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Introduction

Background:

A material handling tool (MHT) is one of the
essential components in a manufacturing system.

« MHTSs are responsible for the transitions of the
lots between the stations.

The strategy of MHTs will impact the delivery
rate, cycle time and WIP level.
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Introduction

* A Markov decision process (MDP) will be
applied to model the MHT system.

* A dynamic programming algorithm will be
used to solve this problem.




Introduction

Two contributions are discussed in this paper:

e A systematic management method of MHTs under a
discrete manufacturing will be developed using a Markov
decision process. The quantified relationships between
MHTs and WIP will be discussed within the constant
WIP (CONWIP) methodology and constant demand.

 The dynamic MHT replenishment method of MHTSs will
be discussed within the theory of Little’s law.
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Literature Review

Many approaches for analyzing the performance
of MHTs have been proposed, etc.:

Huang et al. (2011) study the vehicle allocation
oroblem in a typical 300 mm wafer fabrication.
They formulate it as a simulation-optimization
oroblem and propose a conceptual framework to
nandle the problem.

Chang et al. (2014) study the vehicle fleet sizing
problem in semiconductor manufacturing and
propose a formulation and a solution method to
facilitate the determination of the optimal vehicle
fleet size that minimizes the vehicle cost while
satisfying time constraints.




Literature Review

e To overcome the shortcomings of simulation, some
mathematical models are developed to quantify the
parameters of a material handling system (MHS), such
as a queuing theory model, queuing network model and
a Markov chain model.

 Nazzal and McGinnis (2008) model a multi-vehicle
material handling system as a closed-loop queuing
network with finite buffers and general service times.

 Zhang et al. (2015) propose a modified Markov chain
model to analyze and evaluate the performance of a
closed-loop automated material handling system .



MDP Model

System Analysis

* In a discrete manufacturing factory, there exist many
types of MHTSs to carry the working lots between different
stages.

 There might exist only two possible scenarios for each
Individual workstation - an MHT change or no change.
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MDP Model

Some basic notations:

i : Station 7 consisting of M, >1 machines

w, : WIP quantity of stationi

X : Total number of vehicles of type X
Y : Total number of vehicles of type Y
x, : Number of vehicles X at the stationi

V. Number of vehicles Y at the stationi




MDP Model

Assumptions:

(1) The processing time at each station is constant, and
production meets an M/G/1 queuing system.

(2) A lot arrives according to an exponential distribution
with the associated parameter A .

(3) Each MHT transports the lots based on the FIFO (first-
In-first-out) rule.

(4) The loading time, the unloading time and the running
speed of the vehicles have a deterministic value, and
both acceleration and deceleration of vehicles are

ignored.

11



MDP Model

Assumptions (cont’d):

(5) The WIP quantity meets the CONWIP scenario
and the desired WIP level is w.

(6) The route of the MHT at a specific work station
for one specific product is fixed within the
product design period.

(7) The delivery quantity is aligned with the
demand of the master production schedule
(MPS).

(8) Only one product is considered in this paper.
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MDP Model

We use an MDP which can be described by the following |
S-tuple: (T, S AP V(SA))

trans

Here 7" describes the set of time moments, S denotes the

state space, A describes the set of actions (policy set),
P gives the transition probabilities, and v(S4) denotes

trans

the reward function for a solution S4 described by a
feasible sequence of states and actions. Subsequently, we
describe the particular components more 1n detail.




MDP Model

Decision times T

Lots of production tasks will be released based
on the numbers of available vehicles and the
recycle status at each time, te7={012,..,L|LeN,}
where L Is the length of the defined production
cycle.




MDP Model

Definition of the set of states S

The set of states S is composed of # sets S,,S,,...,S .For
stage i , representing station i, the set of states can be
x, €{0,1,2,...X},y,€{0,1,2...7}},
ici{l,2,...,n} , where x. and y, denote the numbers of

vehicles of type X and Y, respectively, at station; at a
particular time 7 .

defined as S, ={s, = {x,. »,}




MDP Model

Definition of the set of actions A

At a decision moment 7, the decision maker will take the
action a, €1{0,1} and according to the transition

probability P :P{S Sj,.,a:.} described subsequently, the

]

numbers of vehicles of station 7 may change from state s, at

time 7 to state s, at time z+1,7 € {1,2,....n} .




MDP Model

Definition of the set of actions A

ala €{0,1},ie{l2... F’?}} is the

production strategy set. Accordmg to the CONWIP
methodology, 1f the WIP 1s higher than the desired value at
station 7 , the station needs to stop running to avoid an

excessive mventory, this means that the action g, =0 1s taken.

The set A= {a e .

? H

Otherwise the WIP is running normally according to first-
in-first-out (FIFO) strategy, and the actiona, =1 1s taken. At

time rET:{O,l,L...,L‘LEN_} , once a decision a, has

been taken. the lots will be released with the vehicle.
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MDP Model

State transition probabilities R

(a) It 1s assumed that the wvehicles arrive at station i
according to a Poisson distribution with the mean arrival
rate 2. . Thus. the probability that & vehicles arrive 1s given

Al =
..'"llllrr' E I

i
environment., A 1s equal to the mean throughput of the

by PR'(k)=P(X =Fk)= In the production

preceding station TH.




