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Abstract For many combinatorial optimization problems investigations of asso-
ciated polyhedra have led to enormous successes with respect to both
theoretical insights into the structures of the problems as well as to
their algorithmic solvability. Among these problems are quite prominent
NP-hard ones, like, e.g., the traveling salesman problem, the stable set
problem, or the maximum cut problem. In this chapter we overview the
polyhedral work that has been done on the quadratic assignment prob-
lem (QAP). Our treatment includes a brief introduction to the methods
of polyhedral combinatorics in general, descriptions of the most impor-
tant polyhedral results that are known about the QAP, explanations of
the techniques that are used to prove such results, and a discussion of
the practical results obtained by cutting plane algorithms that exploit
the polyhedral knowledge. We close by some remarks on the perspec-
tives of this kind of approach to the QAP.

1. INTRODUCTION

Polyhedral combinatorics is a branch of combinatorics and, in par-
ticular, of combinatorial optimization that has become quite broad and
successful since it has sprouted in the 50’s and 60’s. Its scope is the
treatment of combinatorial (optimization) problems by methods of (in-
teger) linear programming. Besides many beautiful results on several
polynomially solvable combinatorial optimization problems, methods of
polyhedral combinatorics have also led to enormous progress in the prac-
tical solvability of many NP-hard optimization problems. The most
prominent example might be the traveling salesman problem, where to-
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day many instances with several thousand cities can be solved — by
extremely elaborate exploitation of polyhedral results on the problem.

Among further examples one finds the maximum cut problem, the
linear ordering problem, or the stable set problem. While these prob-
lems have been investigated by polyhedral methods extensively since
the 70’s, nearly no polyhedral results on the QAP were known until a
few years ago. In this chapter, we give an overview on the (theoretical
and practical) results on the QAP that have been obtained since then.
In particular, we explain some crucial techniques that made possible
to prove these results and that may be also useful for deriving further
results in the future.

The objects of polyhedral combinatorics are combinatorial optimiza-
tion problems with linear objective functions, while the QAP, e.g., in its
original formulation by Koopmans and Beckmann, 1957 as the task to
find a permutation 7 that minimizes Y ;" ) Y 3_ ) @ikbr(iyr(k) + Xoim1 Cin(i)
(with A = (a) € Q"™ the flow-, B = (bj;) € Q"*™ the distance-, and
C = (cij) € Q" the linear cost-matriz), has a quadratic objective
function. However, there are lots of different equivalent formulations
of the problem with linear objective functions. The one that turns out
to yield a suitable starting point for a polyhedral treatment is due to
Lawler, 1963. He formulated the QAP by representing the permutations
7 by permutation matrices X = (z;;) € {0,1}"*" in the following way:

n n non
(L) min Z Z QijkYijkl t Z Zcijwij

ik=1j,1=1 i=1 j=1

n
st Y my = 1 (ie{1,...,n})
j=1

inj = 1 (Ge{1,...,n})

Vit = Tijzp (4,5,k 0 € {1,...,n})
Tij {0, 1} (Z,] c {1,...,7’7,})

m

Of course, in case of a QAP instance of Koopmans & Beckmann type
one takes qijkl = aikb]’l.

Several proposals have been made in the literature to replace the non-
linear constraints y;jx; = T;;Tk; by some linear equations and inequalities
and to derive lower bounding procedures from these different types of lin-
earizations. Adams and Johnson, 1994 (see also Johnson, 1992) gave the
following formulation (notice that every solution to (L) satisfies y;;x; = 0



for ¢ 7é k, yijil =0 fOI‘j 7é l, and yijij = .’Eij):

n n n n
(A) min Y gimyir + Y Y cigmi
ik=17,1=1 =1 j=1
T
n

st Y @ = 1 (i e{l,...,n})
j=1

inj =1 (jE{l,...,n})
=1

n
Zyijlcl = Tjj (Z,],kE{l,,n},Z#k)

=1

£

n
Zyijkl = Ty (Z,],IE{].,,TL},]#Z)

k=1
Vit = Ywij (G5 k1 E{Ll...,n}i <k,j#I)
Yijkl > 0 (Z,],k,lE{l,,n},Z?ék,]?él)
Ti; € {0, 1} (Z,] c {1,...,n})

Additionally, they showed that this formulation yields a stronger linear
programming relazation (obtained from the formulation by relaxing the
integrality constraints z;; € {0,1} to 0 < z;; < 1) than most other
linearizations available in the literature. In particular, the lower bounds
obtained from solving the corresponding linear programs are at least as
good as several well-known lower bounds, including the most popular
one proposed by Gilmore, 1962 and Lawler, 1963.

Resende et al., 1995 have done extensive computational studies with
the lower bounds obtained from the linear programming relaxation of
(AJ). It turned out that this yields rather good bounds in practice.
The polyhedral approach to the QAP can be viewed as the attempt
to sharpen these bounds by insights derived from investigations of the
geometric structure of the feasible solutions to (L).

In order to provide the reader who is not yet acquainted with the
subject of polyhedral combinatorics with the necessary background, we
give a short introduction into this field in Section 2.. In Section 3. we
define the central objects used to describe QAPs in terms of polyhedral
combinatorics: the different versions of QAP-polytopes. A very useful
technique for working with these polytopes is explained in Section 4..
Section 5. contains the most important results that are known on the
QAP-polytopes, and Section 6. reports on practical results obtained by
cutting plane algorithms that exploit these results. We close the chapter
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by a discussion of the future perspectives of the polyhedral approach to
the QAP in Section 7..

2. POLYHEDRAL COMBINATORICS

This short section can only touch the basic principles of polyhedral
combinatorics with respect to those parts of the theory that we need
for the later work on the QAP. There are many concepts and results
besides the scope of this work. For an overview we refer to Schrijver,
1995, for comprehensive treatments to Schrijver, 1986 and Nemhauser
and Wolsey, 1988, and for a textbook Wolsey, 1998.

Combinatorial Optimization and Linear Programming. The
subjects of polyhedral combinatorics are, in general, (linear) combinato-
rial optimization problems of the following kind. Let U be a finite set,
c € RV an objective function vector, and let a subset F C 2U of the
subsets of U be specified, the feasible solutions. The objective function
value of a feasible solution F' € F is ¢(F) = ), .y cu- The problem we
are interested in is to find a feasible solution Fyy; € F with

(1.1) c(Fopt) = min{c(F) : F € F} .

In the light of the formulation (L) (see Section 1.), it is clear that the
QAP falls into this class.

Using the concept of the incidence vector x! of a feasible solution
F € F defined via

r_ )1 ifueF
Xu = 0 otherwise

(i.e., ¥ is the characteristic vector of F C U), solving (1.1) is equivalent
to finding Fype € F with
ey fort = min{cTXF FeF},

i.e., equivalent to the task of minimizing a linear function over a finite set
of vectors. This is equivalent (forgetting for a moment the minimizing
element that we also want to find) to minimizing that linear function
over the convex hull

Pr = conv{x" : F € F}

:{Z)\FXF:Z)\le,/\FEOforallFE}"}

FeF FeF

of these vectors, called the associated polytope to that combinatorial
optimization problem.
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The background for polyhedral combinatorics is a theorem found by
Minkowski, 1896 and Weyl, 1935, who proved that a subset of a vector
space R” is the convex hull of a finite set of vectors if and only if it is
the bounded solution space of a finite system of linear equations and
inequalities. Hence, (writing every equation as two inequalities) a finite
system Ax < b of linear inequalities exists such that

Pr={z cRY: Az < b}

holds.

Polyhedral combinatorics can be described as the discipline that tries
to find such systems (called linear descriptions) for special polytopes
arising from combinatorial optimization problems in the way described
above, and to exploit these systems in order to derive structural insights
into the problems they describe as well as algorithms to solve them.
Once a linear system for a given problem is found, the theory of linear
programming (for introductions see, e.g., Chvital, 1983; Padberg, 1995)
provides the tools for its exploitation in the above sense.

