostly M < L holds, so that the lower digits of large integer
numbers cannot be stored. The numbers in D then have the following form:

x...%x0...0,
——
M
| S —
<L

where the stars stand for digits in {0, 1}.

We define for all integer numbers o € Z

(o) = { log(lal)] +1 ifa#0 }

1 otherwise

where log denotes the binary logarithm. [(«) is the binary length of the number |«|.

For a,b € D let
a+b, a—>b, axb (= ab)

be the sum, the difference and the product in the ring of integers, and
a®b acb a®b

the results of addition, subtraction and multiplication (resp. the operations themselves)
in the floating point arithmetic.

As we have already suggested we want to use the feature of floating point arithmetic that
the operations addition, subtraction and multiplication are performed “nearly correctly”
with integer operands. Of course this is only true as long as the result is not bigger than
any number representable in the floating point format. To describe this case we define
the notion of “overflow” in the following way:

Definition 2.1 For a,b € D, e € {+,—,*} and the corresponding machine operation
© € {®,5,®} the operation a ® b causes an overflow, if

l(aeb) > L.
We make the following
Assumption (#):
1. For a,b € D and © € {®,5,®},
a®beD

should hold, as long as no overflow occurs during the operation.

This assumption guarantees that the set D is closed under the operations we need.
Addition, subtraction or multiplication of two numbers from D should not have a
fractional result in the floating point arithmetic.

2. Fora,b € D, e € {+, —, x} and the corresponding machine operation ® € {®, S, ®}
[(a @b) — (a ®b)| < 21a@)-M

should hold, as long as no overflow occurs during the operation.

This assumption quantifies the size of the error for the required operations. If

*...%0...0
——
M
~————
<L

is the result of such an operation the estimation above means that at least the first
M — 1 duigits are computed correctly.

3. Fora,be D,a,b>0ora,b<0
lla®b) >I(a),

should hold, as long as no overflow occurs during the operation.

We will examine the accumulation of errors in a sequence of operations. This part of
the assumption allows us to estimate the length of intermediate results of sequential
additions of numbers with the same sign by the length of the total result.

4. For a,b € D
lla®b) >1(a) +1(b) — 1

should hold, as long as no overflow occurs during the computation.

This is the analogous assumption to part 3 for multiplication.

5. The system should perform comparisons (<,=,>,<,>) of numbers a,b € D cor-
rectly in any case.

6. There should be a function abs, so that for all a € D
abs(a) = |a|
holds.
7. For a,b € D with a,b > 0ora,b<0
o @ b[= [a] @ [b]

should hold as long as no overflow occurs during the computation.

This and the next part of the assumption express that addition (of operands with
equal sign) and multiplication are performed as if the absolute value of the result
would be determaned first and then the sign of the result.

8. Fora,be D
o ®b] = [a] ® [b],

should hold, as long as no overflow occurs during the computation.

9. Finally we require
M > 8.

If « is the result of an operation in part 2 with [(«) < 8 this part of the assumption
allows us in connection with part 1 to conclude the correctness of the result.

For t1,...,t, € D and the machine operation ® € {®, ®} we define
®1§i§nti = (.. ((tl ® tz) ® tg) ..) © ty,

as long as no overflow occurs during the sequence of operations (because of part 1 of the
Assumption (#) the expression above is well defined in this case), otherwise we say that
O1<i<nli causes an overflow.

Proposition 2.2 Assumption (#) is satisfied by systems with a floating point arithmetic
according to the IEEE STANDARD [/].

Proof: The IEEE STANDARD [4] specifies the following format for floating point numbers
(where msb and Isb stand for the most (resp. least) significant bit):

«1l-» Ble) B()

S e f

msb Isb msb Isb
The fields e and f are bit strings of length ((e) resp. (B(f). We denote with E the
(nonnegative) integer number represented in binary format by the string e. So
MaxE := 25(¢) — 1
is the maximal value of E. Furthermore let

bias := 28()-1 _ 1,

Let v be a number represented in floating point format by a triple (s,e, f). We are
interested in two cases:

1. bias < F < MaxE
Then v = (—1)*28-P13S(1_#), holds.

2. E=0,f=0...0

Then we have v =0 .

In all other cases v is not an integer number.

We set
M :=p8(f)+1 and, L :=MaxE — bias.

Finally let D be the set of representable integer numbers.

