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Abstract. Goal. The objective of this work is to propose a model that allows one to obtain velocity
and direction of spherical hard-bodies after a collision, using Molecular Dynamics (MD) methods.
Molecular simulations are employed to compute the properties and predict behaviors of solids, liquids
and gases; the consideration of collisions between particles is fundamental, since they represent a
change of energy in the system. Collisions are also associated with a wide range of applications such
as robotics, car traffic safety, videogames, materials science, colloids, among others; some of them
can be interpreted as elastic collisions between hard-spheres. Problem. Some algorithms of MD use
periodic boundaries, in which the particles can move, instead of a restricted space. However, more
realistic applications require algorithms to model collisions in closed spaces. Originality. Equations
to model the collision in restricted spaces were developed to obtain the velocities of the spheres that
collide with the wall(s) of the container; these formulas are valid when the walls are straight, for ex-
ample in cylinders and cubes. Methodology. A simulation of a hard-sphere system in a cylinder was
developed using the fundamentals of MD and the proposed equations to model collisions, in MATLAB.
Properties of the system were computed: the atomic packing fraction (APF), which represents the
space occupied by atoms in the container; and the equilibrium structure was characterized by the ra-
dial distribution function g(r) (RDF), which is proportional to the probability of finding two atoms
separated by the distance r + Ar. Results. The APF of the system was 0.2%, and the frequency of col-
lisions in the equilibrium stage was 2.2810x10°Hz, while in the production stage was 1.3995x10°Hz.
Practical value-This model can be used not only for atoms/molecules that collide, but also for some
rigid bodies. In a future work, particle collisions in irregular-shape containers will be modeled since
in real systems, the channels are constricted spaces.
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tion function.

Introduction

Molecular simulations have received a great
importance to model the properties and predict
behaviors of solids, liquids and gases. A three-
dimensional structural model of a material can
be designed, in many cases, as a set of identical
hard spheres occupying the available space.
When this space is limited to a predetermined
region, the properties of the material strongly
depend on the arrangement and density of the
particles; this implies a scientific interest in the
simulation of the motion of particles in signifi-
cantly limited volumes. The consideration of
collisions between particles in simulations is
fundamental to obtain results, since the colli-
sions lead to a change in energy in the system,

especially in deterministic methods, such as
Brownian dynamics, general Langevin dynamics
(which is an extension of Brownian dynamics),
Monte Carlo methods (MC), discrete element
method (DEM) and molecular dynamics (MD)
[1].

Collisions are also associated with a wide
range of applications such as robotics, car traffic
safety, video games and other real-time anima-
tion systems, virtual and augmented reality, sen-
sors, nuclear reactors, material science, and oth-
ers, where they appear in problems related to
collision solutions and their prevention, and are
treated by strategies for solving collisions using
mathematical, physical or computational meth-
ods [1-12]. Some of these systems can be inter-
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preted as elastic collisions between hard spheres,
and they are simulated by means of MD.

In the Chemistry area, processes are deter-
mined by the dynamic of collisions. Colloids are
a good example, defined by the British Encyclo-
paedia as “any substance consisting of particles
substantially larger than atoms or ordinary mol-
ecules but too small to be visible to the unaided
eye” [13]. In 1995, Segre et al., evidenced that
particles in suspensions of poly-
methylmethacrylate (PMMA) interacted like
hard spheres [14]. The authors described accu-
rate methods to determine both the particle radii
and the sample concentrations, using Lattice-
Boltzmann simulations, based on particle colli-
sions. Efficient methods and devices, which
used a collision analysis, have been developed
for studying the size and configuration of colloi-
dal particles, e.g. Rutherford scattering, mass
spectrometer, ion beam analysis and electron
microscope [8, 15-18].

Some algorithms of molecular dynamics use
periodic boundaries, in which the particles can
move, instead of a restricted space [1]. Howev-
er, more realistic applications require algorithms
to model collisions in closed spaces, when parti-
cles are located inside of a container and the
collisions occur between particles as well as be-
tween particle and container walls.

In the present work, using the MD, a model
has been developed for obtaining new velocities
and directions when spherical hard-bodies col-
lide with each other or against a straight surface.
It then describes the MD simulation in the
MATLAB for a hard-sphere system in a cylin-
der, and finally some concluding remarks are
given.