MDP Model

State transition probabilities R

(b) It is assumed that the breakdown rate of work station
I 1s g{.“ and thus, the probability of a breakdown of

M.
[ machines of stationi is P}"ﬁ (1) :‘ , E ‘(gf ) (l-qf Yt

W ¥

where M. 1s equal to the number of machines at station 7.




MDP Model
State transition probabilities R

(c) It may happen that abnormal lots are encountered. which
will be cancelled. It 1s assumed that the lot cancellation rate

is ¢; . so the probability of the interruption of m lots

e )MI.-—m .

is P (m) = ‘{q; 1-q,

R




MDP Model

State transition probabillities R,

The state will change when new lots arrive, tasks are

cancelled or a machine has a breakdown. These three events
can separately occur and so the state transition probability Is:

(s/]sia. k.1, m) =R (k)x R (1) x P* (m)

P

trans




MDP Model

Reward Function v(SA)

The purpose of the vehicle management is to minimize
the penalties for late deliveries of each product and to
control the WIP level in the whole line within certain

lower and upper limits. We can formulate the following
optimization function as:

V(S4) = Man[ZiRT(S; ,d;)

=0 i=1

s, =(x,,y,).a, €{0.1}] (D)




ey
MDP Model

Maximize the Reward Function v(SA)
S.t. EI:_D_,—;H-:}

The reward ratio R.(s.a)=e =

¥ dE‘p E'ﬂdlﬂg o1

R (5. a)= e_ D the state s, and actiona, which is used to maintain a rather
e constant WIP status (within lower and upper bounds), where

y=o(D, _Z-H"‘r'j o(D,—> w,) is the standard deviation to measure the
i=1

i=1
offset-overflow or shortage between the demand D at

time 7 and the overall WIP quantity ) w; of all stations.
=1




MDP Model (cont’'d)

L <X : |
i=1 The numbers of vehicles of type X and Y are not allowed
n to exceed the upper bounds X and Y .
yv. =Y
i=1
. n . The total WIP quantity should be not greater than the |

J J M
f . * *
= = total desired WIP levelZwI. =w .
i=1




(8)!

Dynamic Programming Algorithm

 The whole set of stages are grouped into 3
parts: a bottleneck group, a front group
and a backend group.

« The CONWIP methodology Is used for the

front group and the FIFO rule is used for
backend group.




£ ) i
Dynamic Programming Algorithm

Step I: Imitialization: Determine the » stages representing |

the stations (consisting of one or more machines) for the
problem and the states to be considered in each stage. Here
we can reduce the number of states at each stage since we
maintain a WIP level within lower and upper bounds. The

actions will be taken in stagei ,i € {l,2,..,k,..,n}, for station
i . To stage i, there is assigned s, as the initial state, 1.e.,
S, = {s,} . Both the front groups and the backend groups are

initialized from stage k& to make sure that the whole line
WIP is controlled by the bottleneck station.




Dynamic Programming Algorithm

Step 2: Since the bottleneck station k£ 1s considered as the |
nitial stage 1n this algorithm, we assign to action a, and the

WIP w, the desired 1nitial numbers. Then the reward value
for any state s, =(x,y,)eS.,ie{k—1Lk-2,..,1}, of the
front group can be determined by means of s, in the next
step.




Dynamic Programming Algorithm

Step 3: Evaluate the recurrence equations from stage £ —1 to |
stage 1 and calculate the reward function value for each
possible stage ot the front group. Let v (s,,a,) be the reward

combination of station ; when action a 1s taken for state S, .

The reward function for state s, 1s given by

j: (‘5}') — max {1"":' (Sz' ,; (Sz ) + f:u (SH])
i=k—1.k—-2,....1.

a,(s,) € 0.1}




Dynamic Programming Algorithm

Step 4: Evaluate the recurrence equations from stage £+1 to
stage » and calculate the reward function value for each
possible stage of the backend group. The reward function
for state s, 1s given by

£ (s.) = max {v?. (s, a.(s.)+ f..(s.,)

i=k+1,k+2,

a,(s,) € {01} ,

.




Dynamic Programming Algorithm

Step 5: Determine the states s, € S,and s, € S, with the

maximal reward function values 7”(s;) = max { f(sy)ls, € 51}

and /" (s;) = max { /" (s,)

S ESH}.




Dynamic Programming Algorithm

Combine the optimal solution (5.0, (; )50, 05 (55)ser Sy = 5,)

for the front group and the optimal solution for the backend
group (s, =5,,a, (5, ),5,.1-a,.,(5.1)---,5, ).

Accordingly, we can obtain an optimal state and action
sequence

%

S4' _(Spf-?' (5 ), Sa:ﬂ (*5 ) S k(S ): Sk+1= k+1(5k 1)5-55,)
for time 7 .




