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Abstract: It is known that all 2-connected, linearly convex triangular grid graphs, with 
only one exception, are hamiltonian (Reay and Zamfirescu, 2000). In the paper, it is 
shown that this result holds for a wider class of connected, locally connected triangular 
grid graphs and, with more exceptions, even for some general class of graphs. It is also 
shown that the HAMILTONIAN CYCLE problem is NP-complete for triangular grid 
graphs. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
Scheduling with precedence constraints is closely 
related to the investigation of specific graph 
properties. For instance, finding a minimum 
hamiltonian path in a weighted graph is known to be 
equivalent to minimizing the makespan in a single 
machine scheduling problem with setups. In the paper, 
cyclic properties (hamiltonicity and fully cyclic 
extendability) of finite induced subgraphs of an 
infinite graph associated with the two-dimensional 
triangular grid (called triangular grid graphs) are 
considered. An application of these properties arises in 
telecommunications and computer vision (problems of 
determining the shape of an object represented by a 
cluster of points on a grid), in molecular biology 
(protein folding), and in configurational statistics of 
polymers (Agarwala, et al., 1997; Lua, et al., 2004). 
Cyclic properties of triangular grid graphs can also be 
used in the design of cellular networks since these 
networks are generally modelled as induced subgraphs 
of the infinite two-dimensional triangular grid (Havet, 
2001). 
 
For graph-theoretic terminology not defined here, the 
reader is referred to (Bondy and Murty, 1976). Let G 
be a graph with the vertex set V(G) and the edge set 
E(G). A path in G with the end vertices u and v is 
called a ),( vu -path. Graph G is connected if there 
exists a ),( vu -path for any vertices u and v of G. 

Graph G is k-connected ( 2≥k ) if any two distinct 
vertices u and v of G are connected by at least k 
internally-disjoint ),( vu -paths. For a vertex u of G, 
the neighborhood )(uN  of u is the set of all vertices 
adjacent to u. For a subset of vertices )(GVX ⊆ , the 
subgraph of G induced by X is denoted by )(XG . A 
vertex u of G is said to be locally connected if 

))(( uNG  is connected. G is called locally connected 
if each vertex of G is locally connected. 
 
Graph G is hamiltonian if G has a hamiltonian cycle, 
i.e. a cycle containing all vertices of G. Similarly, a 
path that contains all vertices of G is a hamiltonian 
path. As usual, kP  and kC  denote the path and the 
cycle on k vertices, respectively. In particular, 3C  is a 
triangle. A cycle C in a graph G is extendable if there 
exists a cycle C′  in G such that )()( CVCV ′⊂  and 

1)()( +=′ CVCV . A connected graph G is fully 
cyclic extendable if every vertex of G is on a triangle 
and every nonhamiltonian cycle is extendable. Clearly, 
any fully cycle extendable graph is hamiltonian. 
 

The infinite graph ∞T  associated with the two-
dimensional triangular grid is defined as follows. The 
vertices of ∞T  are points with cartesian coordinates 

( )23,2 yyx +  for integers x and y. Two vertices of 
∞T  are adjacent if and only if the Euclidean distance 



     

between them is equal to 1. Graph ∞T  is considered 
as a geometric graph, i.e. a graph drawn in the plane 
such that every of its edges is a closed straight-line 
segment and the edges intersect only at their ends (see 
Fig.1). 
 

 

Fig. 1. A fragment of graph ∞T . 
 

A triangular grid graph (or *T -graph) is a finite 
induced subgraph of ∞T . A triangular grid graph G is 
linearly convex if, for every line l which contains an 
edge of ∞T , the intersection of l and G is either a line 
segment (a path in G), or a point (a vertex in G), or 
empty. For example, the *T -graph G (with three 
components including an isolated vertex w) shown in 
Fig. 2 is linearly convex even though G has vertices u 
and v whose midpoint z is a vertex of ∞T  but not of G. 
In Fig. 2, dark points correspond to the vertices of ∞T . 
 

 
Fig. 2. A linearly convex triangular grid graph. 
 
It is well-known that the problem of deciding 
whether a given graph is hamiltonian, is NP-
complete, and it is natural to look for conditions for 
the existence of a hamiltonian cycle for special 
classes of graphs. Our goal here is to determine such 
conditions for triangular grid graphs and for a wider 
class of graphs with the special structure of local 
connectivity. 
 
