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Abstract: In this paper, the problem of scheduling n jobs on m machines in an open
shop environment is considered so that mean flow time becomes minimal. Since
this problem is strongly NP-hard, different constructive and iterative heuristic
algorithms are developed and discussed. Computational results are presented for
problems with up to 50 jobs and 50 machines, respectively. The quality of the
solutions is estimated by a lower bound for the corresponding preemptive open
shop problem and by an alternative estimation of mean flow time.
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1. INTRODUCTION

In an open shop scheduling problem, a set of n
jobs Ji, Ja, ..., J, has to be processed on a set of
m machines My, Ms, ..., M,,. The processing of
a job J; on machine M; is denoted as operation
(1, 7), and the sequence in which the operations of
a job are processed on the machines is immaterial.
It is assumed that the processing time t;; of each
operation (i,j) is given. As usual, each machine
can process at most one job at a time and each
job can be processed on at most one machine at
a time.

Open shop scheduling problems arise in several
industrial situations. For example, consider a large
aircraft garage with specialized work-centers. An
airplane may require repairs on its engine and
electrical circuit system. These two tasks may be
carried out in any order but it is not possible to
do these tasks on the same plane simultaneously.
Other applications of open shop scheduling prob-

lems in automobile repair, quality control cen-
ters, semiconductor manufacturing, teacher-class
assignments, examination scheduling, and satel-
lite communications are described in (Kubiak et
al., 1991; Liu and Bulfin, 1987; Prins, 1994).

Most papers in the literature dealt with the mini-
mization of makespan. Gonzalez and Sahni (1976)
presented an O(n) algorithm for the two-machine
open shop problem denoted as O2||Crar. The
preemptive problem can be solved in polynomial
time for an arbitrary number of machines, see
(Gonzalez and Sahni, 1976). However, slight gen-
eralizations of the two-machine non-preemptive
problem lead already to NP-hard problems. In
view of the NP-hardness of problem O||Ciaz,
heuristic and branch and bound algorithms have
been developed for this problem. Brésel et al.
(1993) developed several constructive heuristics
based on matching algorithms (which determine
subsets of operations that can run simultaneously)
as well as on the insertion of operations into par-



tial schedules combined with beam search. Other
heuristic algorithms for the open shop problem
with minimizing makespan have been given e.g.
in (Alcaide et al., 1997; Liaw, 2000). Exact al-
gorithms for the open shop problem with mini-
mizing makespan have been given e.g. in (Brucker
et al., 1997; Gueret et al., 2000; Dorndorf et
al., 2001). The latter algorithm is able to solve
all but one problems of a benchmark set with 15
jobs and 15 machines in about 12 minutes on the
used computer.

There exist only a few papers dealing with the
minimization of mean flow time although from
a practical point of view, often the minimiza-
tion of the latter criterion is more important. In
(Achugbue and Chin, 1982), it has been proved
that the two-machine open shop problem with
minimizing the sum of completion times (also de-
noted as mean or total flow time minimization) is
NP-hard in the strong sense. In (Liaw et al., 2002),
the problem of minimizing total completion time
with a given sequence of jobs on one machine has
been considered (also denoted as O|GS(1)] > C;).
This problem is already NP-hard in the strong
sense even in the case of two machines. First,
a lower bound has been derived based on the
optimal solution of a relaxed problem in which
the operations on every machine may overlap ex-
cept for the machine with a given sequence of
jobs. Then a branch and bound algorithm has
been presented and tested on square problems
with n = m. The algorithm was able to solve all
problems with 6 jobs in 15 minutes on average
and most problems with 7 jobs within a time
limit of 50 hours with an average computation
time of about 15 hours for the solved problems. A
heuristic algorithm has also been proposed which
is an iterative dispatching procedure. Concerning
approximation algorithms with performance guar-
antee, the currently best result has been given in
(Queyranne and Sviridenko, 2002).