Dynamic Programming Algorithm

If such an optimal sequence S’ has been determined for
eachs €T, the overall solution (S4°,S4',...,84",....S4")is
obtained for the production cycle of length L .
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Dynamic Programming Algorithm
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Figure 2: Sequence graph for dynamic programming
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Experiments

We implemented our approach in a 300 mm
semiconductor assembly and test factory and collected

the required data for performing the experiments.

a b c c
ST1: SCAM » ST2: EPOXY » ST3: CURE » ST4: BA i
E VehicleX u Vehicle Y
a a a d

ST5: Bl 1«

47 ST8: Finish [« ST7: Test ‘I ST6: CTL |«

Figure 3: Workstation flow in the case factory
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Experiments
e Experiment 1: 4, =3.64 lots/hour

WIP Quantity Cycle Time Vehicle Utilization

MDP+DP Simulation MDP+DP Simulation MDP+DP Smmulation
Experl 84 289 85976 6.748 6917 0818 0.709
Exper2 84.159 85235 6.715 6.894 0.948 0937
Exper3 83.854 84201 6.741 6917 0.897 0918
Experd 83.852 85437 6.811 6.680 0918 0.965
Exper5 83.825 85.035 6.637 6.828 0993 0812
Expert 83 466 85.098 6.661 6.903 0.885 0872
Exper7 82.889 86.026 6.662 6.835 0.946 0.852
Exper8 83937 24 B85 6.649 5932 0.820 0735
Exper? 83.508 £3.496 6.713 65.943 0992 0.893
Experl0 83956 85710 6.689 5818 0939 0884
Experl1 34163 85429 6.741 5.894 0855 0884
Experl?2 83.830 85231 6.811 6917 0992 0.834
Experl3 83.860 84 885 6.637 6.680 0.749 0970
Experl4 83941 85091 6.661 5.680 0.890 0977
Deviation -1.55% -2.09% 2.58%
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Experiments
e Experiment 1: 4, =3.64 lots/hour
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e Experiment 2: A4, =4.42 lots/hour

Experiments

WIP Quantity Cycle Tme Vehicle Utilization
MDP+DP Smmulation MDP+DP MDP+DP Stmulation

Experl 81.765 82814 7.502 7470 0953 0.935
Exper2 83.015 87.271 6.705 7.075 0910 0.862
Exper3 82.078 86.675 6417 7.036 0877 0.741
Experd 80.854 82.100 6.399 7.685 0.836 0.710
Exper> 83.593 86.019 6.490 7.503 0.837 0.967
Expert 79 487 84 660 6911 7.035 0.858 0.869
Exper7 81.169 78.192 6.612 7.603 0876 0812
Exper8 80.695 82.003 6.854 6.809 0931 0.728
Exper% 80.969 84120 6.570 6985 0815 0.929
Experl0 80.533 83253 6.470 7.300 0.889 0.710
Experl1 82.044 82.647 6.338 7.696 0.826 0.721
Experl2 85585 88.120 6.339 7732 0875 0.705
Experl3 85363 83984 6.573 6.935 0.768 0.983
Experl4 79.082 77.828 6992 7.577 0875 0.720

Deviation -2 .00% -10.21% 2.58%
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« Experiment 2: 4,
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e Experiment 3: A; =3.09 lots/hour

Experiments

WIP Quantity Cwcle Tume Vehicle Unlization
MDP+DP Simulation MDP+DP Sumulation MDPE+DP Simulation
Expertl 92777 05 486 3.126 o444 0818 0.709
Expert2 91.699 94 067 8.166 a.284 0948 0.937
Expert3 86.558 95105 83.134 a.407 0.897 0918
Expert4 92570 o7 866 8.192 8512 0918 0.965
Expert5 00923 92 830 3.206 8429 0993 0.812
Expertt 90.157 93 087 8.155 8.265 0885 0.872
Expert7 87.713 95363 3.161 8.292 0946 0.852
Expert8 01.362 93.027 3.171 8.244 0.820 0.735
Expert9 93 254 93 764 8.211 8.390 0992 0.893
Expertl0 91 455 92.763 8.125 8491 0939 0.8584
Expertl1 89936 05199 8203 8.236 0855 0.884
Expertl2 01.036 08 .064 3.167 8.360 0992 0.834
Expertl3 94 786 90 904 8.238 8496 0.749 0.970
Expertl4 91.124 93 683 8.264 o474 0890 0977
Deviation -3.66% -2.45% 2.58%

._________________________________________________________________________________________________________________|]
3
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Conclusion

* The results of the experiments showed
some improvements of the MDP+DP
approach over simulation for the majority
of the runs and confirmed that the

proposed approach is both feasible and
effective.




Future work

« Afirst extension is to generalize the model
since we simplified the model by including only
one product with several stations in contrast to
real complex discrete manufacturing systems.

* An effective traceability method for the MHTSs for
the daily operations will be developed. In this
way, we want to provide a practical method for
manufacturing managers and supervisors.
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