Linear programming deals with optimizing linear functions over (fi-
nite) systems of linear equations and inequalities. One of its central
results is the strong duality theorem, stating that the linear programs

min c'z
s.t. Az < b
and
max by
s.t. ATy = ¢
y 2 0

(called dual to each other) have the same optimal solution value (if
both optimal values exist). If one succeeds in describing the polytope
associated with a combinatorial optimization problem by a system of
linear equations and inequalities, then the strong duality theorem of
linear programming usually leads to a “short certificate” in the sense
of Edmonds, 1965a and Edmonds, 1965b, i.e., the guarantee that for
an optimal solution to the problem there is a polynomially sized proof
of its optimality. In other words, the corresponding decision problem
(supposed to be contained in N'P) is contained in NP N co-NP.

In fact, in many cases, finding such a linear description even yields that
the combinatorial optimization problem under investigation is solvable in
polynomial time. This is due to the work of Grotschel et al., 1981, Karp
and Papadimitriou, 1982 and Padberg and Rao, 1980. After Khachiyan,
1979 had shown that the ellipsoid method can be used to solve linear
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programs in polynomial time, they extended this result by proving that
a linear program
min 'z

s.t. Az < b

can basically be solved in time depending polynomially on the running
time of a separation procedure. A separation procedure for a (maybe
only implicitly given) linear system Az < b finds for every point z* an
inequality in that system that is violated by z* if one exists and otherwise
asserts that z* satisfies the whole system, i.e., it solves the separation
problem for the system Az < b.

Thus, finding an arbitrarily large complete linear description for a
polytope associated with some combinatorial optimization problem and
proving that the separation problem for this system is polynomially solv-
able (in the input size of the original problem) immediately yields that
the optimization problem is polynomially solvable, too. In fact, also the
opposite direction is true (see Grotschel et al., 1988). For every polyno-
mially solvable combinatorial optimization problem the separation prob-
lem belonging to a complete linear description of the associated polytope
is solvable in polynomial time. These results are usually known as the
(polynomial) equivalence of optimization and separation.

Proving that the underlying combinatorial optimization problem is
polynomially solvable via showing that the associated linear programs
are solvable in polynomial time is only one possibility that opens up
if one succeeds in describing the respective polytope completely by a
linear system. Another one might be derived directly from the strong
duality theorem, if the dual linear program can also be interpreted as
some combinatorial optimization problem. Such a combinatorial min-
max relation often leads to combinatorial algorithms for the investigated
problems.

Hence, for several reasons, there is a strong interest in finding linear
systems that describe polytopes coming from combinatorial optimization
problems. Several beautiful techniques have been developed for this
purpose, e.g., the concepts of total unimodularity, total dual integrality,
or the theory of blocking- and anti-blocking polyhedra.

However, we do not concentrate here on these parts of polyhedral
combinatorics, since pursuing the goal of finding “useful” complete linear
descriptions of the polytopes associated with the QAP (or any other N'P-
hard combinatorial optimization problem) is not very promising. This
is due to the above remark that finding such a description usually yields
a “good characterization” of the underlying problem, i.e., it would lead
to NP = co-N'P in our case, what is not to expect. In fact, Karp and
Papadimitriou, 1982 proved that, unless NP = co-A/P holds, no linear
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description of a polytope associated in the above way with an AP-hard
combinatorial optimization problem can exist with the property that for
every inequality in the description its validity for the whole polytope can
be proved in time polynomially depending on the size of the problem.
Consequently, a “useful” description of the linear system describing a
polytope coming from such a problem is unlikely to exist.

It follows from the previous discussion that we can only expect o find
partial linear descriptions of the polytopes associated with the QAP.
Notice that the “impossibility” of finding complete descriptions of poly-
topes coming from N P-hard problems is only due to the inequalities.
From the complexity point of view, there are no reasons against finding
a complete equation system for such a polytope, i.e., a set of equations
whose solution space is precisely the affine hull of the polytope.

What is a partial description good for? The aim of finding (as tight
as possible) partial descriptions of polytopes coming from A P-hard op-
timization problems is the computation of lower bounds (in case of a
minimization problem) on the (yet unknown) optimal solution value of
an instance. Lower bounds are very important tools in combinatorial
optimization at all (regardless of polyhedral combinatorics). One rea-
son for their importance is that they allow to give quality guarantees
for feasible solutions that might have been obtained by heuristics, i.e.,
algorithms that do not necessarily give optimal solutions. Furthermore,
they can be incorporated into implicitly enumerative algorithms like,
e.g., branch-and-bound methods. There they can, applied to a problem
defined on a subset of the solutions F, give the guarantee that the over-
all optimal solution is not contained in that subset, and hence, one does
not have to search this subset.

By solving the linear programs arising from a partial description, one
clearly obtains lower bounds for the respective problem. However, usu-
ally also the partial descriptions contain exponentially many inequalities
that cannot be handled by any linear programming solver in praxis. The
way out is to develop separation procedures similar to the subroutines
mentioned in the context of the ellipsoid method, which try to find for
a given point z* inequalities in the partial description that are violated
by z*, i.e., which cut off z*. Such inequalities (or more precisely, the
boundary hyperplanes of the halfspaces defined by them) are called cut-
ting planes.

Now, one starts by solving a small linear program containing only
some inequalities from the partial linear description. Often one takes an
integer programming formulation here, i.e., a set of inequalities whose in-
teger solutions are precisely the incidence vectors of the problem. After
the linear program is solved, one checks, if, by chance, the resulting opti-
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mal solution vector xz* is an incidence vector of a feasible solution F' € F.
If this happens to be true, then, clearly, F' must be an optimal solution.
If the solution vector is not an incidence vector, then one calls the sepa-
ration procedure in order to find inequalities that are violated by z*. If
the procedure is successful, then the detected inequalities are added to
the linear program, which is resolved, potentially giving a better bound.
Iterating this process, one obtains a cutting plane algorithm for com-
puting lower bounds for the problem. A branch-and-bound algorithm
using this kind of lower bounding procedure is called a branch-and-cut
algorithm.

If the pure cutting plane bounding procedure ends already with a
bound that guarantees a known feasible solution to be optimal, one has
obtained a very nice result, namely, a short, i.e., polynomially sized, cer-
tificate for the optimality of that solution. This is due to the fact that
the final linear program of the cutting plane run provides a proof for
optimality, in this case, and linear programming theory yields that one
can remove equations and inequalities from every linear program such
that the remaining linear program still has the same optimal solution
value and its number of constraints does not exceed its number of vari-
ables. Hence, although the cutting plane algorithm may have run for a
very long time, it might yield (if one is lucky) after all a short certificate
either for the optimality or at least for a certain quality of the known
solution (see, e.g., Jiinger et al., 1994 for provably good solutions for the
example of the traveling salesman problem).

Due to efficiency reasons, one desires in particular to find non-redun-
dant (partial) linear descriptions. For the equations in such a partial
description this means that one wants to avoid that any among them is a
linear combination of some others. For the inequalities analogous redun-
dancies coming from linear combinations with nonnegative coefficients
for inequalities (and arbitrary ones for equations) should be excluded.
The questions concerning redundancies in the (partial) linear descrip-
tions are strongly related to the geometry of the polytope associated
with the combinatorial optimization problem. They lead to asking for
the dimension of the polytope or for the possibility of proving that a cer-
tain inequality is unavoidable in a complete description of the polytope
(and hence also cannot be redundant in any partial linear description).
This is the point, where polyhedral theory takes over.

Polyhedral Theory. Used in an auxiliary way, only a few aspects of
the theory of polytopes become apparent in the context of our polyhedral
investigations on the QAP. However, the general theory of polytopes is
a fascinating and strongly developing field. For entering this wonderful
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area of mathematics as well as for the proofs of the statements in this
section, we recommend the classical book of Griinbaum, 1967, as well as
Ziegler, 1995 and Klee and Kleinschmidt, 1995.