The IEEE STANDARD [4] requires the following features for the operations &,6 und ®:

“(...) every operation (...) shall be performed as if it first produced an
intermediate result correct to infinite precision and with unbounded range,
and then rounded that result (...)” (p. 10)

As default rounding mode Round to Nearest is prescribed:

“(...) the representable value nearest to the infinitely precise result shall be
delivered; if the two nearest representable values are equally near, the one
with its least significant bit zero shall be delivered.” (p. 10)

8

We now check all parts of the assumption (#):

Part 1: Let a,b € D, ® € {®,6,®} and e € {+,—,*} be the corresponding ring
operation. We define

z:=a®b
and assume that no overflow occures during the operation. Then z is the number obtained

by Round to Nearest from the integer number

Z:=aeb.

Assume z ¢ D, then we have z € Q \ Z. Because z is representable it is guaranteed that
2], [2] € D.
Since we have 2’ € 7Z either |z| or [z] is closer to 2’ than z itself, which is a contradiction

to the rule Round to Nearest.

Part 2: Let be 2/ € Z, I(2') < L and z € D the number obtained from 2z’ by Round to
Nearest. We have to show that

|Z’ _ Z| < 2l(z)—M.

If I(2') < M then the assertion is obvious. Otherwise the number 2z’ (omitting the sign)
has a binary representation of the form

a,—/

M
| —
1(z")
So we have
ZI — a2l(z’)—M +ﬂ,
whith some (unique) o, 3€ N, 21 <o < 2™ 0< 3 < 24¥)"M_ The rule Round to
Nearest gives us
2 =02 M or z=(a+1)21) M,

Since a > 2M~1 one readily deduces
I(z) >1(z") -1

from this, an estimation which we need in the sequel.

Case 1: z = q2i(<)-M
In this case § < 24#)=M-1 holds, so we can estimate:

2=z = 2 -z
— (a2l(zl)—M + /6) - a2l(z')—M
= p

2l(z’)—M—1

IN A

2[(2),M

Case 2: z = (o + 1)2U=)—M
In this case § > 2/z)=M=1 holds, so we can estimate:

|2 =2 = z2—7
= (a+1)2/E)~M _ (q2W=)=M 4 p5)
— 2l(z’)—M . ﬂ
< 2l(zl)—M o 2l(z')—M—1
_ ollz')—M-1
S 2l(z)—M

Parts 3 and 4: They are obvious because rounding a number by the above rule can never
make it shorter (compare also the proof of part 2).

Part 5: The IEEE STANDARD [4] prescribes:
“Comparisons are correct (...)" (p. 12)

Part 6: Trivial, because only the bit of the sign must be set.

Parts 7 and 8: These two parts follow from the observation that a number «a is rounded
to A if and only if —a is rounded to —A when using Round to Nearest.

Part 9: All formats specified by IEEE STANDARD have M > 8. O

Remark 2.3 The IEEE STANDARD /4] especially specifies the formats

1. SINGLE-PRECISION: (e) = 8, 5(f) = 23. We choose M := 24 and L := 128.
2. DOUBLE-PRECISION: f(e) = 11, B(f) = 52. We choose M := 53 and L := 1024.

Qur implementation uses the DOUBLE-PRECISION format.

Now we want to examine how errors accumulate in a sequence of additions and multi-
plications on the machine in order to obtain the mentioned estimation of |P — P,,| and
||N| = | Neg|| finally. Our approach is as follows: The first goal is to obtain an estimation
of the error occurring at the successive addition of some numbers with the same sign.
The result will be Proposition 2.5. After that we give an analogous estimation for the
multiplication in Proposition 2.6, and in Proposition 2.9 we present the central estimation
of the error

ZHtij_@®tij’ tijGD.

Proposition 2.11 finally gives us the criterion directly derived from Proposition 2.9 which
we will use to decide if there could have been an error in the floating point calculation of
the sign of one of the expressions above.

First of all we need a lemma that allows us to apply part 2 of Assumption (#) repeatedly
if several numbers with same sign are added.

10

Lemma 2.4 Let a,b € D and a,b > (<) 0. Then we have
a®b> (L) 0,

if no overflow occurs during the operation.

Proof: Otherwise, one obtains
la@b| <|[(a®b) - (a+b)| < 21N,

from part 2 of Assumption (#), which is a contradiction since M > 8. O

Now, we can estimate the error occurring when adding several numbers of the same sign.
For the sequel, we assume n > 1.

