
SEQUENCE-DEPENDENT SETUP AND

CLEAN-UP TIMES IN A TWO-MACHINE

JOB-SHOP WITH MINIMIZING MAKESPAN

Yuri N. Sotskov ∗ Frank Werner ∗∗

∗ United Institute of Informatics Problems, National
Academy of Sciences of Belarus, Surganova Str. 6, Minsk,

Belarus, e-mail: sotskov@newman.bas-net.by
∗∗ Faculty of Mathematics, Otto-von-Guericke University,
Postfach 4120, D-39016, Magdeburg, Germany, e-mail:

frank.werner@mathematik.uni-magdeburg.de

Abstract: This article addresses the job-shop scheduling problem of minimizing the
length of a schedule (makespan) for processing n jobs by one or two machines with
sequence-dependent setup times and clean-up times. The processing of each job
includes at most two operations that have to be non-preemptive. Machine routes
may differ from job to job. If all setup and clean-up times are equal to zero, this
problem is polynomially solvable via Jackson’s pair of job permutations, otherwise
it is NP-hard even if each of n jobs consists of one operation on the same machine.
We present sufficient conditions when Jackson’s pair of job permutations may
be used for solving the two-machine job-shop scheduling problem with sequence-
dependent setup times and clean-up times. For the general case of the latter
problem, the results obtained provide polynomial lower and upper bounds for
the objective function which may be used in an implicit enumeration technique,
e.g., in a branch-and-bound algorithm. Copyright c© IFAC 2006

Keywords: Scheduling algorithms, Optimization problems, Operation research

1. INTRODUCTION

The majority of scheduling research assumes the
setup time as negligible or as a part of the job
processing time. This assumption adversely af-
fects the solution quality for many applications
which require an explicit treatment of setup times.
Practical situations in which setup times must be
considered separately from processing times arise
in chemical, pharmaceutical, food, printing, metal
processing and semiconductor industries. These
applications have motivated an increasing inter-
est to include separate setups in the scheduling
environment, see e.g. in (Allahverdi et al., 1999).

In (Khurana and Bagga, 1984; Yoshida and
Hitomi, 1979), the authors addressed the two-
machine flow-shop problem of minimizing Cmax,
the length of a schedule (makespan), by consider-
ing setup times separately. In (Allahverdi, 2000;
Bagga and Khurana, 1986), the two-machine sep-
arate setup times problem of minimizing mean
job completion time

∑
Ci has been addressed.

A two-machine open-shop problem with inter-
stage transportation times has been considered
in (Strusevich, 1999). Allahverdi (2000) adressed
the two-machine flow-shop problem to minimize
Cmax or

∑
Ci when setup times are relaxed to

be distribution-free random variables with lower
and upper bounds being given before schedul-

ing. In (Sotskov et al., 1999), insertion techniques
were used for a job-shop problem with sequence-
independent setup times.

As follows from (Allahverdi et al., 2003) and the
other published reviews of scheduling research
with separate setup times, only shop-scheduling
problems involving sequence-independent setup
times have been treated in the OR literature so
far. While the assumption that setup times are
sequence-independent simplifies the analysis of a
shop-scheduling problem and reflects certain ap-
plications, it negatively affects the solution qual-
ity for many other applications which require a
treatment of sequence-dependent setup times. In
this article, we consider the two-machine job-
shop scheduling problem of minimizing the length
Cmax of a schedule including sequence-dependent
setup times and clean-up times. Note that the
clean-time is often referred to as removal time in
the OR literature.

Assume that a set of jobs J = {1, 2, . . . , n} has
to be processed in a job-shop with two machines
M = {1, 2} provided that each machine m ∈ M
processes any job j ∈ J at most once. Subset J12

of set J is the set of all jobs with machine route
(1, 2). J21 ⊆ J is the set of all jobs with opposite
machine route (2, 1), and Jm ⊆ J is the set of
all jobs which have to be processed only on one
machine m ∈ M . Thus, we have

J = J12 ∪ J1 ∪ J2 ∪ J21.