Polytopes can (that was the central point in the previous section)
equivalently be defined as the convex hulls of finite point sets in R" or as
the bounded solution spaces of finite systems of linear inequalities (and
equations), i.e., as the bounded intersections of finitely many halfspaces
(and hyperplanes) of R”. Two concrete examples are the n-hypercube

Cn =conv {(z1,...,2,) € R" : z; € {0,1}}
:{(avl,...,xn)ER" :0< ;<1 (1§i§n)}

and the standard-(n — 1)-simplez

A,—1 =conv{ey,...,e,}

= {(wl,...,xn) eR"

n
inzl,wiZO(lgign)}
i=1
(see Figure 1.1).

xs z3

T2

8
I\

1 Z1

Figure 1.1 The 3-hypercube and the standard-2-simplex.

Two polytopes P C R* and Q C R™ are affinely isomorphic if there is
an affine map ¢ : R* — R™ (not necessarily an affine transformation)
that induces a bijection between the points of P and Q, or, equivalently,
between the vertices of P and Q. Whenever we say that two polytopes
are isomorphic it is meant that they are affinely isomorphic.

If P C R” is a polytope, then its dimension dim(P) is defined as
the dimension of its affine hull (i.e., the linear dimension of the linear
subspace belonging to aff(P)). If dim(P) = n holds, then P is called full-
dimensional. We call the difference between the dimension of the vector
space where the polytope is defined in and the dimension of the polytope
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the dimensional gap. The dimensional gap equals the minimal number of
equations in a complete equation system for P, i.e., an equation system
having the affine hull of P as its solution space.

If a halfspace

H={zcR":alz <a}
of R" with the boundary hyperplane
B={zeR":a"z =0}

contains the polytope P, then P N B is called a face of the polytope P.
Both the halfspace H as well as the inequality a” z < « are said to define
that face of P. Adding any equation that is valid for the whole polytope
to an inequality that defines a face of it yields another inequality defining
the same face.

By the characterization of polytopes as the bounded intersections of
finitely many halfspaces and hyperplanes, every face of a polytope is a
polytope, again. Notice that both the polytope P itself as well as the
empty set are faces of P. The other faces of P are called proper faces.
If 771 is a face of the polytope P, and F; is a face of Fi, then F5 is also
a face of P.

Faces of P that have dimension 0, 1, dim(P) — 2, or dim(P) — 1 are
called wvertices, edges, ridges, and facets of P, respectively. Facets of
full-dimensional polytopes have the convenient property to be described
by unique (up to multiplications with positive scalars) inequalities. Like
every edge is the convex hull of two uniquely determined vertices, every
ridge is the intersection of two uniquely determined facets. The following
results are very basic for polyhedral theory.

(i) Every polytope is the convex hull of its vertices. If a polytope
is the convex hull of some finitely many points, then its vertices
must be among them (in particular, a polytope has finitely many
vertices).

(ii) The vertices of a face F of a polytope P are precisely the vertices
of P that are contained in F (in particular, every polytope has
only finitely many faces).

(iii) Every polytope is the intersection of all halfspaces that define
facets of it and all hyperplanes it is contained in. If a polytope
is the intersection of some halfspaces (and hyperplanes), then all
halfspaces that define facets of it must be among them.

(iv) Every face of a polytope P is the intersection of some facets of P.
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Point (iii) shows in particular that in any intersection of pairwise
distinct facet defining halfspaces of a polytope there is no redundant
halfspace. In other words, every (partial) linear description of a poly-
tope P that contains (besides the equations) only inequalities that define
(pairwise distinct) facets of P is non-redundant, as long as the equations
in it are non-redundant. Hence, aiming to find non-redundant (partial)
descriptions of polytopes, one should concentrate on facet defining in-
equalities. Clearly, keeping the equation system in the (partial) linear
description non-redundant means that the corresponding matrix should
have full row rank.

There is another important property of facets from the point of view
of polyhedral combinatorics. Once one has found a class of inequalities
contributing to a partial description of the polytope under investigation,
one might (even knowing already that it is non-redundant with respect
to that partial description) ask if it is possible to improve that new
class by, e.g., “playing with the coefficients”. Only the fact that the new
inequalities define facets of the polytope can tell us at which point we do
not have to try to strengthen our inequalities any further, but preferably
continue with the search for completely different ones.

A very convenient fact on polytopes is that a linear function always
attains its minimum (and, clearly, also its maximum) over a polytope in
a vertex of it. This is simply due to the fact that the optimal solution
points for a linear optimization problem defined on a polytope always
constitute a face of the polytope. That is the reason, why in the previous
section we just had to forget the minimizing element for a while, when
we passed from minimizing a linear function over all incidence vectors
to minimizing that linear function over their convex hull.

3. POLYTOPES ASSOCIATED WITH THE
QAP

In our treatment of the QAP we will use a formulation of the problem
in terms of certain graphs — mainly, because this provides us with some
convenient ways to talk about the problem. Since in many application-
driven instances (in particular, this holds for several of the instances
in the QAPLIB, a commonly used set of test instances compiled by
Burkard et al., 1997) the number of objects to be assigned might be
smaller than the number of locations that are available, we will use a
model that deals with n locations and m objects (with m < n). Not
surprisingly, this turns out to be much more efficient than introducing
n—m “dummy-objects” that do not have any interaction with anybody.
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From now on, let M = {1,...,m} be the set of objects and N' =
{1,...,n} the set of locations (with m < n). Let us denote by X"*" ¢
{0,1}™*™ the set of all 0/1-matrices of size m x n that have precisely one
“1” in every row and at most one “1” in every column (corresponding to
the fact that every object has to be assigned to precisely one location,
and every location can receive at most one object). Then the QAP can be
formulated (see (L) in Section 1.) as the task to find X* = (z7;) € A™*"

such that
m n m n

D0 D GammlEh YD il

i,k=1j,l=1 i=1 j=1
becomes minimal, where g;;3; € R are the quadratic costs (we may —
and will — assume g;j;; = 0) and ¢ij € R are the linear costs.

Let Gmn = (Vmn, Emn) be the graph with nodes Vy, , = M x A and

edges

= {0 0) € (57) i 2k 21}

where we denote by (A,:[ ) the set of subsets of a set M that have cardinal-
ity k. We usually denote an edge {(,7), (k,1)} by [7, 4, k,{] (notice that
this implies [¢, j, k,I] = [k,[,%,j]). The sets row; = {(¢,7) : 1 < j < n}
and col; = {(¢,j) : 1 < i < m} are called the i-th row and the j-th col-
umn of Vp, n, respectively. Thus, the graph Gy, , has all possible edges
but the ones that have either both end points in the same row or in the
same column.

By construction, the set X™*" of feasible solutions to our formula-
tion of the QAP is in one-to-one correspondence with the m-cliques in
Gm,n- Now we put weights ¢ € RYmn and d € Rém» on the nodes and
edges, respectively, by letting c(; jy = c¢;; for every node (4, j) € Vi, and
d[i,j,k,l] = Qijki + Qklij for every edge [i,j,k,l] € Empn- Then the QAP
with linear costs c;; and quadratic costs g;jx; is equivalent to finding a
cheapest node- and edge-weighted m-clique in the graph G, ,, weighted
by (c,d).

