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Abstract

The paper presents a dynamic programming approach for the two-machine non-preemptive job-shop
scheduling problem with a total weighted late work criterion and a common due date, J2 |d=d|Y,, which is
known to be NP-hard. The late work performance measure estimates the quality of the obtained solution with
regard to the duration of late parts of tasks not taking into account the quantity of this delay. Providing
a pseudo-polynomial time method for the problem mentioned, we can classify it as binary NP-hard.
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1 Introduction

Revenue management is essentially the process of allocating resources to the right customer at the right time and
the right price. The focus is on maximizing profit or revenue and it has led to an increased profit in a variety of
industries. Still, some of the most important applications are in the airline business, i.e. where the basis question
arises whether or not to accept or reject a booking request (for a flight) within a specific booking class at a given fare
[cf. 12, 17). In this paper we are faced the situation where a set of customer demands of expected size contribute to
the company’s revenue in an expected amount that is a function of the demand size and importance of the particular
customer. The company is supposed to answer the question how the limited resource capacity over a certain time
horizon should be allocated in order to produce the customer’s demand within its given due date in a way that
maximizes the company’s revenue, This leads to the question which customer orders are to be accepted and which
orders should be rejected, i.e. the expected revenue of the latter will be lost because their production cannot be
finished before the due date. Thus, rejected orders are late work which could only be produced after the due date.

Due date involving criteria are performance measures often used in practical applications [cf. 2, 7, 13]. Generally,
they represent the customer point of view allowing to minimize the delay of orders realized in a system. Classical
objective functions of this type, such as maximum lateness or total tardiness [cf. 2, 7, 13] are ¢calculated with regard
to the quantity of the delay, while the late work criterion allows for minimizing the amount of work executed after
given due dates. :

The late work objective function has not been widely investigated, although it finds many practical applications, e.g.
in data collecting in control systems [1, 3], supporting agriculture technologies [4, 5, 16] or designing production
plans within predefined time periods in manufacturing systems [16] or recently in revenue management [12, 17].
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The late work criteria was proposed in the context of parallel machines [1, 3] and then applied to the one-machine
scheduling problem [14, 15]. More recently, some general complexity resuits were obtained [4, 5, 16], which allow
one to consider problems with the late work criterion as more complicated than analogous problems with
the maximum lateness objective function. Then, the late work performance measure has been investigated in
the dedicated machine environment {5, 6, 16].

2 Problem definition

In the paper, we consider a non-preemptive scheduling problem with the total weighted late work criterion and
acommon due date in the two-machine job-shop environment. The problem basically arises for a medium sized
manufacturer (approximately 1500 employees) producing parts (e.g. power brake units, booster, etc.) on demand for
most of the existing automobile companies in Europe, America, and Asia. A set of jobs (customer orders, e.g. 30000
booster of a particular type) consists of two tasks that have to be processed on two machines in a predefined order
(for each job). The tasks’ processing times reflect the expected order size for the two different machines. A machine
can process only one job at a time and a job cannot be handled on both machines simultaneously. Within our earlier
research, we have shown that analogous problems in open-shop [5] and flow-shop systems {6] are binary NP-hard.
With regard to the hardness of the flow-shop problem, the job-shop one (being its generalization {[cf. 2, 7, 13]) is also
computationally hard [8]. Here, we propose a pseudopolynomial time dynamic programming method solving
the problem considered (the approach was inspired by methods designed for cases with the weighted number of late
jobs as an objective function [11]).That allows us to classify this case as binary NP-hard and to finish the research on
two-machine weighted shop scheduling with a common due date.

More formally, in.the job shop scheduling problem [cf. 2, 7, 13], J2 | n; < 2, d; = d | Y,,, we have to schedule a set of
jobs J={J,, ooy Jiy ..ny J,} on two dedicated machines M;, M,. Each job J; &€ J consists of at most two tasks T}, and
T,, (i.e. n; < 2) described by the processing times p;;, p;; and machine requirements. Particular jobs have to be
performed, without preemptions, on machines M;, M, in the predefined order. Each job can be processed on at most
one machine at the same time and each machine can perform at most one task at the same time. We have to minimize
the total weighted late work in the system. The late work Y; for job J; € J is determined as the sum of late parts of
tasks T;; and T}, executed after a common due date d, on- machines M; and M,, respectively. Denoting as C;;, C;; their
completion times, the late work for job J; is given by:
Y;= 3, min{ max{0, Cj-d}, py}-
j=12