The cardinality of set Jk is denoted as nk = |Jk|,
where k ∈ {1, 2, 12, 21}. As usual, Ojm denotes
the operation of job j ∈ J on machine m ∈ M .
The processing time pjm of operation Ojm is
known before scheduling. All n jobs are available
for processing from time t = 0. Operation pre-
emptions are forbidden.

In practice, machines often have to be reconfig-
ured before starting a job and cleaned after com-
pleting the last job. These processes are called
setup and clean-up. We assume that the given
setup time of a machine depends on the job just
completed and the job to be started, i.e., the given
setup times are sequence-dependent. If job i ∈ J is
directly followed by job k ∈ J on machine m ∈ M ,
then the setup time is equal to a non-negative real
number sm

ik.

Similarly, the notation sm
0k is used for the setup

time needed on machine m ∈ M before starting
job k, if job k is the first job processed on machine
m. On the other hand, sm

i0 denotes the clean-up
time after job i, if job i is the last job processed
on machine m ∈ M .

Setup and clean-up times for machine 1 are given
by a real non-negative square matrix S1 = ||s1

ij ||
of order r1 × r1, where r1 = n−n2 +1. Hereafter,
in contrast to usual matrix notations when the

subindex i (subindex j) of the element s1
ij of

matrix S1 denotes the row index (column index,
respectively), we define that the first subindex i in
s1

ij denotes job i ∈ J \J2 and the second subindex

j in s1
ij denotes job j ∈ J \ J2: If job i is directly

followed by job j 6= i in the processing sequence
of r1 jobs on machine 1, then the corresponding
setup time on machine 1 is just equal to s1

ij .

As usual, it is assumed that columns (rows) in ma-
trix S1 are ordered with respect to an increasing
second subindex (first subindex) of their elements
s1

ij . Thus, each element s1
0i of the first row in

matrix S1 defines the setup time for job i ∈ J \J2

on machine 1, if job i is the first job processed on
machine 1. On the other hand, each element s1

j0

of the first column in matrix S1 defines the clean-
up time for job j ∈ J \ J2, if job j is the last job
processed on machine 1.

It is clear that the diagonal elements (i.e., those
with equal first and second subindices) in matrix
S1 are not used.

Similarly, setup and clean-up times for machine
2 are given by a real non-negative square matrix
S2 = ||s2

ij || of order r2×r2, where r2 = n−n1 +1.

Since the minimization of the schedule length is
a regular criterion, one can consider only semiac-
tive schedules, see e.g. (Tanaev et al., 1994) for
definitions. Each semiactive schedule is uniquely
defined by a permutation of the jobs on machine
1 and by one on machine 2. Thus, the problem
under consideration is to find a permutation

π′ = (i′1, i
′

2, . . . , i
′

r1
)

of the jobs i′k ∈ J12 ∪ J1 ∪ J21 on machine 1 and a
permutation

π′′ = (i′′1 , i′′2 , . . . , i′′r2
)

of the jobs i′′k ∈ J12 ∪ J2 ∪ J21 on machine 2 that
minimize the objective function

Cmax(π′, π′′) =

max{Ci′
r1

(π′, π′′) + s1
i′
r1

0, Ci′′
r2

(π′, π′′) + s2
i′′
r2

0},(1)

where Ci(π
′, π′′) denotes the completion time of

job i ∈ J in the semiactive schedule defined by the
pair of permutations (π′, π′′). Objective function
(1) defines the schedule length including clean-up
times after the last jobs. This problem is denoted
as J2|sjk|Cmax.

2. MODIFICATION OF SETUP, CLEAN-UP
(REMOVAL) AND PROCESSING TIMES

The value of objective function (1) depends on
two essentially different parts of the numerical
input data. The first part includes the processing

times pij of jobs i ∈ J on machines j ∈ M , while
the second part includes the setup and clean-up
times given by the square matrices S1 and S2.
Generally speaking, the former part is easier to
treat optimally than the latter part. Indeed, if all
setup times and clean-up times are equal to zero,
then problem J2|sjk|Cmax turns into the classical
job-shop problem J2||Cmax which is polynomially
solvable by Jackson’s pair of job permutations, see
(Jackson, 1956), otherwise problem J2|sjk|Cmax

is NP-hard even if each of the n jobs consists
of one operation on the same machine, e.g., if
n = n1. (The latter problem turns into the NP-
hard traveling salesman problem.)

