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Extended Abstract

Local search techniques are useful tools for solving discrete optimization problems. These
methods depend on an underlying neighborhood structure. Usually, the quality of the neigh-
borhood structure has some important influence on the methods.

As mentioned in Part 1 our approach is to replace the original feasible set S; of an discrete
optimization problem by the subset S; of all s € S; which are locally optimal with respect
to a neighborhood structure M(s),s € S; on the set S;. On the new set S, we will define
operator sets OF,(s),s € S, which define a new neighborhood structure N;(s),s € S; on
the set S;. ~

We apply this approach to the following NP-hard scheduling problems.

(a)

(b)

P2 || Crax

P2 || Crax denotes the problem of scheduling n jobs ¢ = 1,...,n with processing
times p;(i = 1,...,n) on two identical parallel machines such that the makespan is
minimized.

1|prec| C;

1 [ prec| Y C: denotes the problem of scheduling n jobs 1,...,n with processing times
pi (1 =1,..,n) on one machine such that the mean flow time is minimized. Between
the jobs precedence relations — are given.

2T,

1|l 3°|T: denotes the problem of scheduling n jobs 1,...,n with processing times
pi (1 =1,...,n) and due dates d; (i = 1, ...,T) on a single machine such that the total
tardiness ) T; is minimized.
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For each neighborhood defined in Part 1 for the problems (a), (b) and (c) we will

(a)

(b)

characterize the local optima
define a new neighborhood on the set of the local optima

prove that the new neighbarhood is connected.

The solution set S is given by all possible partitions (/y, I;) of the jobs. We define the
neighborhood A"} by the operators move(:) which move the job ¢ to the opposite set
(i=1,...,n).

Let (I, 1;) be a feasible solution with s1 < sz (s; denotes the sum of processing times
in I;). Then (I;,1;) is locally optimal with respect to A7 iff for all 1 € I, we have
p.-<A:=.52——sl._ '

For the definition of the neighborhood A, an operator localopt(r) is of crucial im-
portance. localopt(r) calculates iteratively for a given solution (/y, I7) a corresponding
locally optimal solution. In each step localopt(w) searches for a job which violates the
condition for local optimality. This job will be moved to the opposite set. Therefore
in each step the makespan will decrease. If more than two jobs violate the condition
for local optimality the given order 7 of the jobs will determine which of the -obs is
moved.

The operator sets OPy(s), s € S, which define the neighborhood A, are defined by:
OP,(s) = {localopt(r™) o move(z) | i = 1,...,n},

where ‘o’ denotes the composition of operators and 7* denotes the shortest processing
time sequence of the jobs 1, ...,n. These operators first move a job z and afterwards the
operator localopt(7*) transforms the new solution again into a locally optimal solution.

With the above choice of 7~ connectivity of the secondary neighborhood can be esta-

blished.

The solution set S is given by all sequences 7 = (7y,...,7,) of the jobs which are
compatible with the precedence relations —. We define the neighborhood N; by the
operators ezxchange(i) which exchange the jobs m; and 7, of the given sequence
(: =1,...,n —1). Due to the Smith rule a sequence = is locally optimal with respect
to My, iff either p,, < Priyy OF Ty — mipq holdsfor e =1,...,n - 1. ‘

For the definition of the neighborhood AN; we again use an operator localopt which
calculates iteratively for a given sequence 7 a corresponding locally optimal solution.
In each step localopt shifts the job ; to the left until 7; and its predecessor fulfill the
condition of a locally optimal solution for the first time. These shifts are compositions
of exchange operators which all decrease the mean flow time.

The operators which define N, consist of two parts. First a given solution is perturbed
by shifting a job to the left or to the right. Afterwards the operator localopt is used
to calculate a locally optimal solution corresponding to the perturbed solution.

There are two types of shift operators which perturb a solution. The operators le#(:)
will shift the job from position i to a position j < 7, (¢ = 2,...,n) and the operators
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right(i) will shift the job from position ¢ to a position j > 1, (i=1,..,n-=1). In both
cases we try to calculate j in such a way that localopt will not reverse the changes
of left(z) resp. right(i). Since the operators left(i) and right(i) are compositions of
exchange operators; i.e.

left(r) = exchange(j)o...oezchange(i — 1)

-

right(i) = ezchange(j —1)o...0 exchange(i),

we determine j as the first position such that one of these exchange operators will lead
to a decrease of the mean flow time. In this case the operator localopt can not reverse
the exchanges of left(i) resp. right(i), since localopt produces only exchanges with
decreasing mean flow time. However not in all cases this will be possible.