In this paper, the non-preemptive open shop
scheduling problem with mean flow time mini-
mization is considered. A comparison of different
types of constructive and heuristic algorithms is
performed in order to point out the differences to
the makespan minimization case. In contrast to all
other papers, which consider only square problems
with n = m, we also investigate the influence of
the ratio of n and m on the choice of an appro-
priate algorithm. The remainder of the paper is
organized as follows. In Section 2, we introduce
some basic notions and present estimates for the
optimal objective function value. In Section 3 sev-
eral constructive algorithms are described, and in
Section 4 the iterative algorithms applied in our
tests are sketched. Some computational results are
briefly discussed in Section 5.
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Fig. 1: The sequence graph

2. BASIC NOTIONS AND SCHEDULE
EVALUATION

In most papers on open shop problems, a feasible
schedule is represented by a permutation of all
operations. In the following, we use the digraph
G(MO, JO) with operations as vertices and arcs
between two immediately succeeding operations
of a job or on a machine. If we place the oper-
ations of job J; in the ¢-th row and the opera-
tions on machine M; into the j-th column, then
G(MO,JO) = G(MO) U G(JO) where G(MO)
contains only horizontal arcs (describing the ma-
chine order of the jobs) and G(JO) contains only
vertical arcs (describing the job orders on the
machines). A combination of machine orders and
job orders (MO, JO) is feasible, if G(MO, JO) is
acyclic. An acyclic digraph G(MO, JO) is called
sequence graph. In this case all above graphs rep-
resent partial orders on the set of operations. For
a small example with n = 3 jobs and m = 3
machines, a sequence graph G(MO, JO) is given
in Fig. 1.

Similarly as in (Brésel et al., 1993) and (Werner
and Winkler, 1995), we describe a sequence graph
G(MO,JO) by its rank matriz A = (as5), ie.,
the entry a;; = [ means that a path to operation
(1,7) with maximal number of operations has
l operations. Notice that for each a;; = k& >
1, integer £ — 1 occurs as entry in row ¢ or
column j (or both). Now we assign the processing
time t;; of operation (¢,j) as the weight of this
operation in G(MO,JO). The computation of
a longest path to the vertex (i,7) with (i,7)
included in an acyclic digraph G(MO, JO) yields
the completion time ¢;; of operation (i,j) in
the semiactive schedule C' = (c¢;;). Moreover,
C; denotes the completion time of job J;, and
r;; denotes the head of operation (i,7). The use
of sequence graphs resp. rank matrices avoids
the disadvantage of using a permutation of the
operations, where several permutations represent
the same solution.



In (Brésel and Hennes, 2004), the above model
has been generalized to the preemptive case
and a lower bound for the open shop problem
Olpmtn| Y C; has been derived which can also be
taken for the non-preemptive problem. This lower
bound is as follows. Let

n
Ti = Zti]‘ and Tj = Ztij
j=1 =1

and suppose that jobs and machines are ordered
such that
<1, <...<T,

and - -
Tl §T2 S STm-

Obviously, we have C; > T; in a feasible sched-
ule and any unavoidable waiting time of job J;
increases the completion time C;. The goal is to
identify such unavoidable waiting times of jobs.
We can assume that n = m (otherwise we intro-
duce dummy jobs or machines). First, let T} > T'y,
i.e., the total processing time of job Jj is greater
than the machine load on M; and let hy := T —
T,. Considering the intervals in which job J; is
processed, there are subintervals of total length hq
with the following property: at each time inside
these subintervals, there can be at most n — 2
jobs processed simultaneously with J; since one
machine different from M is occupied by job J;
and machine M; is idle. Thus, one (several) job(s)
with

Tj < Tj (1)
must wait until value T; has been increased to Tj.
Therefore, one chooses the longest job J, with

T, < T} and performs the following computa-
tions:

H = mln{Tk + hl,Tk};
Tj = H.

hl Z:hl—H+Tj;

This procedure is repeated with other jobs satis-
fying inequality (1) until h; = 0. If T < T, then
there is an unavoidable idle time on machine M7,
and the rest is symmetric to the first case. Then
jobs Ja, Js, ..., J, are considered in a similar way
and finally, the lower bound for the preemptive
problem is equal to sum of the final T; values, see
also (Brésel and Hennes, 2004). We also use an
alternative estimate for the optimal function value
which is based on the polynomial solution of a
modified open shop problem with unit processing
times.

3. CONSTRUCTIVE ALGORITHMS

Among constructive algorithms which generate
one or a small number of solutions (without

changing settled decisions), we consider matching
algorithms, the generation of active and nonde-
lay schedules, insertion and appending procedures
combined with beam search.

