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Abstract. Cyber-physical systems in Industry 4.0 are comprised of a computational core, a
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Introduction

Throughout history there have been different
revolutions in industry, each of these revolutions
representing a major change in the
manufacturing process. The fourth industrial
revolution, known as Industry 4.0 (140), refers to
a set of technologies aimed to create the concept
of smart factories. Among these technologies
appeared Cyber-physical systems (CPS),
Internet of Things (IoT), Cloud Computing and
Cognitive Computing. CPSs are considered to
be a core technology for 140.

CPSs are physical and engineered systems,
whose operations are monitored, coordinated
and controlled by a computing and
communication core [1]. They are smart
networked systems with embedded sensors,
processors and actuators that are designed to
sense and interact with the physical world
(including the human users), and support real-
time, guaranteed performance in safety-critical
applications [2].

The CPSs cover a wide range of possible
areas in which they can be used. Applications
include medical systems, assistance systems for
elders, traffic control systems, robotic systems,
control systems and automation of industrial
processes, automotive safety systems and drive
assistance, military systems, to mention a few
examples.

One of the main features of a CPS is that
they have strict timing restrictions, which must
be satisfied, since otherwise, the results may be
catastrophic. A system, which requires a
complete assignment of the resources and

provides functioning in a timely manner, is
referred to as a Real-time system (RTS) [3]. An
RTS interacts with the asynchronous calls to
maintain a continuous relationship and remains
synchronized with the environment, reacting
opportunely to changes in the settings [4]. The
design of such systems permits an opportune
response and the execution of a task within
predefined time constraints. From a functional
viewpoint, an RTS is a computer system, which
is dedicated to monitoring of a process or to the
control of tasks.

The RTSs implemented in traditional
hardware are used in a wide range of
applications. They are embedded into devices of
common use, which are known nowadays as the
IoT, as well as into communication devices,
such as mobile phones and computers. These
systems have been a subject of great interest due
to the trend towards the automation of quotidian
use systems and applications. Examples are self-
driving cars, autonomous airplanes, sensors and
robots to care the elderly, to mention some of
them [5].

Modeling software for 140 involves modeling
software for the computational core of a CPS,
which is an RTS. Due to the nature of its
temporal restrictions, a particular operating
system, known as a real-time operating system
(RTOS), and a specific Application
Programming Interface (API), must be used.
PREEMPT-RT, a Linux variant, and a Portable
Operating System Interface (POSIX), are among
the most popular RTOS and API for modeling
and implementing real-time systems,
respectively.
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In this paper, the modeling of software for
140 is discussed. An introduction to RTSs is
presented, along with a review of tools to model
and implement them.

The rest of the paper is organized as follows.
In Section 2, we introduce theoretical aspects of
RTS and RTOS along with the Rate Monotonic
(RM) and Earliest Deadline First (EDF)
scheduling policies. Section 3 discuses the key
aspects to model the computational core of a
CPS. Section 4 shows an example. Finally, in
Section 5 some conclusions and future work are
discussed.

RTSs
An RTS is a computational system that not
only must provide accurate results, but also, it
must provide them in a timely manner.
Modeling this kind of systems represents a
challenge since the temporal constraint must be
identified and controlled. Additionally, a

designer must verify that all the temporal
restrictions will be met before implementing the
RTS. As mentioned previously, the
computational core of a CPS is in fact an RTS.
An RTS is conformed of a set of applications
that request access to processors and resources.
The scheduling algorithms control the access to
processor and resources. Task scheduling is
probably the most intensively studied area in the
RTSs, since the most important feature of this
type of computer systems is to ensure that all the
tasks comply with their temporary restrictions.
In a monoprocessor system, only one task can be
executed at a time; any other task has to wait
until the processor is free and can be re-
scheduled. = Nowadays, the goal of
multiprogramming is to be able to have several
tasks continuously running, in order to
maximize the use of the processor. Figure 1
generalizes the structure of an RTS.

Real-Time Software

Controller system

i

| Controlled system

Fig. 1. Components of an RTS

Definitions

An RTS is commonly comprised of tasks,
where each task is subjected to a series of
temporary  restrictions. The number of
processors limits the maximum number of tasks
that can be executed simultaneously on a
computer. Therefore, it is necessary to define
which tasks have to be executed at each instant
of time on each processor. The algorithms for
this assignment are defined by the dispatching
rules, also called planning policies. In the
planning context, a task in an RTS represents a

set of related jobs that provide some functions of
a system. Every job in a task is released
periodically, sporadically, or aperiodically. The
majority of the restrictions imposed to an RTS
are expressed by the task release times,
execution times, and most importantly, by the
deadlines.