Proposition 2.5 Let ty,...,t, € D, either all nonnegative or all nonpositive, and let
o 1= @i<i<nli- If no overflow occurs during the computation of o

34— a‘ < olle)=M+(n—2)
1<i<n

holds.
Proof: For 3 < j < n define
T2 = tl @tg and 7} =415 @tj

(these T} are the intermediate results during the computation), as well as for 2 < j <n
1<i<j

So Fj is the error accumulated during the first j additions. Note that we assume no
overflows ocurring when computing the 7. For 3 < j <n we have:

Bl= | T t)+t-@ae)
1<i<j—1
Fj_1+T; 1
< JFal+ (T +t) — (Tiaet) |
—_————
T

< |Fj| 207N,

where we used part 2 of Assumption (#) for the last inequality.

By induction on j € {2,...,n} we show

By < 22,

11

which proves the assertion for 7 = n. In this induction we use that by Lemma 2.4 and
part 3 of Assumption (#) we inductively get

(1) > U(Tj-1) for2<j<n.

Jj = 2: part 2 of Assumption (#).
7> 2

V

il < B+ 207

<U(Ty)

— .
UT; 1) ~M+(j—1)-2 | gl(Ty)—M

IN

>0

QI(T})~M+j=3 | gU(Ty)~M+7-3

2l(Tj)—M+j—2

We now give an analogous estimation for the multiplication of several numbers.

Proposition 2.6 Let t1,...,1, € D, o := Qi<i<nti- If no overflow occurs during the
computation of o we have

I t— a‘ < olle)-M+2(n-2)
1<i<n

Proof: We define
Ty:=t,®ty, and T;:=T,.,®t; for 3<j<n,

as well as
Fj::< H ti>—Tj for 2<j5<n.
1<i<j
As in the proof of Proposition 2.5 the T} are the intermediate results and the Fj are the
errors accumulated during the first 7 multiplications. Note again that by assumption no
overflows occur during the computations of the 7). For 3 < j < n we have:

|Fjl = ‘(11 ti)tj_(Tj—l(X)tj)

1<i<j—1

Fj 1+T; 1
|Fjaty + Tjaty — (Tj-1 ®@ 1))
< [Fjatl + [Tty — (T ®) |
—————

T;

IN

Byt + 2
Bl + 2@,

12

where we used again part 2 of Assumption (#) for the last inequality.

By induction on j € {2,...,n} we show
|Fj| < QUT3)—M+2(j=2)

which proves the assertion for j = n as in the last proof. From part 4 of Assumption (#)
we obtain

WTj-1) + U(t5) < UT;) + 1.

j = 2: Part 2 of Assumption (#).

7> 2:
Fj| < [Fja| ;| +20007M
~—~
<ol
< QUTj—1—M+2((7-1)~2) 9l(t;) + oUT;)—M
<UTj+1

——
= UTj—1)+Ut;) ~M+2j-6 4 oU(T;)~M
>0
QI(T)—M+2j5 __ 9l(Ty)—M+57 3

Ql(T})~M+2(j~2)

|

Now we can estimate the error accumulating during the addition of several numbers of the
same sign as well as the error accumulating during the multiplication of several numbers
by an expression which only depends on [(«) (if « is the result of the computation). We
need an estimation of the accumulated errors when computing the products

mi 1= @ugjeyliy, 1<iST

(which have all the same sign), and adding the products 7; afterwards. To obtain such
an estimation by use of Propositions 2.5 and 2.6 we need two auxiliary results. These
results express the following: When we multiply several numbers, the sign of the result
will be correct, and the same assertion holds for the addition of several numbers of the
same sign.

Lemma 2.7 Let ty,...,t, € D, a := Qi<i<nts. If no overflow occurs during the compu-
tation we have that

a>(<,=)0 implies II ti>(<,=)0,

1<i<n

if M > 2n — 2 holds.