If there exist non-zero setup or clean-up times,
then the schedule length Cmax(π′, π′′) essentially
depends on the choice of r1 + r2 setup and clean-
up times (from the set of all r2

1 +r2
2 possible setup

and clean-up times given by matrices S1 and S2)
which have to be involved into the schedule.

In this section, we show how it is possible to
transfer at least a part of the “hard” numerical
input data to the “easy” numerical input data.

Let job i belong to set J1 ∪ J12. We calculate the
non-negative value

s1(→ i) = min{s1
ki | i 6= k ∈ {0} ∪ J \ J2}. (2)

Since each setup time before processing operation
Oi1 includes a part equal to s1(→ i), we can
add this value s1(→ i) to processing time pi1

of operation Oi1 provided that the same value
s1(→ i) will be subtracted from each setup time
s1

ki with i 6= k ∈ {0} ∪ J \ J2. Thus for each
job i ∈ J1 ∪ J12, we obtain the following modified
processing time:

p′i1 = s1(→ i) + pi1 (3)

and the following modified setup times:

s
(1)
ki = s1

ki − s1(→ i), i 6= k ∈ {0} ∪ J \ J2. (4)

Due to equalities (2) and (4), we obtain s
(1)
ki ≥ 0

for each i ∈ J1 ∪ J12 and k ∈ {0} ∪ J \ J2 with
k 6= i.

Next, we show that the original instance of prob-
lem J2|sjk|Cmax and the modified instance that
differs from the original instance only by the setup
and processing times of jobs i ∈ J1 ∪J12 modified
due to equalities (3) and (4) are equivalent in the
following sense.

Two instances of a scheduling problem are equiv-
alent if there exists a one-to-one correspondence
between their semiactive schedules such that the
corresponding two schedules have the same value
of the objective function.

Indeed, the desired correspondence of semiactive
schedules is defined by the same pair (π′, π′′) of
permutation

π′ = (i′1, i
′

2, . . . , i
′

r1
)

of jobs i′k ∈ J12 ∪ J1 ∪ J21 on machine 1 and
permutation

π′′ = (i′′1 , i′′2 , . . . , i′′r1
)

of jobs i′′k ∈ J12 ∪ J2 ∪ J21 on machine 2. It is
easy to convince that for both instances of prob-
lem J2|sjk|Cmax, machines 1 and 2 are occupied
(either by processing jobs or by setups) during
the same time intervals since in each semiactive
schedule constructed for the modified instance
each non-negative value s1(→ i) is added exactly
once to processing time pi1 and subtracted exactly
once from the setup time which is involved in
the schedule. Moreover, the processing time pi1 of
each job i ∈ J12 is increased only “from the left-
hand side” by the value s1(→ i) of the setup time
defined by equality (2). Hence, the processing of
job i ∈ J12 on machine 2 may be started just from
the same time as in the corresponding semiactive
schedule constructed for the original instance of
problem J2|sjk|Cmax.

Due to machine symmetry, one can also ob-
tain an equivalent modified instance of problem
J2|sjk|Cmax via modifying the setup and process-
ing times of jobs i ∈ J2 ∪ J21 on machine 2:

p′i2 = s2(→ i) + pi2, (5)

s
(2)
ki = s2

ki − s2(→ i), i 6= k ∈ {0} ∪ J \ J1. (6)

The above value s2(→ i) is defined as follows:

s2(→ i) = min{s2
ki | i 6= k ∈ {0} ∪ J \ J1}. (7)

Similarly, one can increase the processing times of
the jobs in set J21 on machine 1 “from the right-
hand side” due to the decrease of the correspond-
ing setup and clean-up times as follows.

