
General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Search on the Enumeration Tree in the
Multiprocessor Job-Shop Problem Shop

Lester Carballo* Alexander Lazarev** Nodari Vakhania*
Frank Werner***

* Science Faculty, UAEM, Mexico

** Institute of Control Sciences, Russian Academy of Sciences, Russia

*** Faculty of Mathematics, Otto-von-Guericke-University Magdeburg, Germany

INCOM 2012, Bucharest/Romania, May 23-25, 2012

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The problem formulation

JR|prec |Cmax , JQ|prec |Cmax and JP|prec |Cmax (MJSP) are
extensions of the classical job-shop scheduling problem (JSP)
J||Cmax (we have an arbitrary task graph and parallel alternative
processors).

We have tasks (operations) from O = {1, 2, ..., n} and m
different processor (machine) groups, Mk being the kth group of
parallel processors (machines), and Pkl is the lth processor of
this group.

Each o ∈ Ok is to be performed by any processor of Mk . diP is
the (uninterrupted) processing time of task i on processor P. Each
group of parallel processors can be unrelated, uniform or
identical.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The constraints and schedules

The resource constraints: For each two tasks i , j such that
P(i) = P(j) = P, either si + diP ≤ sj or sj + djP ≤ si should hold,
where si is the starting time of i and P(i) is the processor to which
task i is assigned.

The precedence constraints: for each i ∈ O we are given the set
of immediate predecessors pred(i) of task i , task i becomes ready
when all tasks from pred(i) are finished.

A schedule (solution) assigns to each task a particular processor
and a starting time (on that processor); a feasible schedule is a
schedule satisfying the constraints. An optimal schedule is a
feasible schedule which minimizes the makespan, i.e., the maximal
task completion time.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Some problem characteristics

If in an instance of MJSP from each group of processors all
processors except an arbitrarily selected one are eliminated, then a
corresponding instance of JSP is obtained.

JR|prec |Cmax is reducible to R|prec |Cmax : For each o ∈ Ok ,
k = 1, ...,m, we let doM =∞ if M 6∈ Mk . JR|prec |Cmax can be
also seen as a resource-constrained project scheduling
problem: associate the kth machine group with the kth resource
which amount is the number of parallel machines in the group.
The requirement of the kth resource of each operation from Ok is
1 and that of any other operation is 0.

JSP is (strongly) NP-hard with no approximation algorithms with a
guaranteed performance. To find an optimal (near-optimal)
schedule we need to enumerate an exponentially growing number
of schedules (to work with a large subsets of schedules).

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Some related work

There are numerous enumerative algorithms for JSP which apply
lower bounds to reduce the number of active schedules to be
considered. Some of them are given by Adams, Balas and Zawack
1988, Carlier and Pinson 1989, Lageweg, Lenstra and Rinnooy Kan
1977 and McMahon and Florian 1975.

There are few enumerative algorithms for our extensions. Some of
them are given by Giffer and Thompson 1960, Carlier and Pinson
1998 (identical processors) and Vakhania and Shchepin 2002
(unrelated processors).

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Active schedules

An optimal schedule is among active schedules (in an active
schedule no task can start earlier than it is scheduled without
delaying some other task). We try to reduce the set of active
schedules to be considered on the base of some local dominance
relations, before using (expensive) lower bounds.

The feasible solution space of JR|prec |Cmax is significantly larger
than that of JSP: n simultaneously available operations can be
assigned to m machines in (n + m − 1)!/(m − 1)! different ways,
while the corresponding number for a single machine is n!.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

A quick dominant set

A quick processor is a fastest one for a given task at a given
stage (a quick processor for a given task can be found in time,
linear to the number of processors in the corresponding group).