13

Proof: In the case a = 0 it follows from Proposition 2.6 (recall n > 0, which leads to
M > 2(n—2))

H tz _ 0‘ S 21—M—|—2(n—2) < 1’
1<i<n

hence because all ¢; are integer

IT =0

1<i<n

holds. Now let a # 0. Assume the assertion does not hold. Then we have

H ti—a‘ > o,

1<i<n
which leads to the following contradiction by Proposition 2.6:
| > U2

()= M+2(n—2)

2lr(a)f2f(M72n+2;

>

> | I ti—a‘
1<i<n

> ol

|

Lemma 2.8 Lett,...,t, € D, allt; > 0 or allt; < 0. Let o := ®1<i<nli. If no overflow
occurs during the computation of a we have

a>(<,=)0 = Yo oti>(<,=)0,
1<i<n
if M > 2n — 2 holds.
Proof: Analogously to the proof of Lemma 2.7, here we use Proposition 2.5. O

Now we are able to give the needed estimation. The following Proposition 2.9 is the basis
of our method.

Proposition 2.9 Lett;; € D (1<i<n,1<j<4,n>2), and let

o = D1<i<n(®1<j<atis)-

We demand that all ®1<j<ati; (1 < i < n) are nonnegative or all nonpositive. Further-
more, let M > 2n — 2. If no overflow occurs during the computation of o we have

Z H ti —al < ol(a)~M+n+4.

1<i<n 1<;5<4

14

Proof: For 1 <i < n we define

a; 1= H ti]’ and AZ = ®1Sj54tij'
1<j<4

By Proposition 2.6 we have for 1 <7 <n
|a; — Ay| < 2HAD) M

and from Proposition 2.5 we obtain (remember that all A4; > 0 or all 4; < 0)

Y A — ®i<i<nAi| < QH)=M+n=2
<i<

1<i<n >
By Lemma 2.4 and part 3 of Assumption (#) it follows inductively that
I(4;) <l(la) for 1<i<mn.

Due to Lemma 2.7 we have either all a; > 0 or all a¢; < 0 if all A; > 0 or all 4; <0,
respectively. Hence we obtain the following estimation:

2 am—) A

> (lail = |A4i))

1<i<n 1<i<n 1<i<n
< Y a — Al
1<i<n
<l(a)
=
< Z 2l(Al) —M+4
1<i<n
< n2l(a)—M—|—4
(o) -M+n+3
< 2/ :

where the last estimation holds since n < 2"~! (we have n > 1).

Now we can estimate the error as follows:

Yo Il tii—af = | X ai—@cicnd
1<i<n 1<j<4 1<i<n
= | 2 oa—) At D Ai— Dicicndi
1<i<n 1<i<n 1<i<n
< Y a—) A+ Y A B
1<i<n 1<i<n 1<i<n
<n43

2l(a)—M+n+3 + 2l(a)—M+’TLJ—\2

IN A

2l(a)fM+n+4

15

Now we know (by using the same terminology as before) an estimation for

‘P_Peac

and ||N| = | Neg|

We derive a test that guarantees that P., — |N,,| has the same sign as P — |N|. For the
moment, we assume P < |N|. Let Fp resp. Fy be the estimations of the errors |P — P, |
and |[N| — |Ngl|. Let P':= P+ Fp and N” := |N| — Fy. Then the required test is
visualized in Figure 1.

< F_—» <—FN4>

P PPN INJ

Figure 1: Illustration of the required test

If we have P’ < N’ then the test is passed, otherwise we have to apply the software
arithmetic. Hence we are searching (in the case of P < |N|) P’ and N’, which can be
computed from P resp. N, so that

P'> P, and N'<|Ngl.

Proposition 2.11 will show how to determine P’ and N'. In order to prove this proposition
we need the following lemma.

Lemma 2.10 Let a,b € D and ® € {®,5}. Then
la®b) < mazx{l(a),l(b)} +2

holds if no overflow occurs during the computation.

Proof: Let e € {4+, —} be the ring operation corresponding to ®. We define
A :=max{l(a),l(b)}.

Assume that [(a ® b) > X + 2. We know that I(a e b) < A + 1 holds. From the assumption
above it follows that 2|a @ b| < |a ® b|. Then we obtain by part 2 of Assumption (#) the
following contradiction (remember that M > 8):

21eCH-M > (@@ b) - (aeb)
> |la@bl —laeb|
= |a®b —|aed
> |a®bl —1la®b|
= a0

16

Proposition 2.11 Lett;; e D (1<i<n,1<j<4,n>2) and define

o = B1<icn (®1<j<atiy)-

We demand that all ®1<j<ati; (1 < i < n) are nonnegative or all nonpositive, that no
overflow occurs and that we have M > 2n — 2. Then with

F = Lzl(a)fM+n+5J (E D)

the following two statements hold.