The concept of local connectivity of a graph has been 
introduced by Chartrand and Pippert (1974). Oberly 
and Sumner (1979) have shown that a connected, 
locally connected claw-free graph G on 3≥n  
vertices is hamiltonian (a graph is claw-free if it has 
no induced subgraph isomorphic to the complete 
bipartite graph 3,1K ). Clark (1981) has proved that, 
under the Oberly – Sumner’s conditions, G is vertex 

pancyclic (i.e., every vertex of G is on cycles of 
length 3, 4, …, n). Later, Hendry (1989, 1990) has 
introduced the concept of cycle extendability and 
strengthened Clark’s result showing that, under the 
same conditions, G is fully cycle extendable. Hendry 
(1989) has shown that connected, locally connected 
graphs in which the maximum and minimum degrees 
differ by at most one and do not exceed five are fully 
cycle extendable. Some further strengthenings of 
these results can be found in the survey by Faudree et 
al. (1997). 
 
Below it is shown that any 2-connected, linearly 
convex triangular grid graph is locally connected. 
Cyclic properties (fully cycle extendability) of 
locally connected graphs with a special neighborhood 
structure are considered. In particular, it is 
established that a connected, locally connected 
triangular grid graph with 3≥n  vertices is either 
fully cycle extendable or isomorphic to a special 
graph on thirteen vertices. It is also shown that the 
HAMILTONIAN CYCLE problem is NP-complete 
for triangular grid graphs. 
 
 

2. LOCAL CONNECTIVITY AND CYCLE 
EXTENDABILITY 

 
Reay and Zamfirescu (2000) have shown that all 2-
connected, linearly convex *T -graphs, with only one 
exception, are hamiltonian. The only exception is a 
13-vertices graph D which is the linearly-convex hull 
of the Star of David; this graph is 2-connected and 
linearly convex but not hamiltonian (see Fig. 3). 
 

 
Fig. 3. Graph D. 
 
An interrelation between classes of 2-connected, 
linearly convex *T -graphs (or T-graphs in 
terminology of Reay and Zamfirescu, 2000) and 
locally connected *T -graphs is established in the 
following theorem. 
 

Theorem 1. Let G be a 2-connected *T -graph. If G 
is linearly convex, then G is locally connected. 
 
Proof. The proof will be done by contradiction. We 
first introduce some useful additional notation. Note 
that each vertex u of graph ∞T  has six neighbors 
denoted as R (right), L (left), UR (up-right), DL 
(down-left), DR (down-right) and UL (up-left), 
respectively (see Fig. 4). For example, the notation 

)(UR uv =  means that vertex v is the up-right 
neighbor of vertex u. 
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Fig. 4. Neighbors of the vertex u. 
 
Let G be a 2-connected, linearly convex triangular grid 
graph. Assume, to the contrary, that G contains a vertex 
u which is not locally connected. Note that 4deg ≤u  
(otherwise ))(( uNG  is connected and isomorphic to 

5P  if 5deg =u  or to 6C  if 6deg =u ). On the other 
hand, the 2-connectedness of G implies 2deg ≥u . 
Consider the three possible cases for the degree of u. 
 
Case 1. 2deg =u . 
Let },{)( wvuN = . By symmetry, we need only 
consider two subcases: )(UR uv = , )(DL uw =  
(Fig. 5a), and )(UR uv = , )(DR uw =  (Fig. 5b). 
Since G is 2-connected, there exists a ),( wv -path P in 
G with internal vertices different from u. Let l be a 
line which contains the edge )(R uu  of ∞T . Then the 
intersection of l and G contains vertex u as an isolated 
vertex (since )(L u  and )(R u  are not in G) and at 
least one vertex of P. This contradicts the condition 
that G is linearly convex. 
 

 
Fig. 5. Cases 1 – 3. 
 