A set of ready tasks, conflicting on a machine, which is quick for
at least one of these operations, is a quick set. We are allowed to
branch by a quick set, if it is dominant. Intuitively, if we branch by
a dominant set, then we are guaranteed that we will not delay any
not yet ready task (not included in the set) from the same group.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Our earlier work, the first step

We accomplish a two-step preliminary reduction of the set of active
schedules for MJSP using local estimations (Vakhania &
Shchepin 2002). With the first step, we always branch by a single
quick dominant set; i.e., all parallel machines are discarded except
the selected quick machine. This already guarantees that the
number of the generated solutions for a given instance of MJSP is
no more than that for any corresponding instance of JSP.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The second step

In the second step, an “artificial” relaxation of conflicts between
the operations of the conflict sets is carried out: the branching by
some tasks is postponed whenever this is possible. The selected
quick dominant set is partitioned into specially determined subsets.
To each subset its own processor, which is quick for at least one
task from this subset, corresponds. Then, instead of branching by
the quick set, branchings are performed by the subsets from the
partition, on different processors on different levels of the solution
tree. So the concurrent jobs from different subsets are processed in
parallel.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The efficiency of the reduction

With a probability of almost 1, the number of generated solutions,
as compared to the number of all active schedules, decreases
exponentially with the number of processors and tasks in each
group of machines and operations, as follows. If we let ν and µ to
be the number of operations and machines in each subset of
operations and machines, then with a probability of almost 1, the
algorithm generates approximately (µ)mν and 2m(µ−1)µmν times
less feasible schedules than the number of all active feasible
schedules of any corresponding instance of JSP and our
generalized problem, respectively.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Some terminology

The (compact) solution tree T represents all generated (partial
and complete) solutions. With an edge, incident out from a node
h ∈ T (a stage), a single task from a bunch of ready tasks (the
branching set) is associated. The branching set Ch of stage h is
characterized by a particular processor on which the operations of
this set are to be actually scheduled on stage h. By the branching,
the resource conflicts in Ch are resolved (each alternative processor
implies its own conflicts).

In this way there are |Ch| posssible extensions of the current
(partial) schedule σh [a (partial) permutation of n tasks]. σhi

P is
an extension of σh with task i scheduled on processor P at stage h.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

σh is represented by a directed weighted graph Gh. The digraph
G0 = (X ,E0) is associated with the root of T . To each task i ∈ O
corresponds the unique node i ∈ X . There is one fictitious initial
node 0, preceding all nodes, and one fictitious terminal node n + 1,
succeeding all nodes in G0.

E0 is the arc set consisting of the arcs (i , j), for each task i ,
directly preceding task j ; (0, i) ∈ E0 if task i has no predecessors
and (j , n + 1) ∈ E0 if task j has no successors.

w(i , j) is the weight associated with (i , j) ∈ E0; initially, assign to
w(i , j) the minimal processing time of task i , later we correct these
weights when we assign a task to the particular processor.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Let (h, h′) be an edge in T with the associated task j assigned to
processor P. Gσh′ is obtained from Gσh

by completing the arc set
of the latter graph with the arcs of the form (i , j), with the
associated weights w(i , j) = diP , for each task i , scheduled earlier
on the processor P. We correct the weights of all arcs incident out
from node j (j , o) ∈ E0, as w(j , o) := djP .

The length of a critical path in Gh′ is the makespan |σh′ | of
σh′ = σhj

P .

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

General points

If a lower bound L(σh) of the partial solution σh is more than or
equal to the makespan |σ| of some already generated complete
solution σ, then all extensions of σh can be abandoned. L(σh)
cannot be greater than the makespan of the best potential
extension of σh (since then we could loose this extension), but it
should be as close as possible to this value (because then the more
are the chances that L(σh) ≥ |σ|).

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

Some notations and trivial bounds

Consider the set of (yet unscheduled) tasks Okh. Let o ∈ Okh. The
length of a longest path to node o in Gh is the earliest possible
starting (release) time or the (head) headh(o) of task o by stage
h.

tailh(o), the tail of o at stage h, is the critical path length from
note o to the sink node of Gh (processing time of o is not
counted).