(i) a®F > Yi<i<p[licj<atiy

(i) « © F < Yqcicpn [licjcatiy
Proof: We only show (7). The proof of (ii) is completely analogous. We define
8:=a6F.

Since M > 8 we have
F < 2l(a)+n—3’

which leads to
I(F)<l(a)+n—3.

Of course, then we also can give the following upper bounds on {(F') and I(«):
I(F), (@) < Ia) +n+2,

which implies
1(B) <lla) +n+4
by Lemma 2.10.
If F =0 then I(a) < M — (n+ 5) must hold, which implies

1(8) <lla)+n+4<M-1,
from which in this case (since (3 is integer by part 1 of Assumption (#)) follows that
a®F=a+0=o0.

From F' = 0 we get by Proposition 2.9 that o was computed correctly. Hence in this case
we even have equality in (7).

If F # 0 then we have

I = ol(@)=M+n+5

17

Due to part 2 of Assumption (#) and Proposition 2.9 the following holds:

g + 2l(0£)_M+’n.+4i +2l(a)—M+n+4 . 2l(ﬂ)—M
i i I(o)+n+4—M
Zzlgign H15j54 t’b] <2 () +n

v

> II ts

1<i<n 1<5<4
O

Now we can describe our method. By Proposition 1.1 we have to determine signs of
expressions of the form

>odsi It),

1<i<r 1<j<vi
where the ¢;; are certain coordinate differences and s; € {—1,+1}. Obviously we can

restrict ; = 4 for all ¢ by the introduction of additional factors (1 — 0). This simplifies
the analyses. First we make the following further

Assumptions:

1. The (nonnegative integer) coordinates of the generators have to be less than 2¥ 73,

2. The coordinate differences have to be bounded by a C € N with 6C* < 2F.

The first assumption guarantees in combination with Lemma 2.10 and part 2 of Assump-
tion (#) that all the coordinate differences t;; (which are integer by part 1 of Assump-
tion (#)) are computed exactly.

The second assumption guarantees that during all the computations no overflows occur.
This holds since 6C* is a bound for the absolute values of all result of computations in
Proposition 1.1, if C' is a bound for all the coordinate differences.

Remark 2.12 If the floating point arithmetic of the used system works according to the
IEEE STANDARD [4] with the DOUBLE format then we have seen in remark 2.3 that we
can choose M = 53 and L = 1024. If all coordinates are in the set {0,...,2%0 — 1}, then
both assumptions are satisfied when using this format with C := 2°° (e.g., on the machine
we used to obtain our computational results).

For each of the three functions Closer, CheckVP and OnLeftSide we specify the number of
additions r and the corresponding sign s;. When any of these three functions is called, we
determine coordinate differences ¢;;. Up to now no numerical error has arisen (under the
assumptions made before). After that we have to evaluate only the sign of the expression

Z (si H tz-j).

1<i<r 1<j<4

18

To perform this evaluation we use the following routine SIGNOFEXPRESSION. As de-
scribed in the beginning of this section we first determine P and N. Then by using the
criterion obtained from Proposition 2.11, we check if we can guarantee that P — | N| has
the same sign as P, — |Nez|- According to the result of this test either the sign of the
expression is taken immediately as that of P — |N| or the software arithmetic is called.

Routine SIGNOFEXPRESSION

INPUT : sie{-1,+1},t;;jeDfor1<i<rand1<j<4
OUTPUT : Slgn (PLUS, MINUS, ZERO) Of ZlSZS'I‘ (S’L Hlfjf‘l t"])

(1) For 1 <i <7 compute the T; := s; ® (Q1<j<atij)

(2) Letw.log Ti,...,T, >0and Ty, ..., T <O.
(3) Compute

P := ®1<i<nTi,

N = ®nmyi<i<m T
(4) Define

Bp :=abs(P)

By :=abs(N)

if Bp Z BN then

{

—~
(&
~—

(6) if Bp > By then

(7) tempres := PLUS
(8) else

9) tempres := ZERO
(10) Qpig = Bp

(11) Nbig =M

(12) Qsman = By

(13) Nematl =M —m

}

(14) else

{
(15) tempres := MINUS
(16) Qpig = BN
(17) g =m —m
(18) sman = Bp
(19) Nsmall = MM

}
(20) Determine
Fblg = L2l(abig)—M+nbig+5J

Fsmall = L2l(asmall) 7M+nsmall+5J

(21) Compute

19

Brig = Qupig © Frig

ﬂsmall = Qsman D Fsmall
(22) if tempres = ZERO and (Fyig # 0 or Fypay # 0) then goto (failed)
(23) if tempres # ZERO and Bhig < Bsman then goto (failed)
(24) return tempres

(failed) Do the whole computation with software arithmetic
and return the obtained result.