Modeling of collisions between spherical ob-
jects

A collision determines the trajectory fol-
lowed by a particle after chocking with another
particle or a restricting surface. However, there
exist a few algorithms that consider a restricted
space of movements. Given the importance of
collisions in molecular simulations, the model-
ing of the collisions is necessary to determine
and predict the behavior of spheres. If the body
is not an ideal sphere, it is possible to approxi-
mate its shape in this way: inscribing the body
within the smallest sphere possible, similar to
the idea proposed by Torquato and Stillinger in
2010 [19]. The wvelocities assignment is as
follows.

Velocity initializing

In any molecular simulation, the particles of
a material are created with an initial position and
velocity. In MC simulations, a sphere is random-
ly allocated according to a probability distribu-
tion function (PDF), usually a normal distribu-
tion or a Gaussian distribution [8]. In MD, the
position of a sphere i is assigned in a determinis-
tic manner according to the face-centered cubic
structure (fcc). The velocities are first assigned
using a uniform distribution and then are trans-
lated by a factor making the total linear momen-
tum equal to zero [1], according to the formula

(1)
1
Vr%ew — Voild ZIiVVoild (])

and similarly, for the y- and z- axes.
A model to assign these velocities is de-
scribed below.

Interparticle collision
According to Tsou and Wayne (2004), when
two congruent spheres i and j having the radius
r, the mass m, the position [x, y, z] and the initial
velocity [Vy, V,, V], collide, the modification of
the trajectory and velocity are calculated accord-
ing to the following expressions (2) and (3) [6]:

;. pynew _ yrold | Jx
Spherei: V™ =Vg® +— (2

i pynew _ yold _ Jx
Spherej: VifY =Vt -2 3)

The impulse J, due to the normal force in the
x direction at the moment of collision is (4)

_ mAx

Jo = 5% AV - AP, 4)

One can use analogous expressions for the y-
and z- components.

Both particles follow the movements accord-
ing to the new individual velocities until the
next collision with another sphere or with a wall,
and the trajectories continue to be updated
throughout the simulation.

Sphere-wall collision
In molecular simulations, the spheres are in con-
stant movement being in an infinite space. How-
ever, if a simulation is considered in a restricted
space such as a cylinder or a cub with straight
walls is considered, the particles generate the
proper trajectories in the container. The colli-
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sions of a sphere with other spheres and also
against the walls of the container can be mod-
eled as follows.

The velocity of a sphere that hit the container
wall is obtained by the following vector equa-
tion (5):

where
5P
P =1 ©)
p=nxA (7
A= Vi X7 (8)

As can be distinguished in fig. 1, V, is a vec-
tor that indicates the new velocity of the particle
i; V; is the vector of the initial velocity of the
particle, p is a vector parallel to the wall of the
cylinder, and 7 is the vector of the normal to the
particle moving direction before the collision at
the point, where the particle hits the wall.

When a sphere collides with a wall, there is
no transfer of energy from the sphere to the
wall, i.e., a sphere keeps the energy due to the
considerable difference of the size. The vector
of the normal calculation depends on the impact
zone and the container geometry, as it is re-
sumed in table 1. The impact zone can be: 1) the
lateral wall, 2) top and bottom walls, or 3) two
or more walls simultaneously.

The previous equations are useful when a
sphere impacts a single wall, but it is possible
that a sphere hits the wall and one of the caps
simultaneously. If this occurs, the line of move-
ment of the particle is the same but the direction
is opposite:

Fig. 1. Trajectory of a sphere after a collision
with a straight wall

Simulation of a hard sphere system in a
cylinder using MD

MD provides a methodology for detailed mi-
croscopic modeling at the molecular level,
which is becoming an indispensable tool for
both theoretic studies and applied researches
[20].

The movement of spherical bodies under the
action of a force field is the principle of the MD
simulation, which is considered as a determinis-
tic model because the movement of each sphere
is known. When a collision of a sphere with an-
other sphere or with the wall occurs, the velocity
is updated according to the momentum conser-
vation law [1].