This formulates the QAP as a (linear) combinatorial optimization
problem in the sense of Section 2. (actually, it is still the same formulation
as (L) in Section 1.). For a subset W C V,,, of nodes of G, let
Emmn(W) be the set of all edges of G, that have both end points in
W. We denote by V' € {0,1}Vm= the characteristic vector of W (i.e.,
o)V =1 if and only if v € W) and by y" € {0,1}¥mn the characteristic
vector of Ep (W) (ie., y2¥ =1 if and only if e € &y, ,(W)). We call

QAP n = conv { (:BC, yc) : C C Vi m-clique in gm,n}
g Rvm,n X Rgm,n
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the QAP-polytope (for QAPs with m objects and n locations). Notice

that we have dim(RVmn» x REmn) = mn + %

Now recall the Koopmans & Beckmann type instances. There quite
often the flows (a;x) or the distances (bj;) are symmetric (meaning that
a;, = ay; holds for all pairs of objects ¢, k or that bj; = b;; holds for all

pairs of locations, respectively). In either case, this implies that
Gijkl t Qriij = aikbji + akibyy = Gukj + qrja

holds for all quadratic costs, yielding

i je,t) = il k)

for all pairs [1, 5, k,1], [i,1,k, j] of edges in our graph formulation. Since
furthermore no clique in G, , can contain both edges [i,7,k,{] and
[i,1,k, j], this suggests that in case of a symmetric instance (i.e., ¢ijr +
klij = Qitkj + qrja holds for all quadratic costs) we can identify each pair
Ylijkl)» YJidk,j) Of variables, which will reduce the number of variables
by roughly 50%. ) R

In order to formalize this, we define a hypergraph G, n» = Vi n: Emon)
with the same set of nodes as our original graph G,,, has and with
hyperedges

= {160 (0L )y € () i kg 21

A hyperedge {(4,7), (k,1), (i,1), (k,§)} € Emnn is denoted by (3,4, k,1).
Thus, any hyperedge is the union

(1,5, k, 1) = [1, 5, k, [ U [i, 1, k, 5]

of two edges from G, ,,. We call two edges whose union gives a hyperedge
mates of each other. Notice that we have

<Z7]7k7l>:<k7l’Z7]>:<Z’l7k7j>:<k’j7z7l) *

For an edge e € &, we denote the hyperedge belonging to e (and
to its mate) by hyp(e). For any subset W C V,,,, define &,,,(W) =
{hyp(e) : e € & n(W)}. Thus, if C C Vy, p is a clique of Gy, , (which we
will also call a clique of C;mn) then émn(C) consists of all hyperedges in
C;m,n that contain two nodes of C (since C is a clique, these two nodes
then must precisely be the intersection of that hyperedge with C, and
they must be “diagonal” in the “rectangle” formed by the end nodes
of e and its mate). Finally, we denote for every subset F' C fjm,n of
hyperedges the characteristic vector of F by 2%
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Now, we define the geometric structure that is especially suitable for
symmetric QAPs, the symmetric QA P-polytope:

SQAP,.n = conv { (xc, zc) : C C Vi n m-clique in Qm,n}

C RVmon x Rémon

We have dim(RVmn x Rémn) = mn + w.

Next we will give integer programming formulations for both the gen-
eral and the symmetric model. Recall that for a vector v € R! (I
some finite set) and some subset J C I we denote v(J) = > ;. ;v;.
We will need some further notations. For i,k € M and j € N let
((4,7) : rowy) = {[4,7,k,1] : 1 € N'\ {j}} be the set of all edges connect-
ing (i,7) with the k-th row, and let AEZ”JJ)) = {{i, 4,k 1) : L e N\ {j}}
be the set of all hyperedges containing both nodes (4, j) and (k,j). The
proofs of the following theorems can be found in Kaibel, 1998 (for the
symmetric version) as well as in Kaibel, 1997 (for both versions). Fig-
ure 1.2 illustrates equations (1.4) and (1.9). We usually draw hyperedges
just by drawing the two corresponding edges. Notice that in our draw-
ings a solid line or a solid disc will always indicate a coefficient 1, while
a dashed line or a gray disc stand for a coefficient —1.

Theorem 1 Let 1 <m < n.

(i) A vector (z,y) € RVmn x Rémmn s a vertex of QAPmpn, i-e., the
characteristic vector of an m-clique of G n, if and only if it sat-
isfies the following conditions:

) z(row;) =1 (ieM)

) z(coly) <1 (4 €N)

) —zaj) +y((4,5) : rowg) =0 (i,ke M,i #k,j €N)
) Ye > 0 (e € gm,n)

) (

(
(
(
(
( Ty € {0,1} (v € Vi)

N e )
S O W N

(ii) A wector (x,z) € RVmn x Rémn s a vertez of SOQAP,p, i.e.,
the characteristic vector of an m-clique of Gp pn, if and only if it
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satisfies the following conditions:

(1.7) z(row;) =1 (ieM)
(1.8) z(col;) <1 (j €N)
(1.9)
—@ig) — Ty + 2 (AEQQ)) - (i,k € M,i < k,j€N)
(1.10) zn >0 (h € &mnn)
(1.11) Ty, €{0,1} (v € Vnn)

Figure 1.2 Equations (1.4) and (1.9).

Once one starts to investigate QAP , and SQAP,, , closer, it turns
out very soon that the structures of the polytopes are quite different for
the cases m <n —2 and m € {n — 1,n}. In fact, the case m <n —2is
much nicer to handle than the other two. Here, we just want to give a
result that shows that actually the case m = n — 1 reduces to the case
m = n, thus leaving us with only one “less convenient case”. Again the
proof of the theorem can be found in Kaibel, 1997 and Kaibel, 1998.

Theorem 2 For n > 2, QAP,_1, is affinely isomorphic to QAP p,
and SQAP,_1,, is affinely isomorphic to SQAP, 1.

The affine maps from R}jﬂ,n x Rénn to RV»-1n x Rén-12 and from
RV x REwn to RVe-1.n x RE»-1.n giving the isomorphisms in the theorem
are quite simple. They are just the canonical projections that “forget” all
coordinates belonging to nodes in row,, or to (hyper)edges that intersect
TOW,,.

We conclude this section by some results on QAP , and SQAP,, 5,
which can be found in a more detailed version (in particular including
proofs) in Kaibel, 1997, Jinger and Kaibel, 1997b, Jiinger and Kaibel,
1996, and Kaibel, 1998.
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It is rather obvious that for m' < m < n the polytopes QAP ,, and
SQAP,, ,, arise as “canonical projections” of the polytopes QAP ,
and SQAP, n, respectively. This implies that whenever an inequality is
valid (facet-defining) for QAP,, , or SQAP,, ,, and it has all its nonzero
coefficients within the first m' rows, then the corresponding inequality
is valid (facet-defining) for QAP ,, or SQAP, ,,, respectively.

But also QAP , and SQAP,, , have a relationship; the latter is an
affine image (not under an isomorphism) of the first. In particular, if
an inequality is valid for QAP,, , and it is symmetric in the sense that
each two edges [i,7,k,1], [i,1,k,j] have the same coefficient, then the
inequality induces in the obvious way a valid inequality for SQAP, .
Let us call a face of QAP,,,, symmetric if it can be defined by a sym-
metric inequality. Then it turns out that a symmetric face F' of QAP ,,
(which induces a face 0 SQAP,, 5, as indicated above) actually induces
a facet of SQAP, ,, if and only if all faces of QAP ,, that properly con-
tain F' are not symmetric. More generally, the face lattice of SQAP, ,,
arises from the face lattice of QAP ;, by deleting all faces that are not
symmetric.

These various connections between the different polytopes we have
to consider give several possibilities to carry over results between them.
However, there are also interesting connections to polytopes “outside the
QAP world”. In particular, it turns out that QAP ,, can be viewed as a
certain face of a cut polytope. This rises hope that one might take profit
from the rich knowledge on cut polytopes (see, e.g., Deza and Laurent,
1997) for the investigations of the QAP-polytopes. In fact, this turns
out to be true, as we will see in Section 5..