A task has three possible states. When it is
running, it is called an active task. A task
waiting for the processing is called a ready task,
and all tasks waiting for the processor are kept
in a waiting list called queue of ready task. The
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planner chooses the order of executing the tasks
based on the policy established by the selected
scheduling algorithm.

Usually, the restrictions that are imposed on
an RTS refer to the task deadlines. In an RTS,
the maximum possible time necessary to obtain
a response must be less than or equal to the task
deadline. The value that the task contributes to
the system depends on the fulfillment of the
deadline, starting at the activation moment. The
deadlines can be classified as follows:

- Soft deadlines: the consequences of a task
that does not finish its execution before its
deadline do not jeopardize the integrity of the
system. Commonly, the value that the task
contributes to the system is maximal if it is
executed before its term, and it is decremented
proportionally to the time of completion after
the term.

- Hard deadlines: if the task does not finish
its execution before the deadline, the integrity of
the system is not committed, and the value that
the task contributes to the system is zero in this
case. These deadlines are similar to non-strict
deadlines, with the difference that, if the task

does not meet its deadline, the system is not able
to continue the execution.

The tasks of an RTS are commonly classified
into two basic models: periodic and sporadic
tasks. In both models, the tasks are referred to as
an infinite sequence of activations called jobs
[6]. In the periodic task model, the arrival of the
jobs of a task is strictly periodic, separated by a
fixed interval of time, called period. In the
sporadic task model, each job in a task arrives at
any time once a minimum interval of time has
elapsed since the previous job of the same task
has occurred. Among the RTS models, the most
popular is the periodic task model.

The RTSs may be classified into two
categories, accordingly to the kind of their task’s
deadlines:

- Soft RTS: missing a task deadline produces
a performance degradation, but the tasks may
continue the execution, while the system tries to
minimize the consequences of missed deadlines;

- Hard RTS: missing a task deadline is not
acceptable due to possible catastrophic
consequences.

A task is subjected to a series of time
restrictions, as it is shown in Figure 2.

di,j+1

Fig. 2. Basic parameters of a task t: 7, dj, s5; and f;; are the release time, absolute deadline, start time
and finish time of the task 7 in the activation j, respectively; C; is the execution time in the worst-
case (WCET); D; is the relative deadline; 7; is the size of the activation period

RTOSs

An RTS must be executed under an RTOS,
which is integrated into several modules that
together allow the applications to interact with
the hardware, in the same manner as a general-
purpose operating system. However, an RTS
must be designed in such a manner that the
accomplishment of the timing restrictions of the
tasks that comprise the system are assured by
the selection and the use of an RTOS and real-
time scheduling algorithms. The correct choice
of an RTOS is a fundamental aspect in the
design of an RTS.

Almost all existing RTOSs provide two
priority-based scheduling policies: First-In First-
Out (FIFO) and Round Robin (RR). Liu and
Layland [7] introduced the RM and EDF
policies for scheduling periodic tasks in hard
RTSs. The RM algorithm assigns priorities
inversely proportional to the task periods; it is
an optimal static priority assignment policy. It
can be mapped through the FIFO policy. The
EDF policy assigns the highest priority to the
job with the earliest deadline; it is an optimal
dynamic priority assignment policy [8]. The
EDF algorithm is not available in most of the
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existing hard RTOSs. However, EDF gets a bet-
better utilization of the available processor
capacity, which allows the execution of more
tasks in the same processor.

One of the most popular general purpose
operating systems is Linux, which is employed
by the academic community and companies for
the development and execution of applications
in diverse fields, such as control, computation,
health, military and space, to name a few (see,
e.g., [9]). Linux is not an RTOS. Its scheduling
policies offer some level of timing guarantees
for the soft RTSs, but they are not sufficient for
systems with hard real-time constraints [10]. To
use Linux as a base for an RTOS, some
modification to its kernel must be made.

Generally, there exist two approaches to
allow Linux to provide a hard real-time support:
1) at the hypervisor level [11, 12] and 2) at the
OS scheduler level [13, 14]. The first approach
allows the coexistence of both, an RTOS and a
generic OS, where the first one has a higher
priority comparing with a non-RTOS. In
contrast, in the OS scheduler level, the real-time
capabilities are provided using multiple
scheduling classes, where each class has several
scheduling policies, being a real-time scheduling
class of the highest priority. This approach is
employed by several projects, both as
commercial and as open source ones. One of
them is the RT-Preempt [14], which includes
free open source patches.