To prove the correctness of the routine SIGNOFEXPRESSION we need a trivial auxiliary
result that we formulate in the following lemma.

Lemma 2.13 Let ty,...,t, € D. Then
| ®1<i<n ti] = ®1<i<nlti]
holds. If furthermore all t; > 0 or all t; < 0 then we also have
| B1<i<n ti| = ®1<i<nlti-

Proof: The assertions follow (in the second case due to Lemma 2.4) inductively from the
parts 8 and 7 of Assumption (#). O

Proposition 2.14 The routine SIGNOFEXPRESSION works correctly.

Proof: Under the assumption that the software arithmetic works correctly we only have
to show that tempres contains the the sign of the expression which we want to evaluate
when line (24) is reached.

We need two observations:

Due to Lemma 2.13 by construction of Bp and By we have

Bp = ®1<i<m(®1<j<altij]) and By = @mi1<icm (@1<j<alti;]) (1).
Furthermore it follows by Lemma 2.7 that

S («Ia)- £ Mw- £ 1w e

1<i<r \ 1<5<4 1<i<m 1<j<4 mA1<i<m! 1<j<4
Case 1: tempres = ZERO
Because of line (22) we have Fy;y = Fymau = 0, so by Proposition 2.11 a;y and asman (i€,

Bp and By) are computed correctly. On the other hand, since tempres = ZERO we have
Bp = By (because of line (9)), which by (1) and (2) leads to

> (si II tij) = 0.

1<i<r 1<j<4

20

Case 2: tempres # ZERO

Because of line (23) we have fyig > Bsmau- We only prove the case tempres = PLUS, the
other case can be shown completely analogously.

If tempres = PLUS then we have (because of line (7)) Bp > By, hence oy, = Bp and
Osmau = Bn. Due to the definition of fy, and Bspmen (because of line (21)) it follows by
Proposition 2.11 that

Z H tij| > Brig > Bsmau > Z H IR

1<i<m 1<j<4 m+1<i<m! 1<j<4

and we obtain by (2)

Z (Si H tij) > 0.
1<i<r 1<j<4

3 Computational results

We implemented our method on a SUN SPARCstation 10 model 41 using the programming
language C. We chose SUN’s compiler acc (1.0) with the compiler optimization option
—-fast. The software arithmetic we used for the experiments reported below is the package
GNU MP (1.3.2) of the Free Software Foundation, Inc.. By sending an e-mail request to
kaibel@informatik.uni-koeln.de you can obtain the library delvor (together with
a short documentation) that provides a function to compute Delaunay triangulations
(for the Euclidean metric as well as for Manhattan metric and Maximum metric, cf.
JUNGER, KAIBEL AND THIENEL [6] and KAIBEL [7]) and another function to calculate
the corresponding Voronoi diagram from any Delaunay triangulation obtained by the first
one.

The Euclidean part of our program can be run in three different modes. These modes de-
termine how the computation of the functions Closer, CheckVP and OnLeftSide (see Sec-
tion 1) are performed. The options are

Soft: All computations are done by the software arithmetic.
Double: All computations are done by the (double) floating point arithmetic.
SoX: All computations are done by the routine SIGNOFEXPRESSION.

The entries in the columns titled by one of these three names are the numbers of software
arithmetic calls (if these entries are integral) or the running time (if they are decimal
fractions).

There is a column titled OK in every table. This column indicates if the output produced
by the computation with option Double is different from the one obtained when using
the option Soft. A difference is indicated by a e, consistent results by a /. Finally,
we have a column Maz that indicates the maximum size of the generator coordinates of
the problem. The problems in Table 3 are real world problems and have floating point

21

coordinates. As mentioned in Section 1 we scale the coordinates to integer values before
starting the computation. In such a case Maz is the maximum size of the coordinates
after the scaling.