For a solution 7 € S, the set of operators OP,(7) which define the neighborhood A,
now are defined by:

OP,(m) = {localopt o left(i) | localopt o I:Sft(i)(r) #F7m1=2,...,n}
U {localopt o right(z) | localopt o right(i)(7)# 7; i =1,....n — 1}.
It is possible to prove that the neighborhood A is connected.

The solution set S is given by all sequences 7 = (7, ..., 7,) of the jobs which are com-
patible with the precedence relations — defined in Part 1. As in (b) the neighborhood
N is defined by the operators ezchange(i) (i = 1, ey ).

In contrast to (b) it depends not only on the exchanged jobs 7; and 741 but also
on the start time of job m; whether or not the operator exchange(t) will decrease the
objective value. We introduce the notation (z, k)r in such a manner that the sequence
i,k is preferred to the sequence k,i when the first job starts at time T. This means
(2, k)7 is sufficient for the fact that interchanging the adjacent jobs i and & in a sequence
m where the first job ¢ starts at time T does not lead to an improvement of the objective
value. ‘

Let 7,k be two jobs with 7 < k. Then we define
(4, k)7 iff pi < pi or pi > pr and T < dy — p;

and
(k,i);r iff Di > Pk and T > dk o U

If the exchange of two jobs will not change the objective value, this definition gives a
rule which of the two jobs should be scheduled first.

We now define that a feasible sequence 7 € S, belongs to the set S, of locally optimal
sequences iff (m;, Ti41)s() holds for all i = 1,...,n—1 where S(i) is the starting time of
the job on position 7 in 7. According to the definition of (i, k)7 several locally optimal
sequences with the same objective value which are connected in the neighborhood A
are represented by one of these sequences in S,.

In order to define a neighborhood structure on the set S> we again use an operator
localopt which calculates a locally optimal sequence. However this operator is not
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comparable with the localopt operators for the two problems considered before since
it will start with a subsequence of jobs and not with a complete sequence 7 € S,.

We call a subsequence 7F = (nF,...;7F), k < n a final sequence if the jobs 7] and
n k., fulfill the condition of local optimality when the job 7] starts at time

n k
- Zpi_zpwfa

=1 J=i
i.e. if the jobs of 7% are scheduled at the end of a complete sequence.

Starting with a final sequence 77 localopt constructs a locally optimal schedule =’ €
S, with 7F as final sequence if such a sequence exists. However, there exist partial
sequences which cannot be completed to a sequence 7' € S,.

The operator localopt consists of two operators. The first operator localopt1(R) con-
structs for a given sef R of jobs a locally optimal schedule 7%, where the first job of
7R starts at time 0. ’

If we apply this operator for a given final sequence ¥ to the set R of unscheduled
jobs, i.e. to the set of jobs not contained in 7F, the concatenation of 77 with the
final sequence 7F does not necessarily lead to a locally optimal sequence 7’ = (7%, 7F)
because the last job of 7F and the first job of 7F may violate the condition of local
optimality. In this case we try to extend 7F to a final sequence (7™, x¥) such that
the set R of still unscheduled jobs (jobs not contained in 7™ or 7®) can be scheduled
with localopt1(R) and the concatenation of 7% and (7™, %) leads to a locally optimal
sequence. The corresponding operator will be denoted by localopt2. If it is not possible
to extend 77 to a locally optimal sequence, localopt2 will stops with this information.

Summarizing, we first apply localopt2 to a final sequence 7F and extend 7 to a final
sequence (7™, 7)) (if this is possible). Afterwards we apply localoptl to the set R of
still unscheduled jobs and we get a locally optimal sequence 7' = (7%, 7™ 7F). This
yields:

localopt(nF) := localopt1(R) o localopt2(rF).

Again the operators which define A, consist of two parts. First a given sequence 7 is
perturbed by shifting a job to the right. We define a shift operator right(z, ) which
shifts a job from position 1, say job k, to position 7 > :. For a given value : we allow
only operators right(z, j) where

o (k,7;41)s holds (S denotes the starting time of job k)

e no precedence relation k — 7, (1 + 1 < u < j) exists.
Afterwards the operator localopt is applied to the final sequence 7F = (k,7;41,...,7,)
to obtain again a locally optimal solution.
For a solution 7 € S, the set of operators OP;(7) now is defined by:

OPy(m) = {localopt(rF)oright(i,j)(x)li=1,...,n —1; right(i,j) is defined;

7 can be completed by localopt(xF)}

Again it is possible to prove that the neighborhood defined by OP,(7) is connected.
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