Architecture of an RTOS

In an RTS, activities are commonly
implemented as tasks or threads. An RTOS
provides three important functions to attend the
tasks: 1) scheduling, 2) dispatching, and 3)
intercommunication and synchronization.

The scheduler defines the sequence of the
jobs to be executed on the processor, selecting
from the list of ready tasks, the next task to be
executed. The scheduler implements the
scheduling policies. In an RTOS, the scheduler
is a fundamental component since the selected
scheduling algorithm is in charge of
accomplishing the temporal restrictions of the
RTS. The dispatcher is a module that performs
the necessary bookkeeping actions to start the

execution of the chosen task.
Intercommunication and synchronization
services assure that the tasks cooperate

correctly, process the actions to avoid a racing
or similar anomalies.

To guarantee the time restrictions of the
RTS, the scheduler implements real-time
scheduling algorithms, such as RM, EDF, and
synchronization protocols, such as PIP. The
RTS designer chooses, among the available
scheduling algorithms, those that better satisfy
the RTS characteristics. Some examples of the
commercial and free-software RTOSs are given
in
Table 1.

Table 1 RTOS projects

Project Hard RTS |POSIX|GLIBC| Thread policy Source
SCHED_ DEADLINE + - - - [10, 15, 16]
Litmus-RT - - + + [13]
ChronOS - + + + [17]
Xenomai + + + - [18]
RTAI + + - - [19]
RT-Linux + + - - [11]
VXworks + + - - [20]
OSE + + - - [21]
MaRTE + + - - [22]
SCHED EDF + + + + [23]
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Figure 3. Relationship between the Linux kernel and GLIBC API

To model and implement RTS, the POSIX is
commonly used. It offers many advantages, such
as portability and standardization of the
application development. It is aimed for
software compatibility between UNIX-like OSs,
such as Linux, defining an APL

RTS feasibility testing for a CPS

One important feature of RTS applications is
that they must be verified before the execution.
It is crucial to know whether the schedule
provided by the scheduler is feasible. A
schedule is feasible if it respects the deadline of
all jobs. An optimal scheduling policy always
generates a feasible schedule for a hard RTS,
providing that a given set of jobs has feasible
schedules [25, 26, 27]. It is important to know
that, whether a task set is schedulable or not,
i.e., the scheduler always generates a feasible
schedule using a specific policy. This problem is
commonly known as the feasibility test. [25]
proved that the feasibility test in uniprocessor
RTSs is a co-NP-complete problem in the strong
sense for non-trivial computational models.

There are two types of feasibility tests: exact
tests, which check sufficient and necessary
conditions, and inexact tests, which check
sufficient but not necessary conditions [8]. If a
task set is scheduled with a given policy and
satisfies the exact test, then all the tasks will be
executed according to their deadlines. On the
other side, if a task set does not satisfy the
inexact test, it is not really known whether all
the tasks may complete their execution
according to their respective deadlines. Liu and
Layland [7] demonstrated that RM is an optimal
policy for the static priority assignment. Their
inexact test for RM states that a set of n periodic
tasks is schedulable under RM if:

L) o

The authors showed that the RM policy is
able to schedule any periodic task set T with
implicit deadlines (periods are equal to the
deadlines) if the total utilization of the processor
satisfies U, <In2~0.6931, where U _ is given

as follows

n C;
U =X @

Table 2 describes the behavior of this
expression for different values of n. One can
observe in the table that, by increasing the
number of tasks, the minimal guaranteed
utilization converges to:

U,. =In2~0.6931. 3)

Table 2 — Minimal guaranteed utilization of the
processor for n tasks

n Umin
1 1

2 0.8284
3 0.7798
4 0.7568
5 0.7433
1) 0.6931

A necessary and sufficient (exact) test for the
RM policy was proposed by Lehoczky et al. in
[28]. It considers the processor utilization by the
periodic task set as a function of time at a
critical instant. The test is as follows:

Let © be a set of n tasks of the periods

T, <T, <...<T,, respectively, in a uniprocessor

RTS. The cumulative demand on the processor
by this set of tasks over the time interval [0, ¢] at

a critical instant is:

t
Wi(f)—;C{F} 4

J
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where

Li(t)zWi—(t)a

L; =ming 7\ L;(?),

L=maxy ., L;,

T . .
k:1"“’|:/Tj:|;J:1’“"l}'