To determine the total weighted late work we consider the expected revenue losses in the system, i.e. we sum up late
work for all jobs (where n=|J]) taking into account their given weights (customer importance) w;, i.e.:

n

Yw = Z W,'Y i
i=1

3 Dynamic programming approach

Let the set of jobs J be partitioned into two subsets J' and J? containing all jobs with the first (or only) task processed
on machine M; and M,, respectively. We can assume that early jobs are ?rocesscd in Jackson’s order [9]. Jackson’s
rule states that jobs from J' proceed J? on M, while on M, jobs from J* are executed before J' (for both sets jobs
containing only one task are performed as the last ones). Sets J/, J? are scheduled according to Johnsons’s rule [10],
so within sets J' and J? all jobs J; with p;; < p, are sequenced in non-decreasing order of p;;, while the rest, with
Pi1 > P2 is scheduled in non-increasing order of p;,. Jackson’s order is optimal from the schedule length point of
view. Thus, scheduling early jobs in this sequence, we obtain the shortest subschedule of early jobs, the maximum
machine utilization and, in consequence, the maximum amount of the weighted early work for those jobs. Similarly
as for the flow shop problem [6], we use the fact that maximizing the total weighted early work is equivalent to
minimizing the total weighted late work, which is the criterion under consideration.

Based on the above observation, that all early jobs have to be scheduled in Jackson’s order, for any subset of early
jobs J'cJ'UJ? in an optimal solution, we can assume that jobs from J'~J’ precede jobs from JnJ’ on M, and
oppositely jobs from J?~\J’ precede jobs from J'~J’ on M,. Moreover, we can assume that the first job of both sets
J'~J’ and J"\J’ starts at time zero on machines M, and M,, respectively.
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Because of NP-hardness of the considered problem, we have to check all possible schedules to determine an optimal
one. The search in the solution space is performed in a systematic way according to a dynamic programming

Denoting with J” 3 set of jobs with partially late tasks, we have to consider:

- = {Jar 11}, i.e. there are on both machines partially late tasks belonging to two different jobs, where J, denotes a
Jjob partially late on M 1and J, is a job partially late on M,,

N { J: }, i.c. there is one partially late task, ejther on M, or on M,, belonging to job J,,

and 7 denotes the number of Jjobs to be scheduled (besides J*). To find an optimal order of Jobs subject to set ', we
have to choose an optimal variant of scheduling particular jobs Joe NP (ie. Je A. Job Ji may be executed early,
totally late or early on its first machine and totally late on the second one. No task of job Jie NP can be performed
partially late, because, in this case, J; would have to be a member of J*.

To find an optimal solution of the problem, we have to analyze all possible sets of jobs with partially late tasks J°.
For a particular set J° » we calculate initia] conditions (f;,,) determining the amount of weighted early work
corresponding to this set. Then, we consider the remaining jobs Jie ./ calculating for them recurrence relations (f,)
denoting the amount of weighted early work obtained for set {J,, < Ji}UJ”. First, we analyze all jobs with the first
(only) task executed on machine M,, i.e. k = 7, --+» U+1, and then, using slightly different recurrence relations, all jobs
with the first (only) task executed on machine M,, i.e. k= U, ..., 1. The value obtained for the first job J, (f;) denotes
the weighted early work for ai] jobs {J;, ..., Js}us® subject to set J*,

After analyzing al] possible sets J*, we determine the optimal weighted early work for the problem under
consideration. Then, restoring decisions taken during dynamic programming calculations for an optimal set J” , we
schedule optimally particular tasks from JUP, AN early jobs have to be executed before a common due date in
Jackson’s order, while remaining jobs are performed between those early ones and J* in an arbitrary order.

Initial conditions

To find an optimal solution of the problem, we have to analyze all possible sets of jobs with partially late tasks — J”.
The weighted early work corresponding to this set is determined by initial conditions defined as Jfas1 (A, 1, L, B, t,
Ly), where 7 = MV"|. Function Ja+1 denotes the maximum amount of the weighted early work provided that the totally
early tasks of jobs from J* (if any) start exactly at time A on M, and exactly at time B on M, Moreover, there are
exactly 1, ¢, units of early tasks and exactly L;, L, units of partially late tasks on machines M, and M,, respectively.
In general, as we have mentioned there are 3 possible cases, when set J° contains two jobs, one or no job.