Let job j belong to set J1 ∪ J21. We calculate the
non-negative value

s1(j→) = min{s1
jk | j 6= k ∈ {0} ∪ J \ J2}. (8)

Since the clean-up time and each setup time
before operation Oj1 includes a part equal to
s1(j→), we can add this value s1(j→) to process-
ing time pj1 of operation Oj1 provided that the
same value s1(j →) will be subtracted from the
clean-up time s1

j0 and from each setup time s1
jk

with j 6= k ∈ J \J2. Thus for each job j ∈ J1∪J21,
we obtain the modified processing time

p′j1 = pj1 + s1(j→), (9)

the modified setup times

s
(1)
jk = s1

jk − s1(j→), j 6= k ∈ J \ J2, (10)

and the modified clean-up time

s
(1)
j0 = s1

j0 − s1(j→). (11)

Note that due to equality (9), the processing time
pj1 of job j ∈ J21 is increased only “from the
right-hand side” by the value s1(j →) defined
by (8). Due to this and equalities (2)-(3), the
non-negative common part of each setup time
may be added to the modified processing time
exactly once. Note that the processing times of
jobs i = j ∈ J1 may be modified both “from the
left-hand side” due to equalities (2)-(3) used for
job i ∈ J1 and “from the right-hand side” due to
equalities (8)-(9) used for job j ∈ J1.

Similarly (due to machine symmetry), one can
modify setup, clean-up, and processing times of
jobs i ∈ J2 ∪ J12 on machine 2 using formulas
(12)-(14):

p′i2 = pi2 + s2(i→), (12)

s
(2)
ik = s2

ik − s2(i→), i 6= k ∈ {0} ∪ J \ J2, (13)

s
(2)
j0 = s2

j0 − s2(j→), (14)

where value s2(i→) is defined as follows:

s2(i→) = min{s2
ik | i 6= k ∈ {0} ∪ J \ J2}. (15)

In order to transfer further “hard” numerical
input data to the “easy” numerical input data,
we can introduce a dummy job 0 (and a dummy
job n + 1, respectively) before starting the first
(and after completing the last) job on each of the
two machines. The processing times p0m and the

modified setup times s
(m)
0j are defined as follows:

p0m = sm(0), (16)

s
(m)
0j = sm

0j − sm(0), j ∈ J \ J3−m, (17)

provided that

sm(0) = min{sm
0j | j ∈ J \ J3−m}. (18)

Similarly, the processing times pn+1,m and the

modified clean-up times s
(m)
j0 are defined as fol-

lows:

pn+1,m = sm(n + 1), (19)

s
(m)
j0 = sm

j0 − sm(n + 1), j ∈ J \ J3−m, (20)

provided that

sm(n + 1) = min{sm
j0 | j ∈ J \ J3−m}. (21)

Thus, the following claim has been proven.

Theorem 1. An instance of problem J2|sjk|Cmax

is equivalent to the modified instance that differs
from the original one only by setup, clean-up, and
processing times of jobs J ∪ {0, n + 1} modified
due to formulas (2)-(21).

In order to obtain the simplest modified instance
(using formulas (2)-(21)), which is equivalent to
the original instance of problem J2|sjk|Cmax, it is
necessary to decrease the elements of the square
matrices S1 and S2 as much as possible. There-
fore, the simplest equivalent modified instance is
obtained when no further modification of the ma-
trices based on formulas (2)-(21) is possible.

Let matrix S(1) and matrix S(2) denote such
a minimal matrix (its elements have minimal
feasible values) obtained from matrix S1 and
matrix S2, respectively, by means of formulas (2)-
(21).

Note that the minimal matrices S(1) and S(2)

are uniquely defined, while there may exist sev-
eral modified instances of the original instance of
problem J2|sjk|Cmax (because of different orders
that may be used for the modification of rows and
columns of the given matrices S1 and S2). We say:

An instance of problem J2||Cmax corresponds to
an instance of problem J2|sjk|Cmax (and vice
versa), if all the parameters and conditions are the
same for both instances except non-zero setup and
clean-up times given for the instance of problem
J2|sjk|Cmax.

Machine m ∈ M is called the main machine
for the semiactive schedule defined by the pair
(π′, π′′) of permutations, if the following equality
holds:

Cmax(π′, π′′) = Cj(π
′, π′′) + sm

j0,

where j = i′r1
if m = 1, and j = i′′r2

if m = 2.