MD approaches

There are two natural approaches to simulate a
system of particles: i) the event-driven simula-
tion and, ii) the time-driven simulation. The
former focuses on the determination of the or-
dered sequence of particle collisions. In this
model, all particles move in straight line trajec-
tories at a constant speed between collisions.
The latter discretizes the time into a number of
the periods of size dt; the position of each parti-
cle is updated every dt units of time and the
overlaps between all particles are verified. If a
collision has occurred, the position and the ve-
locity of the particles are updated and the simu-
lation continues. For better results, Leach (2001)
suggests the time step durations with continuous
potentials, according to the type of particles in
the system, see table 2 [21]

In an MD modeling, there are two principal
steps: 1) the development of a model for the
problem and 2) the simulation of MD applied to
the model. The simulation is determined by the
generation and analysis of the trajectories. The
generation of trajectories is made according to
the type of the bodies that are being simulated
and the permission of overlapping (hard or soft
spheres); then the static and dynamic properties
for the received model are calculated.

The objects can be modeled as hard spheres,
bodies that do not represent any electric charge,
and they cannot overlap each other. The molecu-
lar forces between these bodies are described by
discontinuous functions of the distance between
them. Namely, hard spheres exert forces on one
another only in case of a collision.
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Table 1 — Calculation of the vector of the normal for distinct containers and different impact zones

Geometry of the Impact zone Vector of the normal 71
container
Cylinder body =Xl = y,]
Cylinder n= R
Cylinder Caps i =+k
Wall intersecting the _ { Lif x=r }
-axi n=4y ..
x-axis —i,if x=L—r
Cube Wall intersecting the P Jif y=
y-axis —j, if y=L—r
Wall intersecting the ’,E’ if z=r
z-axis = .
-k, if z=L—r

Table 2 — MD with continuous potentials: Time-step of the different types of movement present in systems

System Movement type Suggested time-step (in s)
Atoms Translation 0™
Rigid molecules Translation and rotation 5x1071

Simulation stages in MD

The algorithms of an MD simulation are con-
stituted by three stages:

Initialization. The initial structure is gener-
ated according to the face-centered cubic (fcc)
lattice; the velocities are assigned to each parti-
cle according to Maxwell's distribution, causing
the system to be in equilibrium.

Equilibrium. One of the main characteristics
of this stage is that, regardless of the initial
structure, the results of the simulation must be
statistically equal. In this stage, the particles
move indefinitely until the structure becomes
disordered; this is measured by the parameter A.
The collision modeling is very important at this
stage to reach the objective.

Production. In this last stage, the properties
of the system are calculated; some equations to
determine different static and dynamic proper-
ties are defined in terms of collisions. For exam-
ple, the equation to calculate the compressibility
factor is (10):

d
Z=1+ m—lzlcvillﬂvij(tc)l, (10)

2Ep t

where m is the mass and d is the diameter of the
spheres, Ey represents the kinetic energy in the
system, t is the lapse of time, N. is the number
of collisions, and v;; is the change of velocity in
the collision [1].

Results of the simulation
A simulation of a hard-sphere system in a
cylinder was developed using the fundamentals

of MD and the software MATLAB® to compute
some structure properties: the packing fraction,
the radial distribution function and the stats of
the collisions during the simulation. The specifi-
cations of the computer used are: AMD A10
processor and a RAM of 16 GB, 800 MHz.

The simulated system was colloidal silver,
since in the simulations of colloids, the solute
particles are considered to be hard spheres, and
the presence of the solvent is not included in the
MD calculations. In 2014, van Swol and Petsev
established that this exclusion is correct when
the solute—solute collisions predominate over the
solute-solvent collisions [22]. The parameters
considered were taken from the characterization
of colloidal silver dissolved in water, presented
by Franco-Molina et al. [23]. The study was
realized by dynamic light scattering (DLS); the
solute showed a mean diameter of 100 nm.

The parameters of the simulated system are:

o Number of spheres N=225;

o Height of the cylindrical container L = 5;

o Diameter of the cylindrical container D =
2;

e The diameter of the spheres (particles of
solute) d= 0.1 (equivalent to the size of
100 nm).