Another connection to different kinds of polytopes is the following.
It turns out that several well-known polytopes like the traveling sales-
man polytope or the linear ordering polytope can be obtained as quite
simple projections (just “forgetting coordinates”) of QAP ,,. This phe-
nomenon corresponds to the possibility to obtain problems like the trav-
eling salesman problem or the linear ordering problem as “immediate
special cases” of the QAP (which explains to some extent the astonish-
ing resistance of the QAP against all attacks to practically solve it).

4. THE STAR-TRANSFORMATION

Having defined all these polytopes as convex hulls of certain charac-
teristic vectors, according to the principles of polyhedral combinatorics
explained in Section 2. the next (and crucial) step now is to find (partial)
linear descriptions of the polytopes. That means, we aim for finding sys-
tems of linear equations whose solution spaces are the affine hulls of the



17

polytopes as well as linear inequalities that are valid for the polytopes
and, preferably, even define facets of them. While showing validity of
equations and inequalities will always be done by ad-hoc arguments in
our case, the proofs that the equation systems that we propose indeed
completely describe the affine hulls or that some inequalities indeed de-
fine facets (i.e., faces of largest possible dimension) require some more
elaborate techniques.

In both cases (equation systems and inequalities) we have to solve
tasks of the following type: given X C {0,1}* and a system Az = b of
linear equations that are valid for X (with A € Q** having full row
rank and b € ') prove that aff(X) = {z € Q° : Az = b} holds.

In order to prove this, we proceed as follows. First, we identify a
subset B C {1,...,s} of variable indices with |B| = r such that the
columns of A that correspond to B (called a basis of A) form a non-
singular matrix. Then, by a dimension argument, it suffices to show

aff({e; : i € BUX) =Q .

Our way to prove this equation then is to construct all unit vectors
e1,---,es € Q° as linear combinations of {e; : i € B} U X.

The crucial task in the proofs thus is to construct suitable linear
combinations of certain vertices, i.e., of characteristic vectors of certain
feasible solutions. If one starts to play around with vertices of the poly-
topes we have introduced in Section 3., one soon will find that this is
quite inconvenient, because it turns out to be very hard to obtain vectors
with a small and well-structured support (i.e., set of indices of nonzero
components).

However, this is not a problem that is inherent to the geometry of
the polytopes or even to the QAP itself. It is only a matter of the
actual coordinate representation that we have chosen for modeling the
problem. And indeed, it turns out that one can find different coordinate
representations of the QAP-polytopes (in different, lower dimensional,
ambient spaces) that make it much more comfortable to build linear
combinations from the vertices.

The key is the observation that the last column (or any single col-
umn) in the (hyper-)graph model contains redundant information on
the feasible solutions: the intersection of an m-clique C' C Vp, , with
the first n — 1 columns already determines the intersection of C' with
the last column. In case of m = n even the last column and the last
row (or any single column and any single row) are redundant in this
sense. This suggests to remove the last column (and the last row in case
of m = n) from the model. If we remove the last column an m-clique
C C V,,,, may become either an (m — 1)- or an m-clique in Vy, 1
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(depending on whether C' intersects the last column or not). If m = n
holds and we remove both the last column and the last row, then an
n-Clique C C V,, ,, becomes an (n — 1)- or an (n — 2)-clique in Vy,_1 1
(depending on whether (n,n) is contained in C or not).

For the QAP-polytopes, removing nodes and (hyper-)edges corre-
sponds to orthogonal projections that “forget” the coordinates belonging
to the nodes and (hyper-) edges that are removed. Since we just want
to find different coordinate representations of the polytopes (with their
geometry unchanged), we must ensure that these projections actually
give affine isomorphisms of the polytopes.

For m < n* define the polytopes

QAP:n,n* —

conv{ (wc,yc) : C C Vyypr m- or (m — 1)-clique in gm,n*}

and

SQA,P;kn’n* —
conv{ (zc,zc) : C C Vpypr m- or (m — 1)-clique in C;m,n*} ,

which are objects in RVmn»* x Rémn* and RVmn* x Rémn* | respectively.
The following result was shown (for the different versions of QAP-po-
lytopes) in Jinger and Kaibel, 1997b, Jinger and Kaibel, 1996, and
Kaibel, 1997.

Theorem 3 Let 3 <m <mn.

(i) The polytopes QAP n and SQAP ., are affinely isomorphic to
the polytopes QAP;, , 1 and SQAP}, ,,_;, respectively.

(i) The polytopes QAP and SQAP, , are affinely isomorphic to
the polytopes QAP 1 ,_1 and SQAP},_, 1, respectively.

The change of coordinate representation described in Theorem 3 is
called the star-transformation. What have we gained by it? As desired,
we have gained the possibility to obtain easily such simple vectors as
the ones shown in Figure 4. as linear combinations of vertices. And in
fact, these types of vectors are the basic ingredients for the proofs of all
results coming up in Section 5..

Another advantage of applying the star-transformation to the QAP-
polytopes is that the “dimensional gaps” between their dimensions and
the dimensions of the spaces they are located in has become much
smaller. This leads to much smaller systems of equations describing
the affine hulls. In fact, it turns out that the affine hulls of QAP ..
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Figure 1.3 Some very simple vectors that can easily be obtained as linear combina-
tions of vertices of QAP}, .

and S Q.Aan,n* can be described by very simple equation systems, which
in particular have very convenient bases (see Jiinger and Kaibel, 1997b,
Jinger and Kaibel, 1996, and Kaibel, 1997).

5. FACIAL DESCRIPTIONS OF
QAP-POLYTOPES

Let us first consider the affine hulls of QAP,,, and SQAP,, ,, i.e.,
the (linear) equations holding for these polytopes. In case of m < n —2,
it turns out that the equations in the integer programming formulations
of Theorem 1 do already suffice.

Theorem 4 Let1 <m <n—2.

(i) The affine hull aff(QAP,, ) is the set of solutions of the equa-
tions (1.2) and (1.4). If one removes for every pair i,k € M one
of the equations in (1.4) then one obtains an irredundant system
of equations describing aff( QAP ). In particular, we have:

1
dim(QAP,, ;) = dim(RVmn x REmn ) — <’m2n —mn— 5m2 + gm>
(it) The affine hull aff(SQAP,, ) is the set of solutions of the equa-

tions (1.7) and (1.9). Here, in the symmetric case, the equations
already form an irredundant system. In particular, we obtain:

5 1 1
dim(SQAP ;) = dim(RV™n x REmm) — <§m2n — gmn+ m)
The proofs of both parts of the theorem can be found in Kaibel, 1997.

Now let us turn to the case m = n. Here, one immediately finds that
the inequalities (1.3) and (1.8) (“z(col;) < 17) actually must be satisfied
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with equality by the vertices of the polytopes QAP , and SQAP,, ;.
Moreover, of course also the “column versions” of the equations (1.4)
and (1.9) are satisfied by all vertices of the respective polytopes. In
fact, it turns out that by these observations we have collected enough
equations to describe the affine hulls of QAP,, ,, and SQAP,, ,,.

Theorem 5 Letn > 1.

(i) The affine hull aff(QAP, ) is the set of solutions of the equa-
tions (1.2), (1.4), and

(1.12) z(colj) =1 (JeN)
(113) —Z(4,5) + y((Z,]) : COll) =0 (Za.]al € Na] 7é l) :
We have

dim(QAP, ) = dim(R™" x RE»») — (2n® — 5n” + 5n — 2)

(i) The affine hull aff(SQAPy, ) is the set of solutions of the equa-
tions (1.7), (1.9), and

(1.14) z(colj)) =1 (jeN)
(L15)  —agy) —zan+2 (A08) =0 GileN,j<) .