(a) Matching algorithms

The first type of algorithms is based on matching
procedures. They have been suggested in (Brésel
et al., 1993) for the makespan minimization prob-
lem and generate so-called rank-minimal sched-
ules. Without loss of generality, we assume that we
have a square problem with n = m (otherwise we
introduce dummy jobs or dummy machines such
that n = m). The algorithm successively deter-
mines n operations having rank 1 in the graph
G(MO, JO), n operations having rank 2, and so
on. This is done by solving weighted bipartite
maximum cardinality matching problems.

(b) Generation of active and nondelay
schedules

A schedule is called active if no operation can
be started earlier without delaying some other
operation. A schedule is called nondelay if no
machine is left idle provided that it is possible to
process some job. The algorithms for constructing
active and nondelay schedules repeatedly append
operations to a partial schedule. Starting with
an empty schedule, operations are appended as
follows:

e To construct a nondelay schedule, we deter-
mine the minimal head r of all unscheduled
operations. At time r, there exist both a free
machine and an available job. To maintain
the nondelay property of the schedule, we
have to append an operation which can start
at time r. Among all operations (i,j) with
rij = r, choose one according to some prior-
ity dispatching rule.

e To construct an active schedule, we deter-
mine the minimal possible completion time
EC of all unscheduled operations with re-
spect to their heads and processing times.
The next operation to append is chosen
among all unscheduled operations which can
start before EC. Again, that choice is made
by a priority dispatching rule.

In our tests, we have used the following priority
dispatching rules: FCF'S (first come first served);
ECT (earliest completion time); SPT (shortest
processing time); LPT (longest processing time).

(c) Insertion algorithms combined with
beam search

Insertion algorithms combined with beam search
have been suggested in connection with shop
scheduling problems, e.g. in (Briisel et al., 1993)
for the open shop problem and in (Werner and



Winkler, 1995) for the job shop problem. They are
restricted branch and bound procedures which are
based on an enumerative algorithm for schedules.
The insertion algorithm works as follows. Accord-
ing to some chosen insertion order, operations are
successively inserted into partial sequence graphs.
When a new operation is inserted, all precedence
constraints previously established are maintained.
Let vy operations of job J; and w; operations
on machine M; be already sequenced. Then there
exist (vg+1)- (u; + 1) possibilities to insert opera-
tion (k, 1), namely operation (k,[) can be inserted
on the i-th position in the machine order of job
Jr, 1 < i < v, + 1 and on the j-th position in
the job order on machine M;, 1 < j < u; + 1
(however, not every combination of positions leads
to a sequence graph). In all cases, the ranks of all
successors of the inserted operation have to be
updated.

Algorithm Beam-Insert is determined by fixing
the insertion order 1O, the estimation LB for the
objective function value of a partial schedule, the
beam width k and the son selection procedure
SFEL, i.e., the partial sequence graphs that are
selected from the set of generated graphs for fur-
ther considerations. Typically, the insertion order
10 is determined by some well-known priority
rule (see generation of active and nondelay sched-
ules). In our tests, we have considered the rules
RANDOM,SPT, LPT and FCFS. A partial
schedule usually estimated by means of a rough
lower bound for the objective function value of
an arbitrary completion of the current partial
sequence graph and schedule, respectively. We use
the following bound:

LBP: For a partial schedule, the value Y C; is
estimated by the sum of the completion times of
the currently last scheduled operation of each job.

The beam width k£ denotes the number of paths
that are considered in the branching tree. To select
k partial sequence graphs, we have considered

the following two variants for the son selection
procedure SEL:

SEL1: Select in each step the k best sons from
the whole set of partial sequence graphs, i.e., the
selected sons do not necessarily have different fa-
thers.

SEL2: For each of the k fathers select the best
son, i.e., all sons have different fathers (as long
as we do not have k fathers the first criterion is
applied).

(d) Appending procedures combined with
beam search

In some initial tests we have found that for certain
types of problems, even nondelay schedules pro-
duced better results than the Beam-Insert algo-

rithm. This leads to the idea to combine the gen-
eration of nondelay schedules with beam search.
Next, we discuss deterministic settings of the pa-
rameters of this procedure. In each step, a partial
sequence graph is extended by appending some
operation. For selecting this operation, the small-
est possible head of some unscheduled operation
is determined. In the case when this operation is
not uniquely determined (which is in particular
the case at the beginning of the procedure), we
apply some tie-breaking rule TBR to select an
operation (i,j). We take as tie-breaking rule a
specific priority dispatching rule. In our tests, we
used TBR € {RANDOM,SPT,LPT, FCFS}.