Atomic packing fraction
The atomic packing fraction (APF) repre-
sents the space occupied by atoms in the con-
tainer. A material of a high APF is considered as
a dense material, otherwise is a porous material.
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In the present simulation, the APF remains con-
stant, and it is calculated by formula (11):

APF = Vspheres (11)

Vcontainer

According to Francon (1929), the importance of
APF lies in the information that it provides
about the structure of the material and the stabil-
ity of its atoms [24]. Fig. 2 shows the stages of
initialization, equilibrium and production of the
simulated system.
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Fig. 2. Graphics of the MD simulation of colloidal silver in a cylinder, stages of: (a) initiali-
zation, (b) equilibrium, and (c) production (r=0.1, N=225 spheres, APF= 0.2 %)

Radial distribution function
The equilibrium structure of liquids and
complex fluids in general is characterized by the
radial distribution function g(r) (RDF). It is pro-
portional to the probability of finding two atoms

separated by the distance r + Ar [22]. The RDF
is calculated according to the equation (12) [25]:

N(r,Ar)

%NpV(r,Ar) (12)

g(r) =
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Fig. 3. The radial distribution function g(r) of the simulated structure in the stages of:
(a) initialization, (b) equilibrium, and (c) production
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Here N(r, 4r) is the number of particles
found in a spherical shell of radius r and thick-
ness Ar, with the spherical shell centered on a
fixed particle; p is the number density of the
general system and V(r, Ar) is the volume of the
spherical shell.

The RDF indicates the influence of one par-
ticle in the system over the positions of the clos-
est neighbors. In fluids, if the separation is less
than one particle diameter, then g(r)=0; for large
separations, the central particle does not influ-
ence the position of the others, then g(r)=1, this
means that the density is uniform [1].
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Sphere-Sphere

Equilibrium

Sphere-Wall

The graphs of the RDF of the stages from the
simulated system are shown in fig. 3.

Analysis of the collisions

The equations modeled in previous section
were applied in the simulated system of
colloidal silver. The diagram in fig. 4 shows a
comparison between the collisions sphere-
sphere and sphere-wall in the stages of
equilibrium and production. In the first stage,
initialization, collisions are absent.

Sphere-Sphere Sphere-Wall

Production

Fig. 4. Analysis of the collision in the MD simulation: stages of equilibrium and production

The simulation computed the frequency of
collisions, resulting that the frequency of them in
the equilibrium was f,=2.2810x10°Hz and, for
the stage of production f,r,=1.3995%10°Hz.

Conclusions

In this work, the importance of the collision
modeling in different areas of science and tech-
nology was evidenced.

Equations to model the collision in restricted
(finite spaces) were developed to obtain the ve-
locities of the spheres that collide with the wall(s)
of the container. These formulas are valid when
the walls are straight, for example in cylinders
and cubes.

This model can be used not only for at-
oms/molecules that collide, but also for some
rigid bodies.

A simulation of a hard-sphere system in a
cylinder in the software MATLAB® was devel-
oped using the fundamentals of MD and the pro-

posed equations to model collisions; some static
properties of the system were computed.

In a future work, particle collisions in irregu-
lar-shape containers will be modeled, since in
real systems, the channels are constricted spaces.
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3ITKHEHHA YACTUHOK Y OBMEXEHOMY
IMPOCTOPI IIPU AHAJII3I
MOJIEKYJIAPHUMHU JUHMIYHUMU
METOJAMUA

Anomauin. Memoro yici pobomu ¢ 3anpono-
Hygamu Mo0enb 01 OMPUMAHHA WEUOKOCMI ma
HANPAMKI8, KOU 3iIMKHEHHs ChepuyHux meepoux mii
30IUCHIOEMBCSE 3 OONOMO2010  MOAEKYNAPHOL  Ou-
namixu (MIA). Monexynsapue moodemosanss uKopu-
cmosyemuvcsi 051 0OUYUCIeHHs. gnacmugocmel ma
NPOCHO3YB8AHHS NOBEOIHKU MEEPOUX Peyuo8UH, PIOUH
ma 2azie; po3ensio KO3 MIJC YACMUHKAMU € (DYH-
O0aMeHMANbHUM, OCKIIbKU 6OHU AGNAIOMb 00010
3Miny enepeii 6 cucmemi. Konizii maxoowc nos'szami 3
WUPOKUM CHEKmPOM 000AmKi8, Makux sik pobomo-