We have

dim(SQAP,, ;) = dim(RV»" x ]Ré"’") — (n® —2n% +2n - 1)

The result of Part (i) was also proved by Rijal, 1995 and Padberg
and Rijal, 1996. The dimension of QAP,, ,, (without an explicit system
of equations) was already computed by Barvinok, 1992 in his investiga-
tions of the connections between polytopes coming from combinatorial
optimization problems and the representation theory of the symmetric
group. For a proof in our notational setting see Jiinger and Kaibel,
1997b, where one may also find information which equations have to be
removed in order to obtain an irredundant system. The proof of the
symmetric version (Part (ii)) is in Jiinger and Kaibel, 1996. Unlike with
the case m < n — 2, the system given in the theorem is redundant also
in the symmetric case. How to obtain an irredundant system can be
found in Kaibel, 1997. Notice that Padberg and Rijal, 1996 already
conjectured Part (ii).

Now that we know everything about the equations that are valid for
QAP and SQAP,, p, let us turn to inequalities. We start with the
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“trivial inequalities” (i.e., the bounds on the variables). If we state that
some inequality is “implied” by some others then this will always mean
that all solutions (not only the integral ones) to the other inequalities
satisfy also the inequality under inspection.

Theorem 6 Let 3 <m <mn.
(i) The inequalities
Ye > 0 (e € cC:m,n)
define facets of QAP p.
(7i) The inequalities

Ty >0 (v € Vin)
zy <1 (v € Vi)
Ye < 1 (e € Emn)

are implied by the equations (1.2), (1.4), and the nonnegativity
constraints y > 0 on the edge variables.

(iii) The inequalities

Ty >0 (v € Vinn)

)

~

zp >0 (h € gm,n)
define facets of SQAP, 5.
(iv) The inequalities

Zy <1 (v € Vmn)
zp <1 (h € gm,n)

are implied by the equations (1.7), (1.9), and the nonnegativity
constraints £ > 0 and z > 0 on the node and hyperedge variables.

The proof of the theorem can be found in Kaibel, 1997. The case
m = n is also in Jinger and Kaibel, 1997b and Jiinger and Kaibel, 1996.
Parts (i) and (ii) for the case m = n have also been proved by Rijal,
1995 and Padberg and Rijal, 1996.

Let us now consider other inequalities for m < n—2. Although in this
case the “column versions” (1.13) and (1.15) do not hold for QAP,, ,
and SQAPy, », respectively, the corresponding inequalities

(116) —Z(4,5) +y ((Zaj) : COll) <0 (Z € M,jal € Na] 7é l)
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and
(117) =z 5~z + 2 (Agj{))) <0 ((eEMjleN,j<I)

are valid.

There is one more interesting class of inequalities that in case of m =
n are valid as equations (and thus implied by the equations we have
described above). For j,I € N (j # 1) let us denote by (col; : col;) the
set of all edges connecting column j with column /, and let (col; : col;) =
{hyp(e) : e € (col; : col;)} be the set of hyperedges connecting column j
with column /. Then the inequalities

(1.18) z (col; U col;) — y (col; : col;) <1 (J,leN,j <)
and
(1.19) z (col; U col;) — z ({col; : col)) < 1 (J,leN,j <)
are valid for QAP,, , and SQAP,, p, respectively.
Theorem 7 Let4 <m <n—2.

(i) The inequalities (1.16) and (1.18) define facets of QAP m 1.

(ii) The inequalities (1.3) are implied by the inequalities (1.18) and the
equations (1.2) and (1.4).

(11i) The inequalities (1.17) and (1.19) define facets of SQAP .

(iv) The inequalities (1.8) are implied by the inequalities (1.19) and the
equations (1.7) and (1.9).

The proofs of all parts of the theorem are in Kaibel, 1997.

The final class of inequalities that we will consider is the class of boz-
inequalities. This was the first large (i.e., exponentially large) class of
facet-defining inequalities discovered for the QAP-polytopes (and it is
still the only one that is known). A large part of its importance, however,
is not due to this theoretical property, but due to the fact, that using
some of these inequalities as cutting planes one can indeed significantly
improve the lower bounds obtained by classical LP-based bounding pro-
cedures — in several cases even up to the possibility to compute optimal
solutions by a pure cutting plane algorithm (see Section 6.).

The starting point is the following trivial observation: if v € Z is
an integer number then (v — 1) > 0 must hold. Now suppose that
S,V C Vp,, are disjoint subsets of nodes and that 3 € Z is an arbitrary
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integer. Let (z,y) € QAP be a vertex of QAP,, ,. By the above
observation the quadratic inequality

(1.20) (#(T) = 2(8) = B) («(T) — =(S) = (B-1)) 20

holds. But since (z,y) is the characteristic vector of the nodes and edges
in some m-clique C C V, , of Gy, , we have z(S)z(T) = y(S : T) and
z(R)z(R) = z(R) +2y(R) for every R C Vp, , (with y(R) = y(Emn(R)),
which allows us to rewrite the quadratic inequality into the following
linear ST-inequality:

BB-1)
2

It is obvious from (1.20) that the vertices of the face of QAP ,, defined
by this ST-inequality are precisely the characteristic vectors of those
m-cliques C C V. ,, which satisfy

(1.21)  —pa(S) + (B = D)a(T) —y(S) —y(T) +y(5: T) <

IcCNT|—|CnS|e{p,B—-1} .

As mentioned in Section 3., QAP,, , can be viewed as a certain face of
the cut-polytope (associated with the complete graph on mn + 1 nodes).
We just mention that the ST-inequalities correspond to certain hyper-
metric inequalities for the cut-polytope. For details on this connection
we refer to Jinger and Kaibel, 1997a and Kaibel, 1997, and for answers
to nearly every question on the cut-polytope (like “what are hypermetric
inequalities?”) and related topics to Deza and Laurent, 1997.

In the light of the remarks at the end of Section 3. the symmetric ones
among the ST-inequalities are of special interest. Here is a possibility
to choose S and T such that the resulting inequality is symmetric. Let
P,Po C Mand Q1,Q2 C N with PPN P, = & and Q1N Q2= and
take S = (P1 X Ql) U (P2 X QQ) aswellas T = (P1 X Qg) U (P2 X Ql) An
ST-inequality arising from sets S and T of this type is called a 4-box-
inequality (see Figure 1.4). In Jinger and Kaibel, 1997a the following
result is proved.

Theorem 8 An ST-inequality is symmetric if and only if it is a 4-boz-
inequality.

If one of the sets P, P5, Q1, or Q2 is empty, then we call the corre-
sponding 4-box-inequality a 2-boz-inequality. If P, or P, is empty and
Q1 or (Y7 is empty, the 4-box-inequality is a I1-boz-inequality. While the-
oretical investigations of the whole class of 4-box-inequalities seem to
be too difficult, the 2-box-inequalities are studied extensively in Kaibel,
1997. In particular, the facet-defining ones among them are identified;
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Figure 1.4 The node sets of ST-inequalities in general, of 4-box inequalities, and
of 4-box inequalities after suitable permutations of rows and columns. The set S is
always indicated by the gray parts, the set T by the black ones.

it turns out that most of them define facets of QAP,,,. Rather than
stating the result in its whole generality, we prefer to give a theorem
that shows a large class of 1-box-inequalities that are facet-defining for
QAP (and thus, for SOAP,, ). In particular, this class contains
the inequalities that are used in Section 6. for computing lower bounds.
The proof of the theorem is contained in Jiinger and Kaibel, 1997a.

Theorem 9 Let 7 < m <mn. Let PC M and Q C N generate T' =
P x Q C Vin, and let f € Z be an integer number such that

m 32>2,
|Pl,|Q| > B+ 2,
|P|,|Q| <n—3, and

|P|+|Q <n+pB~5
hold. Then the 1-boz inequality

BB -1)

(8- 1)a(T) —y(1) < 25

defines a facet of QAP and the corresponding 1-boz-inequality

BB -1

(8~ 1)a(T) - «(T) < 25

defines a facet of SQAPy p-
Before closing this section, we want to point out that the proofs of the

results presented here heavily rely on the techniques described in Sec-
tion 4. and on the various connections between the different polytopes
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arising from projections mentioned in Section 3.. While these projec-
tions are very helpful for avoiding to do work twice, the proofs that
have to be done from the scratch are extremely simplified by the star-
transformations. Even to prove the statements on the dimensions and
the trivial facets of the polytopes (at least in case of m = n) are very
tedious without using the star-transformation (see Rijal, 1995). For the
more complicated situations, in particular with the box-inequalities, the
proofs seem to be impossible without exploiting the star-transformation
— at least for the author.