Let cm
j (π′, π′′) denote the completion time of

operation Ojm in the semiactive schedule defined
by (π′, π′′). Now, using the arguments given in
(Braun et al., 2006) and the above Theorem 1, we
can prove the following sufficient conditions for
optimality of Jackson’s pair of job permutations
for problem J2|sjk|Cmax.

Theorem 2. Jackson’s pair (π′, π′′) of job permu-
tations constructed for the instance of problem
J2||Cmax with job processing times obtained by
means of formulas (2), (3), (5), (7), (8), (9), (12),
(15) (16), (18), (19), (21) remains optimal for the
corresponding instance of problem J2|sjk|Cmax,
if the main machine m ∈ M for the semiactive
schedule defined by (π′, π′′) has no idle times and
has only zero modified setup and clean-up times.

Theorem 3. Jackson’s pair (π′, π′′) of job permu-
tations constructed for the instance of problem
J2||Cmax with job processing times obtained by
means of formulas (2), (3), (5), (7), (8), (9), (12),
(15), (16), (18), (19), (21) remains optimal for the
corresponding instance of problem J2|sjk|Cmax, if
there exists a time t = cm

j (π′, π′′) such that the
following two conditions hold:
(i) For the semiactive schedule defined by (π′, π′′),
machine m ∈ M has no idle times and has only
zero modified setup times in the segment [0, t];
(ii) In the segment [t, Cj(π

′, π′′) + s3−m
j0] with

j = i′r1
for m = 2 and j = i′′r2

for m = 1, the main
machine (3−m) ∈ M for the semiactive schedule
defined by (π′, π′′) has no idle times and has only
zero modified setup and clean-up times.

Theorem 1 implies the following sufficient condi-
tion for optimality of Jackson’s pair (π′, π′′) of
permutations for problem J2|sjk|Cmax with any
given job processing times: The minimal matrices

S(1) = ||s
(1)
ij || and S(2) = ||s

(1)
ij || have only zero

elements: s
(1)
ij = 0 = s

(2)
ij , i 6= j.

If it is a priory clear which machine m ∈ M has
to be the main machine in the semiactive schedule
defined by (π′, π′′) without idle times on machine
m, then the above sufficient condition is reduced
to the following: The minimal matrix S(m) has
only zero elements.

3. WORST CASE ANALYSIS

Using the results presented in Section 2, we pro-
pose the following algorithm for solving problem
J2|sjk|Cmax exactly or for finding an approximate
solution to the problem J2|sjk|Cmax.

1. Construct a modified instance that is equivalent
(due to Theorem 1) to the original instance of
problem J2|sjk|Cmax.

2. Find Jackson’s pair (π′, π′′) of job permutations
constructed for problem J2||Cmax corresponding
to the modified instance of problem J2|sjk|Cmax.

3. Test the sufficient conditions for optimality
of (π′, π′′) for the modified instance of problem
J2|sjk|Cmax given by Theorem 2, Theorem 3, and
so on.

4. If at least one of the sufficient conditions holds,
the original instance of problem J2|sjk|Cmax

is solved by the pair (π′, π′′) of job permuta-
tions. Otherwise, the semiactive schedules con-
structed for the corresponding instance of problem
J2||Cmax (those constructed for the correspond-
ing instance of problem J2|sjk|Cmax) polynomi-
ally provide lower bounds (upper bounds, respec-
tively) for the objective function (1).

The former lower bound for the objective func-
tion (1) may be used in an implicit enumeration
technique, e.g., in a branch-and-bound algorithm
developed for problem J2|sjk|Cmax. A worst case
analysis of the solution obtained using the algo-
rithm consisting of steps 1 - 4 shows the following
results.

Let C∗

max denote the optimal value of the ob-
jective function (1), and Cmax(π′, π′′) denote the
value of the objective function (1) obtained using
the algorithm consisting of steps 1 - 4. We denote

nmin = min{min{|J \ J1|, |J \ J2|},min{|J12| +
1, |J21| + 1}},

nmax = max{max{|J \ J1|, |J \ J2|},max{|J12| +
1, |J21| + 1}},

smin = min{s
(m)
ij | m ∈ M, i ∈ J, i 6= j ∈ J},

smax = max{s
(m)
ij | m ∈ M, i ∈ J, i 6= j ∈ J}.