To illustrate the meaning of function parameters, let us consider, for example, =2 and a Jjob J, partially late on M I
belonging to J2 (i.e. executed first on M, then on M, with regard to the predefined Job precedence constraints),
For such a job, we analyze among others the situation, when the first early task of J, starts at time B on M, and it js
executed for 1,=p,, units. The second operation of Ju is partially late on M, and only 1, units from p,; units of
this task are executed early, before the common due date 4,

In general, if set J° contains two jobs, i.e. J© = {Jar Jp}, then we have to analyze four subcases corresponding to
the different types of jobs (they may belong to J' or J?). For a set J? containing only one job, j.e. Jf = {J;}, only two
subcases are possible depending on the type of job J,. Finally, we have to analyze the case when no partially late task
exists in the system. Such a situation occurs, when on a particular machine a task finishes/starts exactly at time 4 or
there is idle time around a common due date.

Taking into account the fact that all garamcters of function f;, A, 0, L, B, t3, L) are bounded by O(d) the calculation
of the initia] conditions for any set J’ takes O(dd) time.

Recurrence relations

After determining initial conditions for a particular set J° » we calculate the recurrence relations for the remaining jobs
Ji€ VP, numbered according to Jackson’s rule as /NN A S Jz. As we have mentioned, first, we analyze
Jobs with the first (only) task on Mytk=n, ..., u+1). Then, jobs with the first (only) task on M, are taken into account
(k= u, ..., 1). For job J,, we determine the amount of the weighted early work for jobs {Jo .o Jr}UJP based on
the recurrence relation JdA, 1, Ty, ry, L, F, B, 1, T3, ry Ly). The meaning of the parameters changes slightly
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depending on the job type, whether J, € JU” or J; € JU”. In general, calculating the recurrence function value for
a job J;, we assume that this job can be added to a partial schedule already obtained (i.e. it cannot start earlier than at
time A on M, and at time B on M,). Moreover, we reserve some time (r; or r) for tasks of early jobs of another job
type, which have to be executed after a task of job Jj scheduled early. If J, is scheduled partially late, then its early
task has to be executed within a certain time window (i.e. #; or 1,). Additionally, some time interval (i.e. T or Ty) is
reserved for early tasks of the remaining jobs scheduled only partially late. Parameter F denotes always, for any Jj,
the completion time of the last early job from {Jj, ..., J,)\J* on M,. For jobs J, € JAU” (analyzed first) this value is
not known yet and it has to be considered as a variable. For jobs from J, € J'\/¥, F is calculated based on a current
partial solution. Parameter F is necessary to determine a proper initial condition value during the construction of
an optimal solution (F becomes A for set J© ). Similarly, parameters L,, L, are equal, for any J, to the number of
early units of the partially late tasks of jobs from initial set J*.

For job JeJAJ processed first on M, then on M, (i.e. for k = #, ..., u+l), the recurrence function value

JdA, 1), Ty, 1y, Ly, F, B, 1, Ty, 13, Ly) denotes the maximum amount of the weighted early work of jobs {J, ..., J;}uJs®

provided that:

- the first job from this set starts processing exactly at time B on M, and not earlier than at time A on M 1 (jobs from
J'\J® will be scheduled within time A in the following stages of the DP method),

- there are at least r, time units in the interval [B, d) not used for processing jobs from JAJ” on M, (within this time
second tasks of jobs from J' will be scheduled in the following DP stages),

- there are exactly r; time units in interval [4, d] reserved for processing jobs from JAJ” on M 1 (all tasks of early
jobs from JAJ” have to be executed within this interval),

- the first tasks of tardy jobs from {J,, ..., JiyuJ” are processed exactly ¢, time units on M, before 4 and exactly T,
units are reserved on M; before d for the first tasks of tardy jobs J; from JAJ” for i < k,

- there are exactly L, (L,) units of partially late tasks on M;, M, (they belong to jobs J,, J, or J,).