6. CUTTING PLANE ALGORITHMS FOR
QAPS

The insight into the geometry of the different QAP-polytopes de-
scribed in the previous section can be used to compute lower bounds or
even optimal solutions in the way explained in Section 2.. In Jinger and
Kaibel, 1997a, Kaibel, 1998, and Kaibel, 1997 experiments with cutting
plane algorithms exploiting the results on the facial structures of the
QAP-polytopes are described. Here, we just report on some of the ex-
perimental results in order to show that the polyhedral investigations
of the QAP indeed help to improve the algorithmic solvability of the
problem.

The cutting plane code that we have implemented is suited for sym-
metric instances and can handle both, the m = n as well as the m < n—2
case. In the first case, the initial LP consists of a complete equation sys-
tem plus the nonnegativity constraints on the variables. In the second
case, the initial LP contains, again, a complete system of equations,
the nonnegativity constraints on the variables, and, additionally, the in-
equalities (1.17) and (1.19). Of course, one can transform every instance
with m < n — 2 into an instance with m = n by adding “dummy ob-
jects”. In Kaibel, 1998 it is shown that for such instances the bounds
obtained from the initial LPs with and without dummy objects coincide.
The bound from the initial LP in case of m = n is (empirically) slightly
weaker than the corresponding bound in the non-symmetric model (see
Jinger and Kaibel, 1996), where the latter LP is equivalent to the linear
programming relaxation of (AJ) (see Section 1.).

The algorithm first sets up the initial LP, and then solves it to obtain
a lower bound on the optimal value of the QAP. If the LP-solution
happens to be an integer vector (i.e., a 0/1-vector in this case), then, by
Theorem 1, it is the characteristic vector of an optimal solution to the
problem. Otherwise, the algorithm tries to separate the (fractional) LP-
solution from the feasible solutions by searching for 4-box inequalities
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that are violated by it. If such inequalities are found (which is not
guaranteed), then they are added to the LP, a new (hopefully better)
lower bound is computed, and the process is iterated for a specified
number of rounds.

Actually, our separation algorithm is quite simple. Since some initial
experiments showed that 1-box inequalities with 8 € {2,3} seem to be
most valuable within the cutting plane algorithm, we have restricted to
this type of inequalities in our experiments. Because there seems to be no
obvious way to solve the separation problem (for this class of inequalities)
fast and exactly (i.e., either to find violated inequalities or to affirm that
no violated inequality exists within the class), we have implemented a
rather simple heuristic for it. We just guess 1-box inequalities randomly
and then try to increase their left-hand-sides (with respect to the current
fractional solution) by changing the box in a 2-opt way. Actually, the
experiments show that usually this primitive procedure detects quite
a lot of violated inequalities. We then choose the most violated ones
among them and add them to the LP. This way, about 0.2 to 0.4 times
the number of initial constraints are added to the LP in every iteration
of the cutting plane procedure. In order to control the size of the LP we
also remove inequalities if they have been redundant (i.e., non-binding
for the optimal LP-solution) for several cutting plane iterations in a row.
For details on the algorithm we refer to Kaibel, 1997, Junger and Kaibel,
1997a, and Kaibel, 1998.

The LPs have been solved by the barrier method of the CPLEX 4.0
package. Using the (primal or dual) simplex algorithm did not pay off at
all, which is due to the very high primal and dual degeneracy of the LPs.
This is very much in accordance with the computational experiments
performed by Resende et al., 1995 with LPs that are equivalent to our
initial LP in the non-symmetric m = n case. All our experiments were
carried out on a Silicon Graphics Power Challenge machine using the
parallel version of the CPLEX barrier code on four processors.

Table 1.1 shows the results for all instances from the QAPLIB with
m = n < 20 (they are all symmetric). For all these instances, optimal
solutions are known (and published in the QAPLIB). The table gives
the bounds obtained from the initial LP as well as the ones obtained by
the cutting plane procedure. Notice that, since all objective functions
are integral, we can round up every bound to the next integer number.
The columns titled qual give the ratios of the respective bound and
the optimal solution value. The running times for the cutting plane
algorithm are specified in seconds. The column titled iter shows the
number of cutting plane iterations, i.e., the number of LPs solved to
obtain the bound.
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The results show that the box-inequalities indeed are quite valuable
for improving LP based lower bounds. For several instances the bounds
even match the optimal solution values, and for most of the other in-
stances, a large part of the gaps between the bounds obtained from
the initial LPs and the optimal solution values is closed by adding box-
inequalities.

While the quality of the bounds obtained from the cutting plane al-
gorithm is quite good, for many instances the running times are rather
large. We will address this point at the end of this section. But let us
first turn to the experiments with instances where m < n — 2 holds. Ta-
ble 1.2 and 1.3 report on the results obtained by the cutting plane code
on the esc16- and esc32-instances (with n = 16 and n = 32, respec-
tively) from the QAPLIB, where here the columns titled boz contain the
bounds computed by the cutting plane code. Since for these instances
both the flow- as well as the distance-matrix are symmetric and integral,
the optimal solution value must be an even integer number. Thus we
can round up every bound to the next even integer.

For the esc16-instances, the column titled opt contains the optimal
solution values and the column titled speed up contains the quotients of
the running times with and without dummy objects. All these instances
were solved to optimality for the first time by Clausen and Perregaard,
1997, who used a Branch & Bound code running on a parallel machine
with 16 i860 processors. The column titled CIPer shows the running
times of their algorithm. The cutting plane code finds for all these
instances (except for esc16a) the optimal solution value within (more
or less) comparable running times.

For the esc32-instances the cutting plane code always produces the
best known lower bounds. The column titled upper contains the values of
the currently best known feasible solutions and the column titled prev Ib
contains the previously best known lower bounds. The instances esc32e,
esc32f, and esc32g have been solved to optimality for the first time by
a parallel Branch & Bound code of Bringger et al., 1996. For the other
instances (except for esc32c) the cutting plane algorithm improves the
previously best known lower bounds, where the improvement for esc32a
is the most significant one. The running times that have a “x” in front
are not measured exactly due to some problems with the queuing system
of our machine.

While all these experiments show that the polyhedral investigations
indeed pay off with respect to the goal of the computation of tight lower
bounds, the running times of the cutting plane algorithm are (for most
of the instances) quite large. In order to obtain a “practical” bound-
ing procedure (that, in particular, might be incorporated into Branch
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& Bound frameworks) the algorithm has to be speeded up significantly.
One approach into this direction is to implement more elaborate separa-
tion strategies. But the potential of this kind of improvements is limited,
since already the initial LPs become really large for larger values of m
and n. For instance, for esc32a the initial LP has 149600 variables and
22553 equations.

One way to reduce the sizes of the LPs is to exploit the fact that
quite often the objective functions are rather sparse. For example, in
case of a Koopmans & Beckmann instance the flow matrix might be
sparse because there are lots of pairs of objects which do not have any
flows between them. Actually, this is true for many instances in the
QAPLIB. For example, e1s19 has a (symmetric) flow matrix, where out
of the 171 pairs of objects only 56 have a nonzero flow.

In our graph model, a pair i,k € M of objects without any flow
between 7 and k has the effect that all (hyper-)edges connecting row i
and row k have objective function coefficient zero. This means that one
might “project out” all variables corresponding to these (hyper-)edges
and solve the problem over the corresponding projected polytope. For
els19 this reduces the number of variables from 29,602 down to 9,937.