Case 2. 3deg =u . 
Let },,{)( zwvuN = . By symmetry, there are two 
subcases: )(UR uv = , )(DR uw = , )(UL uz =  
(Fig. 5c), and )(UR uv = , )(DR uw = , )(L uz =  
(Fig. 5d). In the first subcase, the proof is similar to 
the proof in Case 1. Consider the second subcase. 
Since G is 2-connected, there exists a ),( wv -path P 
in G with internal vertices different from u. Let 1l  be 

a line which contains the edge uw  of ∞T , and 2l  be 

a line which contains the edge uz  of ∞T . 
Obviously, the intersection of 1l  and G contains the 
edge uw  and does not contain )(UL u , and the 
intersection of 2l  and G contains the edge uz  and 
does not contain )(R u . On the other hand, the 

intersection of these lines and graph G contains at 
least one vertex of path P either on the ray l′  or on 
the ray l ′′ . Here l′  and l ′′ are the rays (parts of the 
lines 1l  and 2l ) which start from u, and pass )(UL u  
and )(R u , respectively. Hence, we arrive at a 
contradiction to the condition that G is linearly 
convex. 
 
Case 3. 4deg =u . 
Let },,,{)( tzwvuN = . By symmetry, there are two 
subcases: )(UR uv = , )(DR uw = , )(DL ut = , 

)(UL uz =  (Fig. 5e), and )(UR uv = , )(DR uw = , 
)(DL ut = , )(L uz =  (Fig. 5f). The proof is similar 

to the proof in Case 2. This completes the proof of 
the theorem. 
 
Note that the converse assertion to Theorem 1 is not 
true and an example can be found in Fig. 6. This 
example shows a connected, locally connected *T -
graph which is not linearly convex: the intersection 
of the graph and the dashed line, which contains 

edges of ∞T , is the union of a line segment (the edge 
vw of the graph) and a point (the isolated vertex u of 
the graph). 
 

 
Fig. 6. A locally connected, but not linearly convex 

triangular grid graph. 
 
Thus, the example in Fig. 6 and Theorem 1 show that 
2-connected, linearly convex *T -graphs form a 
proper subclass of the class of connected, locally 
connected *T -graphs. Note that the graphs of this 
class (except an isolated vertex and a complete graph 
on two vertices) are also 2-connected due to a well-
known observation of Chartrand and Pippert (1974) 
that a connected, locally k-connected graph is 

)1( +k -connected. 
 
It is easy to see that the neighborhood of any vertex 
of a connected, locally connected *T -graph on 3≥n  
vertices induces a subgraph which is isomorphic to 
one of the following five graphs: 2P , 3P , 4P , 5P , 
and 6C . Consider class M of all connected graphs G 
with the property that for any vertex )(GVu ∈  the 
following inclusion holds: 
 

},,,,,,,{))(( 65544332 CCPCPCPPuNG ∈ . 
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It is clear that connected, locally connected *T -
graphs on 3≥n  vertices and, consequently, 2-
connected, linearly convex *T -graphs belong to the 
class M. Cyclic properties of the graphs from the 
class M are determined by the following theorem. 
 
Theorem 2. If MG ∈ , then G is either fully cycle 
extendable or isomorphic to D or to one of the graphs 

1G , 2G  (see Fig. 7). 
 

 
Fig. 7. Graphs 1G  and 2G . 
 
The scheme of the proof is the following. Note that 
every vertex of G has a degree of at least 2 and lies 
on a triangle of G since G is locally connected. Now 
suppose that G is not fully cycle extendable, i.e. there 
exists a nonextendable, nonhamiltonian cycle 

121 uuuuC kK=  on )(GVk <  vertices in G. Since G 
is connected, there exists a vertex x not on C which is 
adjacent to a vertex lying on C. Without loss of 
generality, let 1u  be a vertex on C adjacent to x. Then 

6deg3 1 ≤≤ u . Via the series of claims 1 – 8, one 
proceeds towards a contradiction with the 
nonextendability of the cycle C or obtain that G is 
isomorphic to one of the graphs D, 1G , or 2G . 
 
Claim 1. Inequality 4deg 1 ≥u  holds. 
 
Claim 2. All neighbors of 1u  except x are on C. 
 
Claim 3. Relation 4deg 1 ≠u  holds. 
 
Claim 4. If 3deg ≥x , then the subgraphs 

}),,({ 31 xuuG  and }),,({ 11 xuuG k−  are triangles in G. 
 
Claim 5. Relation 6deg 1 ≠u  holds. 
 
Claim 6. Relations 5deg 1 =u  and 6deg2 ≤≤ x  hold. 
 
Claim 7. If 5deg 1 =u  and 2deg =x , then either C 
is an extendable cycle or graph G is isomorphic to 
one of the graphs D, 1G , or 2G . 
 