We give three tables describing computational results. The first treats random problems
(i.e., the generators are pseudo uniformly distributed on a nonnegative grid) where the
number of the generators is varied, while the maximal size of the coordinates of the
generators is fixed to 107. In the second, we vary the maximal size of the generator
coordinates, while the number of generators is fixed to 10%. The third contains some
data for computations of Delaunay triangulations of problems given in the TSPLIB by
REINELT [10].

As one can see in Table 3, there are indeed problems which cannot be computed correctly
(by our program) when using the hardware floating point arithmetic. However, we have
to mention that we do not know any problem that makes our program trap into an infinite
loop when using the option Double. But surely one can construct such a problem.

All the tables show that the criterion developed in Section 2 reduces the number of neces-
sary software arithmetic calls enormously. Actually, among our tested random problems
in no case such a call was necessary.

Comparing the running times of the different methods one observes that the software
arithmetic leads to a running time increased by factor between about 4 and 5, if this
arithmetic is used for all computations (in comparison to the method which only uses
double arithmetic). One sees that this factor can be reduced to a factor about 2 by using
the routine SIGNOFEXPRESSION.

Table 1: Random problems with various numbers of generators
H #gen H Soft ‘SOX H Double‘ Soft ‘ SoX H ok H

4 48 0 0.00 0.00 | 0.00 | +/
8 113 0 0.00 0.02 | 0.00 | +/
16 256 0 0.00 0.02 | 0.00 | +/
32 572 0 0.00 0.03 | 0.00 | +/
64 1253 0 0.02 0.08 | 0.03] v/
128 2598 0 0.02 017 | 0.05] v/
256 5207 0 0.07 0.35| 0.10| /
512 11005 0 0.10 0.68 | 0.20 | /
1024 21915 0 0.22 1.37 | 0.40 || /
2048 45670 0 0.45 285 | 082 /
4096 88144 0 0.87 5.63 | 1.63 || /
8192 184443 0 1.88 | 11.15| 3.55 | +/
16384 355172 0 3.98 | 21.38| 7.25]| +/
32768 740284 0 820 | 4291 |14.95| /
65536 | 1417039 0 16.78 | 81.75 | 30.70 || +/
131072 || 2956071 0 33.92 | 171.64 | 62.70 || /

22

Table 2: Random problems with various ranges of generator coordinates
H Max H Soft ‘ SoX H Double ‘ Soft ‘ SoX H ok H
100 169430 0 1.68 | 7.67 | 2.70
1000 227383 2.30 | 11.73 | 4.32
10000 228246 2.27 | 12.05 | 4.45
99993 228391 2.28 | 12.33 | 4.37
999929 | 228339 2.33 | 12.25 | 4.43
9999281 || 228345 2.30 | 13.80 | 4.45