mexHixa, be3nexka asmomooOiILHO20 pYXy, 8ideoicpu,
Mamepianio3Hagcmeo, Koaoiou ma iH., 0esKi 3 Hux
MOJICHa IHmMepnpemyeamu AK HNPYICHI 3IMKHEHHs
midie orcopemrumu chepamu. Mesiki ancopummu M
BUKOPUCTNOBYIOMb NEPIOOUYHT MedCl, 8 AKUX YACMKU
MOJICymb  pyxamucs, a He obmedcene npocmopy.
Ilpome onsa 6invwt peanicmuunux 000amKie NOMpPIOHI
aneopummu MOOen08AHHs KO3l Y 3AMKHYMUX npo-
cmopax. Pignauna ona mooentoéanHs 3imMKHeHH: 6
obmedceHux npocmopax Oyau po3pobaeri 01 ompu-
MauHa weuokocmei cgep, aKi cmukaomvca  3i
cminoto (kowmetinepamu), yi gopmynu cnpageonusi,
KO CMIHU € NPAMUMU, HANPUKIAO, Y YULHOpax ma
kybax. Cumynayis cucmemu meepoix coep 6
Yuninopi Oyna po3pooaeHa 3 GUKOPUCIAHHIM OCHO6-
Hux npunyunie MD ma npononosanux pieHanb 07s
mooemosanust konizii 6 MATLAB. 3uaiioeno ena-
cmugocmi  cucmemu: Qpakyis amomHol ynakoeku
(APF), sxa npedcmagnse npocmip, 3auHAMULL amo-
mMamu @ Koumeunepi; i piGHOBAdICHA CMPYKMYpa Xa-
pakmepuzysanacs QYHKyico padiarbHozo po3nooiny
g(r) (RDF), saxa nponopyitina iMo8ipHOCMI 3HAX00-
JICEHHST 080X AmMoMi8, po3dineHux eiocmani r + Ar.
APF cucmemu cmanosuna 0,2%, a wacmoma 3imk-
Henb Ha cmaodii pienosacu cmarnosuia 2,2810 x 1 0°
I'y, mooi six na emani supobnuymea 1,3995 % 10°
I'y. L modenv modice Oymu GUKOpUCIMAHA He MITbKU
0711 amomig / MONeKY1, SIKI CMUKAIOMbCSL, alle MAKOIC
o Oesikux meepoux min. Y nodanvwiti pobomi
3IMKHEHHA YACMUHOK Y KOHmMeUHepax 3 Henpasuio-
HOWO Gopmoio 6y0ymb MOOeN08AMUCs, OCKIIbKU 8
PEeanbHUX CUCMeMAaX KaHaau € CIMUCHEHUMU NPOCMO-
pamu.

Knrwuosi cnosa: monekynapua OuHamixa, cumy-
aAYis, Konizisa, meepoi cghepu, mpaekmopis uacmu-
HOK, (QYHKYis pO3n00iny.

CTOJIKHOBEHHME YACTUII B
OI'PAHUYEHHOM INPOCTPAHCTBE ITPHU
AHAJIM3E MOJVIEKYJISIPHBIMHT
JUHAMMNYECKUMHA METOJAMU

Annomayusn. Llenvio nacmoswetl pabomul 5615-
emcsi: npeonodicums Mooenb 07 NOLYYeHUs CKOpPO-
cmu U HanpasieHut, K020a CMoJKHO8eHUs chepuye-
CKUX MBEpObIX Mmel OCYWeCmeIsemcs ¢ HOMOubIO
monexkynaprou ounamuxu (MI). Monexyrapuoe mo-
denupoganue  UCHOAb3Yemcs  Ons  BbIYUCTIEeHUs
CBOUCME U NPOSHOUPOBAHUS NOBEOEHUsT MBEPObIX
sewecms, HUOKocmell U 2a3os;, paccmomperue KoJi-
AUBUTL MedcOy yacmuyamu Ae1aemcs QyHoameH-
MANbHLIM, HOCKOALKY OHU 8€0VIM K U3MEHEeHUI0 IHep-
2uu 8 cucmeme.

Kniouesvte cnosa: monexynapuas OUHAMUKA, CU-
MYAYUs, KOJLIU3Us, meepovie chepbl, MpaeKmopus
yacmuybsl, PyHKYUsL pacnpeoeneHus.
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