Claim 8. If 5deg 1 =u  and 6deg3 ≤≤ x , then C is 
an extendable cycle. 
 
Thus, according to Claims 7 and 8 one arrives at a 
contradiction with nonextendability of C or obtain that 
G is isomorphic to one of the graphs D, 1G , or 2G . 
This completes the scheme of the proof of Theorem 2. 
 

Note that the graphs 1G  and 2G  are not triangular grid 
graphs unlike the graph D. The following two 
corollaries are immediate consequences of Theorem 2. 
 
Corollary 1. Let G be a connected, locally connected 

*T -graph on 3≥n  vertices. Then G is either fully 
cycle extendable or isomorphic to the graph D. 
 
Corollary 2. Let G be a 2-connected, linearly convex 

*T -graph. Then G is either fully cycle extendable or 
isomorphic to the graph D. 
 
Thus, the main result of (Reay and Zamfirescu, 2000) 
on the hamiltonicity of 2-connected, linearly convex 

*T -graphs directly follows from Corollary 2. 
 
 

3. HAMILTONICITY OF TRIANGULAR 
GRID GRAPHS 

 
Consider the following well-known decision 
problem. 
 
HAMILTONIAN CYCLE 
Instance: A graph G. 
Question: Is G hamiltonian? 
 
The problem is NP-complete for general graphs and 
remains difficult for graphs of many special classes 
(Garey and Johnson, 1979). Among them, there are 
bipartite graphs, line graphs, 3-connected cubic (i.e., 
3-regular) planar graphs, maximal planar graphs, and 
others. In (Itai et al., 1982), it has been proved that 
the HAMILTONIAN CYCLE problem is NP-
complete for grid graphs (a grid graph is a finite 
induced subgraph of the two-dimensional rectangular 
grid). Notice that grid graphs are not a subclass of 
triangular grid graphs: these classes of graphs have 
common elements but in general they are distinct. 
The idea of (Itai et al., 1982) is used for proving the 
following theorem. 
 
Theorem 3. The problem HAMILTONIAN CYCLE 
is NP-complete for *T -graphs. 
 
The proof is based on a polynomial-time reduction 
from the following NP-complete problem: 
HAMILTONIAN CYCLE for cubic planar bipartite 
graphs (Plesnik, 1983). 
 
Note that Corollary 1 implies the polynomial 
solvability of the HAMILTONIAN CYCLE problem 
for locally connected *T -graphs. Moreover, the 
following statements hold. 
 
Theorem 4. Let MG ∈  and G be not isomorphic to 
D, 1G , and 2G . If C is a cycle of length k in G and 

)(3 GVk <≤ , then a cycle C′  of length 1+k  such 

that )()( CVCV ′⊂  can be found in polynomial time. 
 
Corollary 3. A hamiltonian cycle in a connected, 
locally connected *T -graph (not isomorphic to D) 
can be found in polynomial time. 
 

1G 2G



     

 

Fig. 8. A locally connected *T -graph and one of its 
hamiltonian cycles. 

 

An example of a locally connected *T -graph with 
one of its hamiltonian cycles (bold lined) is shown in 
Fig. 8. This graph is not linearly convex and contains 
holes. Note that a polynomial algorithm for finding a 
hamiltonian cycle in a grid graph is known only in 
case when the graph does not contain holes (Lenhart 
and Umans, 1997). 
 
Finally consider the following problem. 
 
HAMILTONIAN ),( vu -PATH 
Instance: A graph G. 
Question: Does G contain a hamiltonian ),( vu -path? 
 
The following statement can be proved using 
Theorem 3. 
 
Theorem 5. The problem HAMILTONIAN ),( vu -

PATH is NP-complete for *T -graphs. 
 
 

4. CONCLUSION 
 
In the paper, the result of Reay and Zamfirescu 
(2000), who proved that all 2-connected, linearly 
convex triangular grid graphs (with only one 
exception of graph D) are hamiltonian, is extended to 
a much wider class, where the HAMILTONIAN 
CYCLE problem can be solved in polynomial time. 
This class contains all locally connected triangular 
grid graphs and all linearly convex triangular grid 
graphs as proper subclasses. It is also shown that the 
HAMILTONIAN CYCLE problem is NP-complete 
for general triangular grid graphs. 
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