In this test, L; is the utilization factor required
to meet the deadline of a task i, 1<i<n over
the time range [0,¢]; W; is the cumulative
demand on the processor by a set of tasks 1y, ...,
T;, over the time range [0,7]; S; is the set of

S, = {ka

activation points for a task t;. In this manner, a
task t; is schedulable under the RM policy if and
only if:

L=maxg ., L; <1. (5)

Liu and Layland [7] introduced an exact test
of the EDF feasibility for any periodic task set
and proved the optimality of the EDF dynamic
algorithm for uniprocessor architectures. A
periodic task set is schedulable under the EDF
policy if and only if:

U, <l1. (6)

The modeling of software for hard RTS (i. e.,
for 140) requires that the designer define the
parameters of the system task: deadlines,
periods, worst-execution times, among others.
Also, a scheduling policy must be selected, and
a feasibility tests must be applied, in order to
verify that every temporal restriction is satisfied.

Modeling an RTS
A CPS system is comprised of a
computational core (cybernetic system), a

communication core, and a controlled system
(physical system). The computational core is in
essence an RTS. In this section, an example of
the modeling of a computational core for a CPS
is discussed.

A controlled system
A prototype of a controlled system was
designed to illustrate a CPS system. This system
is composed of three threads. It considers a

periodic task (thread) that controls the
appearance of any external object within a
predefined range, and two independent tasks that
perform calculations in the background. Such a
system can be interpreted as a mobile robot,
which checks periodically whether an object
makes obstacles in his trajectory. If an object is
detected, it turns an LED on immediately.
Conversely, when the object is no longer
detected, the LED is turned off. These actions
are equivalent to the re-adjusting of the robot’s
trajectory, within a specific timing window, to
avoid a collision.

An ultrasonic HC-SR04 was used for the
obstacle detection with the goal to detect objects
and also to calculate the distance from the
sensor to an object in a range [2 + 450] cm. The
sensor sends a start pulse and measures the
width of the returned pulse. An Arduino UNO
microcontroller was used to communicate the
ultrasonic sensor with the controlling system
(such as, e. g., a computer). Figure 4 shows the
architecture of the used RTS prototype. The
LED was connected to the GND pin and the pin
of the Arduino micro-controller in order to
represent the turning ON/OFF of the light. Also,
the pins are used for the trigger and echo of the
sensor, respectively. Finally, the VCC and GND
pins are connected to the 5v and GND pins of
the Arduino UNO. When an object is detected
within the range, the system checks whether the
LED light is turned OFF and turns it ON. If the
LED light is turned ON, no action is performed.
When the task is activated in its next period and
the object is no longer within the detection
range, the system checks whether the light is
switched ON to turns it OFF. The controlling
system communicated with the Arduino micro-
controller through the USB serial port, using the
Arduino-Serial library [29].
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Fig. 4. Architecture of the controlled system

Experiment

To evaluate the feasibility of the system, the
controlling system was implemented on a Dell
Vostro 260 with 6 Gb of RAM and an Intel®
CoreTM 1i3-2100 CPU @ 3.10 GHz. However,
since a mono-processor kernel was configured,
only one core and 1 Gb of RAM were used. The
system ran on a Debian GNU/Linux 7.4.0
Wheezy 1386 OS, using the PREEMPT RT
3.4.61edfV2-rt77+ and the SSELINUX-EDF
patches. The system used the EDF policy
through the SSELINUX-EDF developed by
Amaro et al. [23]. The scheduling algorithms
used were RM and EDF. The task model was
the periodic task model. The system is
comprised of three hard real-time tasks. The
parameters of the tasks are shown in Table 3.

Table 3 — Parameters of the experimental task set
(time is given in ms)
Thread| C; D; T;
1 290 700 700
2 50 600 600
3 190 400 400
To model the correctness of the system, a
feasibility test must be conducted. The test was
carried out using two corresponding applications
developed with the aim to simulate realistic

e Clams o emse dme o ldme
Thrend 1] g =

Thrend 2 g N ; ; L ; [ | y

$
e el L e R
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scenarios. Three independent threads were
created, with different deadlines and WCETs.

Given the time of execution of the tasks, the
total utilization of the processor is:
U, = 290 + >0 + 190 , U.=0.972.

700 600 400

The exact schedulability test of [28] was
used to verify the schedulability of the task set
using the RM scheduling policy:

S, ={400, 600,700},

W, =C, +C, +C; =530<400,

W, =C, +C, +2C; =720<600,

W, =C, +2C, +2C, =770<700.