The above value nmin (nmax, respectively) defines
the minimal (maximal) cardinality of the critical
set of operations which defines the objective value
Cmax(π′, π′′).

If

s
(m)
ij ≤ p

(m)
j , i ∈ J, i 6= j ∈ J, (22)

then

Cmax(π′, π′′) ≤ 2C∗

max − nminsmin.

If

p
(m)
j ≤ s

(m)
ij ≤ 2p

(m)
j , i ∈ J, i 6= j ∈ J, (23)

then
Cmax(π′, π′′) ≤ 3/2C∗

max.

In the case when both conditions (22) and (23) do
not hold, we obtain the following upper bound:

Cmax(π′, π′′) ≤ C∗

max + nmax(smax − smin).

In the latter case, the heuristic rule based on
setup and clean-up times may be more effective
than that based on the modified processing times
considered in Section 2.

4. CONCLUSION

In most of the shop-scheduling models consid-
ered in the OR literature, it is assumed that an
individual processing time incorporates all other
time parameters (lags) attached to a job or to
an operation. In practice, however, such para-
meters often have to be considered separately
from the actual processing times. For example, if
for an operation some pre-processing and post-
processing are required, then it is necessary to

use a scheduling model with setup and clean-up
(removal) times separated. Moreover, setup times
are often sequence-dependent.

In Sections 2 and 3, we derived sufficient con-
ditions when Jackson’s pair of job permutations
may be used for solving the two-machine job-shop
scheduling problem with sequence-dependent setup
times and removal times. In a forthcoming paper,
we will present computational results for the cases
when our approach is better than the existing
ones.

This research was supported by INTAS (project
03-51-5501) and ISTC (project B-986). The au-
thors would like to thank three anonymous refer-
ees for their suggestions on an early version of the
paper.

REFERENCES

Allahverdi, A. (2000). Minimizing mean flowtime
in a two-machine flowshop with sequence in-
dependent setup times. Comp. Oper. Res.
27, 111–127.

Allahverdi, A., J.N.D. Gupta and T. Aldowaisan
(1999). A review of scheduling research in-
volving setup considerations. OMEGA, The
International Journal of Management Sci-
ences 27, 219–239.

Allahverdi, A., T. Aldowaisan and Yu.N. Sot-
skov (2003). Two-machine flowshop schedul-
ing problem to minimize makespan or total
completion time with random and bounded
setup times. International Journal of Mathe-
matics and Mathematical Sciences 39, 2475–
2486.

Bagga, P.C. and K. Khurana (1986). Two-
machine flowshop with separated sequence-
independent setup times: Mean completion
time criterion. Indian Journal of Manage-
ment and Systems 2, 47–57.

Braun, O., N.M. Leshchenko and Yu.N. Sotskov
(2006). Optimality of jackson’s permutations
with respect to limited machine availabil-
ity. International Transactions in Operational
Research 13, 59–74.

Jackson, J.R. (1956). An extension of johnson’s
results on job lot scheduling. Naval Research
Logistics Quarterly 3, 201–203.

Khurana, K. and P.C. Bagga (1984). Minimizing
the makespan in a two-machine flowshop with
time lags and setup conditions. Zeitschrift
Operations Research 28, 163–174.

Sotskov, Yu.N., T. Tautenhahn and F. Werner
(1999). On the application of insertion tech-
niques for job shop problems with setup
times. RAIRO Recherche Operationnelle
33, 209–245.

Strusevich, V.A. (1999). A heuristic for the two-
machine open-shop scheduling problem with

transportation times. Discrete Applied Math-
ematics 93, 287–304.

Tanaev, V.S., Yu.N. Sotskov and V.A. Struse-
vich (1994). Scheduling Theory: Multi-Stage
Systems. Kluwer Academic Publishers. The
Netherlands, Dordrecht.

Yoshida, T. and K. Hitomi (1979). Optimal two-
stage production scheduling with setup times
separated. AIIE Transactions 11, 261–263.