Parameters ¢,, T; are not important at this stage of the analysis (those intervals are embedded within A from Ji point of

view). They play analogous roles as 1,, T, for jobs from J in the following stages of DP. Parameter F denotes

the assumed completion time of the last early job from {J), ..., J I on M I

In the presented recurrence relations, all parameters of function f(A, t;, T), r), L,, F, B, 1,, T, ry, Ly) are bounded by

O(d). Thus, determining the recurrence relations for jobs J & JAU” takes O(d’') time.

For job J; € J'\J*, processed first on M, then on M, (ie. for k = u, ..., 1, the recurrence function value

SdA, 1, Ty, r Ly, F, B, t3, Ta 1y, L;) denotes the maximum amount of the weighted early work of jobs

{Jes -, J5) P provided that:

- the first job from this set starts processing exactly at time A on M, and not earlier than at time B on M, (jobs from
JAJ? have been scheduled within interval B in DP stages described above),

- there are at least r; time units in the interval {A, d] not used for processing jobs from J'\J* on M ;1 (within this
interval second tasks of jobs from J? have been scheduled), -

- there are exactly r; time units in interval [B, d] reserved for processing jobs J; from J'\/* for i < k on M,

- the first tasks of tardy jobs from {J, ..., Jz)UJ are processed exactly ¢, time units on M, before 4 and exactly T,
units are reserved on M, before d for the first tasks of tardy jobs J; from J'\J* for i <k,

- there are exactly L, (L,) units of partially late tasks on M;, M; (they belong to jobs J,, J, or J,).

Similarly as in the previous case, parameters 12, T; are not important at this stage of analysis (those intervals are

embedded within B from J, point of view). Parameter F denotes the completion times of the last early jobs from

{Je ..., JyuJf on M;.

In the case of jobs from set J'\J”, calculating recurrence relations f;(A, 1,, T}, ry, Ly, F, B, 1y, Ts, r3, L,) takes O(d’%)

time (F is not a variable as for j,( € JZUP). :

To determine the maximum weighted late work subject to a given set J*, one has to select the maximum value of
50,1,0,r,L,,0,B,1, 0,0, L,) for 0 < 1, 11, Ly, B, 13, L; < d. Function f; denotes the weighted early work for all
jobs {J), ..., AT Changing parameters ¢,, L,, t,, L,, we check solutions obtained for all possible amounts of early
tasks of late jobs, while changing r; and B, we reserve different amounts of time on M, and M, for jobs from JA\J”,
Determining the maximal total weighted early work for a particular set J* takes O(d®) time.

Complexity of dynamic programming approach
As we have mentioned, initial conditions are calculated in 0(d6) time. Fixing recurrence relations for a single job

requires at most O(d’’) time, but this stage of the algorithm has to be repeated for all jobs from JV”, i.e. O(n) times.
The maximum criterion value can be found in O(d®) time. Thus, the overall complexity of the described DP stages is
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O(nd'"). These calculations have to be performed for all possible sets J”, i.e. containing two, one or none job with :
atask partially late on machine M; or M,, in order to find an optimal solution of the problem under consideration.
Consequently, dynamic programming calculations have to be repeated for all O(n?) two-job sets, all O(n) one-job sets
and for an empty set J*. That gives the complexity O(n’d'"). The construction of an optimal schedule does not
increase the overall complexity of the dynamic programming approach.

The presented method allows us to find an optimal solution of problem J2 |ni<2,d;=d | Y, in pseudo-polynomial
time. Thus, we can classify this scheduling case as binary NP-hard [8].

4 Conclusions

The paper presents a dynamic programming approach for the job-shop scheduling problem with the total weighted
late work criterion and a common due date J2|ni<2, d;=d|Y,. The NP-hardness of the flow-shop problem,
F2ld =d)v,, being a special case of J2 |n;<2,d;= d|?,, resulted in the NP-hardness of the job-shop case. But, it
Wwas not settled, whether the latter problem is binary or unary NP-hard.

Proposing a solution method with pseudo-polynomial time complexity, we have proven the binary NP-hardness of
the problem considered. The problem describes a basic situation in revenue management where expected customer
orders are known. Ongoing work will consider cases where future demand is uncertain and we are faced the situation
to set aside capacity for potentially attractive orders on the risk of loosing the revenue of currently rejected jobs.
Customer segmentation policies will change over time as closer the due date approaches,
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