The test showed that Thread 1 is not capable
to reach the execution time before the
corresponding deadline even in the first
activation. Threads 2 and 3 showed the same
behavior.

Figure 5 displays a Gantt diagram, which
shows that the tasks are not schedulable under
the RM policy. This means that some deadlines
are met, due to the missed deadline by the first
job of Thread 1. If the parameters cannot be
modified, the tasks would not be executed
correctly under the existing scheduling policies
in RT-Preempt. However, the value of the total
processor utilization U_ <1 implicates that the

task set can be still correctly scheduled using the
EDF policy.

The next test was performed under the EDF
policy as shown in Figure 6. The purple arrows
display the activations and deadlines of the
threads. The subsequent observations can be
derived from the diagram:

- All the task’s jobs were fulfilled by the
respective deadlines.

-The non-real-time tasks, which were
grouped in Idle, were processed only when the
real-time tasks did not require to be executed.

-The schedule 1is similar in both
hyperperiods, which are separated by a vertical
red line.

o m dolom tme o "mm oo e codess el o Tl o
§ of (ol o (el T OF off of (of o (wf o)
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Figure 5. Schedule of the task set using the RM policy
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Figure 6. Schedule of the task set using EDF (two hyper periods)

Table 4 displays some metrics obtained for
the first hyperperiod. We can draw the following
conclusions:

— The required time to switch between two
tasks (context switch) with EDF is larger than
with RM.

—Each time a task needs to be activated,
EDF uses more time than RM.

— There is a double number of preemption
points using the RM policy. It corresponds to the
observation by [27] that RM introduces more

preemptions than EDF.
Nevertheless, despite the FIFO policy
requires less time to accomplish context

switches, the times of the EDF algorithm are
minimized during the execution because it does
not produce such a quantity of preemptions.
Table 4 — Metrics of the RM and EDF policies
(average time in microseconds)

. Context Preemption
Policy switch Task wakeup points
FIFO 11.077 2.310 14
(RM)
EDF 12.344 3.364 7

Conclusion and future work

CPSs are a key component for developing
applications for 140. CPSs are comprised of a
computational core, a communication core, and
a physical system. Since the computational one
has strict timing restrictions when model it, the
designer must verify that all the temporal
restrictions will be satisfied. In this paper, the
modeling of the software for the Industry 4.0
was discussed. An example was introduced,
showing techniques to determine the correct
execution of the system. It was shown that the
selection of the scheduling policy of the
computational core is fundamental in satisfying
the timing restrictions of the system.

As future work, we plan to implement the
RTS using an embedded system as the hardware
platform.
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ACIHEKTH TUMYACOBHUX OBMEXEHbD
P BUMIPIOBAHHI KIBEPOI3IYECKIX
CHUCTEM B ITIPOMHUCJOBOCTI

Anomauyin. Kibepgizuuni cucmemu (CPS) 6 In-
oycmpii 4.0 cknadaromvcs 3 004UCTIOBATLHO20 50PA,
a0pa 36’513ky U Qizuunoi cucmemu. Obuucosanvhe
A0PO Mae cmpozi 4acosi 0OMedNceHHsL | A6IAE c000I0
cucmemy peanvrozco uacy (RTS). RTS, peanizosani
MpaouyiiHoMy 6CmamKy8aHHi, GUKOPUCTNOBYIOMbCS
8 WUPOKOMY CHeKMPI 000amKi8, MaKux K npucmpoi
3a2anbHO20 KOpUCmysanus, eidomi aAx Internet of
Things (lot), a makooc npucmpoi 38 ’a3Ky, MOOLIbHI
menegonu abo komn 'romepu. Lli cucmemu euxiuxa-
oMb GenuKull iHmepec uepes meHoeHyito 00 aemo-
Mamuzayii cucmem I 000amKie OJis1 WOOEHHO20 6U-
KOPUCAHHA, HANPUKILAO, CAMOKEPOBAHi A8MOMOOII,
ABMOHOMHI AIMAaKu, 0amuyuKy i pooomu 01s 002150y
3a 100bMU NOXUN020 6iKy. OOHA 3 OCHOBHUX 0COONU-
eéocmeu RTS nonseac 6 momy, wo 60HU MarOmo
cmpozi 4acosi 0OMedNceHHsl, SIKi NOBUHHI OYMU 6UKO-
HAHi, OCKIiNbKU 8 NPOMUNEHCHOMY BUNAOKY pe3Vilb-
mamu modxcymv 0ymu kamacmpogiunumu. RTS eu-
KOHYIOMbCSL 8 ONepayiiniil cucmemi peaibHo20 4acy
(RTOS). OoHiei 3 Hatibinbuw NONYIAPHUX ONEPAYILIHUX
cucmem € Linux. V akocmi aneopummise nianyeamnms
6 Linux 8uKopucmogyiomecs NOMMUKU NIAHYBAHHS
Ha ocnosi npiopumemie First-In First-Out (FIFO) i
Round Robin (RR), ane éonu nedocmamui 015 iHcop-
cmkux RTS. V yiti cmammi npononyemuvcs inmeepy-
eanns noaimux Rate Monotonic (RM) i Erliest Dead-
line First (EDF) y cucmemy Linux 0ns nianyeanms
nepioouunux 3aedamv y scopcmxux RTS. Tecm na
BUKOHYBAHICMb PO3K1Adi6 8 0OHonpoyecopuux RTS €
co-NP-nogrotl 3a0auero y cy8opomy cMuciy o0Jia He-
MPUBIATGHUX 0OUUCTIOBANLHUX MoOenell. Jlexoykum
0y6 3anponorosanull HeoOXiOHull i docmamuil (mo-
ynutl) mecm 01 nonimuxu RM. Bin posensoae guko-