In order to generate several successors from a par-
tial sequence graph, we considered two son gener-
ation procedures SG for generating the successors
of the current partial sequence graph(s), namely a
machine-oriented (SG = MO) and a job-oriented
(SG = JO) appending of the next operation.
This means that, considering the selected oper-
ation (7,j), either an unscheduled operation on
machine M or an unscheduled operation of job J;
is sequenced such that a nondelay schedule results.

Algorithm Beam-Append is characterized by the
tie-breaking rule T'BR, the son generation proce-
dure SG, the estimation LB of the partial sched-
ule, the beam width k, and the son selection type
SEL. Parameters k and SEL are similar to the
corresponding parameters for procedure Beam-
Insert. For the evaluation of the generated sons,
we have considered in addition to LB P the follow-
ing estimation for the objective function value:

LBC: For the Beam-Append procedure, it is
known that all unscheduled operations of a job
must be sequenced later than the currently last
scheduled operation of this job. Therefore, the
completion time C; of job J; is estimated by the
largest completion time of the scheduled opera-
tions of this job plus the sum of the processing
times of the unscheduled operations of job J;.

4. ITERATIVE ALGORITHMS

Among the iterative algorithms, simulated an-
nealing, tabu search, a genetic algorithm and
an ant colony algorithm have been considered.
While standard metaheuristics such as the first
two ones are single trajectory methods (i.e. they
manipulate a single feasible solution), the latter
two algorithms work with a population. For the
comparative study, the stopping criteria have been
settled such that all iterative algorithms consume
a similar amount of computational time.

(a) Single trajectory methods

Simulated annealing sometimes accepts moves
that lead to a neighbor with worse objective func-



tion value. In particular, if a neighbor (rank ma-
trix) A’ of the current starting solution A with
better function value has been generated, it is
always accepted. Otherwise, the acceptance prob-
ability of a non-improving move depends on the
difference A in the objective function values of
A’ and A and the temperature control parame-
ter T and is equal to exp(—A/T). Initially, the
temperature T is high and then it decreases to
a value close to zero as the search proceeds. A
simulated annealing algorithm mainly depends on
the chosen neighborhood and the cooling scheme
for the temperature.

First, we briefly discuss the generation of neigh-
bors of a current solution described by a sequence
graph G(MO, JO) resp. rank matrix A. In the
case of a job shop problem, often a neighbor is
generated by interchanging two adjacent jobs in
exactly one machine order. We denote this neigh-
borhood as machine oriented API-neighborhood,
abbreviated as API(MO). In an open shop prob-
lem we can, due to symmetry, consider a neigh-
borhood based on adjacent pairwise interchanges
in the machine order of the jobs, abbreviated as
API(JO). In our algorithms, we use the union of
both neighborhoods, abbreviated as API(MO +
JO). A second neighborhood considered is crit —
API(MO+JO), which is a restricted API(MO+
JO) neighborhood in which a neighbor must sat-
isfy a necessary condition for an improvement
of the makespan value. This neighborhood is
based on the so-called block approach originally
introduced for shop scheduling problems with
makespan minimization. Moreover, we consider
the neighborhood k — API(MO + JO), in which
a neighbor is generated from the current sequence
graph G(MO, JO) by generating consecutively up
to k neighbors in the API(MO + JO) neighbor-
hood (i.e. a path containing up to & arcs in the re-
sulting neighborhood graph is generated). Finally,
we consider the h-reinsertion neighborhood. In the
latter case, g € {1,2,...,h} chosen operations of
the same job are deleted and then successively
reinserted at the best position, i.e. the insertion
algorithm is applied to the operations that have
been deleted. As the cooling scheme, a geometric,
a Lundy-Mees and a linear reduction scheme have
been considered.

Tabu search is an iterative procedure that moves
in each iteration to the best neighbor investigated
which has not necessarily a better objective func-
tion value. To avoid cycling and to escape from
a poor local optimum, a tabu restriction is used
that makes selected attributes of these moves for-
bidden (tabu). Tabu restriction is enforced by a
tabu list L which stores the move attributes to
avoid reversals of moves. The tabu list contains
the moves describing the last [ solutions visited,
where [ is the size of the tabu list. It controls the

memory of the search process (we use a short-term
memory in our implementation of tabu search).
In the experiments, we mainly test the influence
of the neighborhood, the size of the tabu list and
the number of generated nontabu neighbors in one
iteration.