Of course, (unlike with the projections used for the star-transforma-
tion) in general the projection will change the geometric properties of
the polytope. Thus, one has to do theoretical investigations of the pro-
jected polytopes depending on the flow graph, i.e., the graph defined on
the objects and having an edge for every pair of objects which does have
some flow. This was suggested already by Padberg and Rijal, 1996. First
results can be found in Kaibel, 1997. Again, lots of results presented in
Section 5. can be carried over by the observation that an inequality that
is valid (facet-defining) for the unprojected polytope immediately yields
a valid (facet-defining) inequality for the projected polytope as long as
the inequality has no nonzero coefficient on a (hyper-)edge that belongs
to a pair of objects which do not have any flow between them. In partic-
ular, for every clique in the flow graph there are a lot of box-inequalities
which are also valid (facet-defining) for the projected polytopes.

In EIf, 1999 some computational experiments with a cutting plane
algorithm working with the “sparse models” are performed. Table 1.4
shows results for the esc32 instances.

Comparing these results with the ones in Table 1.3 one finds that (at
least for the esc32 instances) the running times of the cutting plane
algorithm are reduced substantially by exploiting sparsity of the objec-
tive functions. While this might be paid by a weaker bound (esc32b,
esc32c, esc32d, esc32h), it is also possible that the bound becomes bet-
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ter (esc32a). Notice that in the sparse model, it takes only about one
minute to compute the optimal solution values of esc32e and esc32f.

7. CONCLUSION

We close with three important aspects of the polyhedral work on the
QAP that we have surveyed in this chapter.

m  The techniques that have been developed for theoretical investiga-
tions of QAP-polytopes, like the projections between the different
types of polytopes and, especially important, the star-transforma-
tion, provide tools which make polyhedral studies on the QAP pos-
sible. In fact, they have led to first considerable insights into the
polyhedral structure of the QAP, which before was one of the few
problems among the classical combinatorial optimization problems
about which we lacked any deeper polyhedral knowledge.

m  The practical experiments with a cutting plane algorithm that ex-
ploits the polyhedral results show that this type of approach has
a great potential for computing tight lower bounds and even op-
timal solutions. However, the tightness of the bounds is payed by
considerable running times for larger instances.

m In order to overcome the relatively large running times one might
exploit sparsity in the objective function. First theoretical and
experimental studies have shown that at least special kinds of
sparsity (coming from sparse flow structures on the objects) can
be handled theoretically and can be used to improve the running
times of cutting plane algorithms substantially.

These points suggest, in our opinion, the further lines of research in
the area of polyhedral combinatorics of the QAP. The most promising
possibility to really push the (exact) solvability of QAPs beyond the
current limits by polyhedral methods is to extend the work on the sparse
model. One direction here, of course, is the further investigation of the
structures of the QAP-polytopes in the sparse model. In particular, one
could search for facets of the polytopes that are not projections of facets
of polytopes in the dense model. Another direction is to study models
that do not only exploit sparsity of the flow structure of the objects, but
also, simultaneously, sparsity of the distance structure of the locations.
In several cases this would reduce the number of variables quite further.

One more aspect may make work on the polyhedral combinatorics
of the QAP attractive: while investigating properties of the associated
polytopes and developing better cutting plane algorithms for the QAP
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the LP-technology most probably will develop further in parallel. Thus,
one might hope that the progress one achieves algorithmically is mul-
tiplied by a certain factor that (from the enormous improvements of
LP-solvers in the recent years) can be estimated to be not too small.
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name initial LP cutting planes gap
bound qual bound qual iter time |reduced
chri2a 9552  1.000 9552  1.000 1 16 1.000
chri2b 9742 1.000 9742 1.000 1 16 1.000
chri2c 11156  1.000 11156  1.000 1 21 1.000
had12 1619 0.980 1652  1.000 3 435 1.000
nugl2 521 0.901 577 0.997 13 23981 0.971
roul2 222212 0.943 235278 0.999 18 26541 0.981
scri2 29558 0.941 31410 1.000 5 1326 1.000
tail2a 220019 0.980 224416  1.000 3 371 1.000
tail2b 30581825 0.775 39464925 1.000 4 761 1.000
hadi4 2660 0.976 2724  1.000 4 2781 1.000
chriba 9371  0.947 9896 1.000 7 25036 1.000
chri5b 7895  0.988 7990 1.000 3 2838 1.000
chribc 9504 1.000 9504 1.000 1 105 1.000
nugib 1031 0.896 1130 0.982 6 19906 0.827
roulb 322945 0.912 340470 0.961 7 25315 0.561
scrib 48817 0.955 51140 1.000 4 5083 1.000
tailba 351290 0.905 366466 0.944 7 25449 0.411
tailbb 51528935 0.995 51765268 1.000 7 17909 1.000
escl6b 278  0.952 292  1.000 2 762 1.000
escl6c 118 0.738 160 1.000 4 4929 1.000
esci6h 704 0.707 996 1.000 4 4886 1.000
hadi16 3549 0.954 3717 0.999 8 23381 0.982
nugi6a 1414 0.878 1567 0.973 8 19296 0.781
nug16b 1080 0.871 1209 0.974 5 16512 0.801
nugl7 1491 0.861 1644 0.949 4 16007 0.633
tail7a 440095 0.895 454626 0.924 5 25606 0.281
chri8a 10739  0.968 10948 0.986 5 22335 0.580
chri8b 1534 1.000 1534 1.000 1 507 1.000
hadi8 5072 0.946 5300 0.989 5 23367 0.795
nugl8 1650 0.855 1810 0.937 5 19390 0.569
els19 16502857  0.959 17074681  0.992 3 17440 0.806
chr20a 2170  0.990 2173  0.991 2 22488 0.121
chr20b 2287 0.995 2295  0.999 2 13645 0.710
chr20c 14007  0.990 14034  0.992 2 14794 0.196
had20 6559.4 0.948 6732 0.972 2 22783 0.475
lipa20a 3683 1.000 3683 1.000 1 1145 1.000
1lipa20b 27076  1.000 27076  1.000 1 935 1.000
nug20 2165 0.842 2314  0.900 3 17845 0.367
rou20 639679 0.882 649748  0.896 3 13143 0.117
scr20 94558  0.859 96562 0.878 3 15122 0.130
tai20a 614850 0.874 625942  0.890 3 34135 0.125
tai20b 84501940 0.690 | 104534175 0.854 2 10143 0.528

Table 1.1 Results on instances with m = n (dense model).
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name m opt init LP box iter time speed up ClPer

escl6a 10 68 48 64 3 522 4.87 65
escléd 14 16 4 16 2 269 2.74 492
escl6e 9 28 14 28 4 588 3.37 66
esclbg 8 26 14 26 3 58 14.62 7
escl6i 9 14 0 14 4 106 28.18 84
escl6j 7 8 2 8 2 25 32.96 14

Table 1.2 Results on the escl6 instances (dense model).

name m upper prev lb init LP box iter time

esc32a 25 130 36 40 8 3 62988
esc32b 24 168 96 96 100 4  %60000
esc32c 19 642 506 382 506 8 %140000
esc32d 18 200 132 112 152 8  %80000
esc32e 9 2 2 0 2 2 576
esc32f 9 2 2 0 2 2 554
esc32g 7 6 6 0 6 2 277
6

esc32h 19 438 315 290 352 119974

Table 1.3 Results on the esc32 instances (dense model).

name bound iter time

esc32a 92 3 8673
esc32b 96 4 13058
esc32c 394 15 18716
esc32d 120 12 7472

esc32e 2 2 74
esc32f 2 2 82
esc32g 6 4 228

esc32h 280 15 22716

Table 1.4 Results of cutting plane algorithm with “sparse model”.