PUCMAHHA npoyecopa HAbOpoM NepioOudHUX 3a0ad,
K Qyuryito wacy 6 kpumuunuti momenm. Jlo i Jleti-
JIeH0 yeenu mounuti mecm euxonysanocmi EDF ons
6y0b-51K020 NepioouuHo020 HAbopy 3a60anb i d06elu
ONMUMATILHICMb 1020 OUHAMIYHO20 6apianma 0.
oononpoyecoprux apxumexmyp. s inocmpayii
CPS 6ys po3pobnenuti npomomun KOHMPOIOOYOL
cucmemu, wo NoA2A€ i3 Mpbox nomokie (threads).
Buxomnysanicms poskiadie ompumanux 3 uUKOpUC-
manuam EDF y RM 6yna nepesipero 3a 00nomo2or
o0box mecmig. Tecmu nokasanu, w0 BUKOPUCTIOBYIO-
yu nonimuxosi RM, o0un i3 mpbox nomokis e 3mie
BUKOHAMUCS 00 BIONOBIOHO20 KPAUHbO2O CMPOKY NpU
nepwitl dce akmusayii. OOHaK 3HAYEHHS 3A2ATLHO2O
BUKOPUCMAHHI NPOYecopa noxasaio, wo nadip 3a-
oauy modice Oymu NpasUIbHO 3aNIaHOBAHUL 3 GUKODU-
cmanuam EDF. Ilpu yvomy 6ci 3a60amHs GUKOHY8A-
aUcs  GiONoGiOHO 00  6CMAHOBNEHUX  CMPOKIB,
3a680aHHS He NOMpedYIodl BUKOHAHHA 6 DPeaibHOMY
yaci, oyau 3epynosani 6 nezauusmomy (Idle) uaci i
00pobsUCce MinbKU MoOi, KOau 3a0adi peaibHO20
yacy He BUMA2AAU BUKOHAHHSA, OMPUMAHUL PO3KAAO
AHANIO2TYHULL Y 080X OOCHIONCEHUX 2inepnepiodax.
Knruosi cnosa: cucmema peanvrozo uacy, Kibe-
pisuuna cucmema, naanysanns, Inoycmpis 4.0, an-
eopumm Earliest Deadline First, anreopumm Rate
Monotonic.
ACINEKTHI BPEMEHHBIX OTPAHUYEHUI
MNP UBSMEPEHUU KUBEP®U3NUYECKHUX
CUCTEM B IIPOMBILNIJIEHHOCTH

Annomayun. Kubepgusuueckasa cucmema O0ns

Huoyempuu 4.0 cocmoum u3 KOMRbIOMEPHLIX NPO-
2PAMM, KOMMYHUKAYUOHHBIX NpocpamMm u qusuue-
ckotl cucmemvl. Komnviomepuvie npospammul ume-
jom  cmpocue  6peMeHHble  02PAHUYEHUs U
npedcmasnaom cobol cucmemvl pearvbHo20 epeme-
Hu. B amoiti cmamee ouckymupylomcs 60npocul Mo-
0enuposans Makux POSPAMM.
Key words: cucmema peanvnoco epemenu, kubep-
Qusuueckaa  cucmema, — naauuposanue,  Hnoy-
cmpus 4.0, aneopumm Earliest Deadline First, anco-
pumm Rate Monotonic.