(b) Population based methods

Genetic algorithms are general search tech-
niques based on natural selection mechanisms and
genetics. They manipulate and maintain a pop-
ulation of schedules represented in some encod-
ing scheme (chromosomes). We choose the rank
matrix instead of the common linear order rep-
resentation of the operations. The chromosomes
are modified in order to produce offspring by
application of genetic operators (mutation and
crossover). A mutation changes the rank of one op-
eration in the rank matrix, and then all ranks are
updated so that the relative order of all remaining
operations is maintained. The crossover operator
recombines the structure of two chromosomes into
one (or two) new chromosome(s) distinct from the
originals. Two rank matrices are selected, some
operations of a set H are chosen and the ranks or
these operations in both rank matrices are inter-
changed. Then both chromosomes are completed
by maintaining the relative order of the remaining
operations not contained in H. After having gen-
erated all offspring we apply fitness proportional
selection on the union of the old and new genera-
tions to obtain a new population. In addition, the
elitist strategy has been considered, i.e. the rank
matrix from some population is directly inserted
into the next generation. We mainly investigate
the influence of the probabilities for applying the
genetic operators and the population size. More-
over, hybrid genetic algorithms have also been
tested, where to any generated offspring a fast
local search procedure is applied before selection.

The basic idea of an ant colony algorithm
comes from the ability of ants to find shortest
paths from their nest to food locations. In a com-
binatorial problem, the ant iteratively builds a so-
lution of the problem. This procedure is conducted
using at each step a probability distribution which
corresponds to the pheromone trail in real ants.
Once a solution is completed, pheromone trails
are updated according to the quality of the so-
lution constructed (i.e. cooperation between ants
is performed by the common structure which
is the shared pheromone matrix). In our imple-
mentation, we follow the strategy given e.g. in
(Blum, 2005), which turned out to work partic-
ularly good for the open shop makespan mini-
mization problem. At each iteration, a number of
ants probabilistically construct solutions. In par-
ticular, by means of a randomized Beam-Append
procedure, rank matrices representing nondelay



and active schedules are constructed. Then an
iterative improvement procedure is applied to im-
prove the constructed solutions. Finally, some of
the constructed solutions are used for performing
an update of the pheromone values which aim at
increasing the probability to generate high quality
solutions. The pheromone values encode for any
two operations belonging to the same job or being
processed on the same machine the desirability of
performing a particular operation before the other
one. In our experiments, we test in particular
the parameters of the probabilistic beam search
procedure.

5. COMPUTATIONAL RESULTS

For the comparative study, we have considered all
pairs (n,m), n # m, with n € {10, 20, 30,40, 50}
and m € {10,20,30,40,50}. Additionally, we
have considered square problems with n = m €
{15,25,35,45}. For each combination (n,m) we
generated 50 instances with processing times from
the interval [1,20] and 50 instances with process-
ing times from the interval [1,100]. From our de-
tailed computational experiences, we sketch here
only briefly some aspects of the results (a detailed
comparison of the results with the different types
of algorithms in dependence on the problem type
is given in the talk).

e For the open shop problem with mean flow
time minimization, the choice of an appropri-
ate constructive solution procedure strongly
depends on the relationship between the
number n of jobs and the number m of
machines. Matching procedures do not work
well. The generation of nondelay schedules is
superior to the generation of active schedules.

e For problems with n/m < 2/3, Beam-Insert
is an excellent constructive algorithm. For
many instances, even the lower bound is met
for some variant, and the average percentage
deviations are small in this case.

e For problems with n > m, procedure Beam-
Append with an appropriate parameter set-
ting is a fast and good constructive algo-
rithm.

e For problems with n/m > 2/3, the use
of an iterative algorithm turns out to be
necessary and they improve the results of the
constructive algorithms substantially.

Most algorithms presented have already been in-
cluded into the program package LiSA - A Library
of Scheduling algorithms (see http://lisa.math.uni-
magdeburg.de), and the remaining ones will be
included into the next version.

This research was supported by INTAS (project
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