L

SO O o O

23

Table 3: Problems out of the TSPLIB

H Problem H Max H Soft ‘ SoX H Double‘ Soft ‘ SoX H ok H
rd100 16088597 1956 0 0.02 | 0.13| 0.05]| v/
prl24 13586 2583 0 0.02 | 0.13| 0.03| v/
bier127 5047 2807 0 0.03| 0.13| 0.05 | +/
prls2 15826 3244 0 0.03 | 0.17 | 0.05 \/
d198 16499918 4455 26 0.05| 0.23] 0.08] e
gil262 199 5399 0 0.05| 0.27| 0.10| /
lin318 4135 6661 0 0.07 | 0.33| 0.12 | /
rd400 16343336 8534 0 0.08 | 0.53 | 0.17 || /
pr439 13701 9822 0 0.10 | 0.50 | 0.17 || +/
pcb442 3801 9491 0 0.08 | 045 | 0.17 || /
d657 16406939 15158 7 0.13] 1.00| 028]| e
dsj1000 1214610 25405 0 0.22 1.22 | 0.42 \/
ul060 10914305 23470 16 0.23 | 1.87| 0.50 || /
vin1084 37857 23520 0 0.27 | 1.10 | 0.38 | v/
pcb1173 3453 25497 0 0.27 | 1.38 | 0.50 || +/
d1291 16225076 29767 172 0.27 | 1.45| 0.45 \/
rl1323 19089 29580 0 0.28 | 1.43| 0.50 | /
nrwl379 8175 30971 0 0.33] 1.65| 0.62]| /
11400 8620484 38644 84 0.30 | 1.70 | 0.57 || +/
ul432 2151 31987 0 0.33| 1.75| 0.55 | /
fl1577 8559945 36763 128 0.33 | 1.87| 0.60 | /
d1655 15262516 38715 162 035 200| 062 e
vim1748 38133 40774 2 0.38 | 1.95| 0.68 | /
ul817 13903422 42136 144 0.50 | 2.22 | 0.63 \/
d2103 8905115 51238 257 050 | 258 | 082 e
u2152 14132880 50775 167 047 | 253| 085 e
u2319 2151 54747 0 0.57 | 2,57 | 097 |
pr2392 15976 53384 0 0.52 | 2.78 | 093 | /
pcb3038 3951 69209 0 0.65| 348 | 1.25 | +/
13795 8620484 107061 150 0.95 | 4.75 157 e
ml4461 10676 99852 0 0.95 | 5.22 1.85 \/
r15934 19153 || 135167 0 1.38 | 6.57 | 227 | +/
d6960 6077 || 164223 0 1.63 | 7.77| 2.75 | +/
pla7397 627926 || 179208 | 3463 1.77 | 882 317 +/
r111849 38305 || 289533 1 2.88 | 13.57 | 4.85 | +/
brd14051 10967 || 350319 0 3.33 | 17.65 | 6.43 | /
d18512 10967 || 419109 0 433 |21.58 | 792 /
pla33810 697901 || 782286 | 12914 8.03 | 38.05 | 13.67 || v/
pla85900 726001 || 1956078 | 15186 20.28 | 92.96 | 33.15 || /

24

References

[1] S. Fortune and C. J. van Wyck: Efficient Exact Arithmetic for Computational Geom-
etry, Proceedings of the 9th Annual ACM Symposium on Computational Geometry
(1993), 163-172.

[2] S. Fortune: A Sweepline Algorithm for Voronoi Diagrams, Algorithmica (1987) 2,
153-174.

[3] P. J. Green and R. Sibson: Computing Dirichlet Tesselations in the Plane, Comput.
J. 21 (1977), 168-173.

[4] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE-Std. 754-1985.

[6] M. Jiinger, G. Reinelt and D. Zepf: Computing Correct Delaunay Triangulations,
Computing 47 (1991), 43-49.

[6] M. Jiinger, V. Kaibel and S. Thienel: Computing Delaunay-Triangulations in Man-
hattan and Maximum Metric. (in preparation)

[7] V. Kaibel: Delaunay-Triangulation in verschiedenen Metriken, Diploma thesis, Insti-
tut fiir Informatik, Universitiat zu Koln (1993).

[8] T. Ohya, M. Iri und K. Murota: Improvements of the Incremental Method for the
Voronoi Diagram with Computational Comparisons of Various Algorithms, Journal
of the Operations Research Society of Japan 27 (1984), 306-337.

[9] M. I. Shamos und D. Hoey: Closest-Point Problems, Proceedings of the 16th Annual
IEEE Symposium on FOCS (1975), 151-162.

[10] G. Reinelt: TSPLIB — A Traveling Salesman Problem Library, ORSA Journal on
Computing 3 (1991), 376-384.

[11] K. Sugihara: A Simple Method for Avoiding Numerical Errors and Degeneracy in
Voronoi Diagram Construction, Research Memorandum RMI 88-14, Faculty of En-
gineering, University of Tokyo (1988).

[12] K. Sugihara und M. Iri: Geometric Algorithms in Finite-Precision Arithmetic, Re-
search Memorandum RMI 88-10, Faculty of Engineering, University of Tokyo (1988).

25

Michael Jiinger

Institut fiir Informatik

Universitat zu Koln

Pohligstr. 1

D-50969 Koln

Germany

Telephone: 49 221 4705313

e-mail: mjuenger@informatik.uni-koeln.de

Volker Kaibel

Institut fur Informatik

Universitat zu Koln

Pohligstr. 1

D-50969 Koln

Germany

Telephone: 49 221 4705314

e-mail: kaibel@informatik.uni-koeln.de

Stefan Thienel

Institut fur Informatik

Universitat zu Koln

Pohligstr. 1

D-50969 Koln

Germany

Telephone: 49 221 4705307

e-mail: thienel@informatik.uni-koeln.de