A trivial lower bound LT (σho
Q) = τ(σh) + tailh(o) ignores all yet

unresolved potential conflicts (the processing times of yet
unscheduled tasks). A stronger lower bound would take into
account a possible contribution of the yet unscheduled tasks, this
will involve some optimal scheduling on parallel machines.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

Relaxing all resource constrains except the ones of Mk

Relax (ignore) at stage h all resource constraints except the ones
of some Mk : each o ∈ Okh cannot be started earlier than at time
headh(o), and once it is completed, it will take at least tailh(o)
time for all successors of o to be finished. o can be scheduled on
any of the machines of Mk having a processing time diP on
machine P ∈Mk . Each P ∈Mk has its release time Rh(P) (the
completion time of the task, scheduled last by stage h on P).

The auxiliary problem Akh is that of scheduling tasks with release
times and tails on a group of parallel machines Mk with the
objective to minimize the makespan. An optimal ordering of
operations of Okh on machines from Mk is a lower bound for
MJSP.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

A bottleneck machine-group

A bottleneck machine group is a one which results the maximal
makespan among all yet unscheduled machine groups Mk . We
may find all m lower bounds for node h and take the maximum
which will be a lower bound for MJSP.

A similar relaxation approach has been used for JSP, for example
Adams, Balas and Zawack 1988, Carlier and Pinson 1989,
Lageweg, Lenstra and Rinnooy Kan 1977. Instead of dealing with
1|ri , qi |Cmax in case of JSP, now we deal with R/Q/P|ri , qi |Cmax .

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

The time complexity of the derived scheduling problems

P|ri , qi |Cmax , Q|ri , qi |Cmax , R|ri , qi |Cmax are all NP-hard. Even
1|ri , qi |Cmax is NP-hard, but there are exponential algorithms with
a good practical behavior for this problem and it has been used in
branch-and-bound algorithms for JSP as a one-machine relaxation
(McMahon & Florian 1975 and Carlier 1981).

Unfortunately, there are no known algorithms with good practical
performance for P|ri , qi |Cmax (the version with identical machines)
and so much for R|ri , qi |Cmax . We need to find some other way
around.

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

Simple lower bounds based on earlier existing algorithms

Carlier & Pinson 1989 have suggested a lower bound for
JP|prec |Cmax . They proposed an O(n log n + nm logm) algorithm
for the non-sequential version of P|ri , qi , pmtn|Cmax which is a
lower estimation of the optimal makespan for P|ri , qi , pmtn|Cmax .
At the expense of weakening the bound, the solution of the above
problem can be used as a lower bound for MJSP:

Let dmin
o = min{doM ,M ∈Mk}. We replace the unrelated

machine group Mk with the identical machine group M′
k , defined

as follows: the number of machines in both groups is the same,
and for each o ∈ Ok and M ∈M′

k , doM = dmin
o . An optimal

solution of the obtained instance of P|ri , qi , pmtn|Cmax with M′
k is

no more than that of the corresponding instance of
R|ri , qi , pmtn|Cmax with Mk .

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

The auxiliary multiprocessor scheduling problem
Dealing with Akh

Is it possible to find a better “approximation” with an identical
machine group of the unrelated machine group Mk , i.e., to
increase doM , o ∈ Ok , M ∈M′

k ?

For uniform machines, we can obtain a stronger lower bound by
using the algorithm of Federgruen & Groenevelt 1986 for
Qm|ri , qi , pmtn|Cmax with the time complexity of O(tn3) (t is the
number of machines with distinct speeds).

As to JR|prmt|Cmax , the technique based on linear programming
of Lawler & Labetoulle 1978 yields a polynomial-time algorithm for
Rm|ri , qi , pmtn|Cmax . This is a lower estimation of the optimal
makespan for Rm|ri , qi |Cmax which, in turn, provides a lower
bound for JR|prmt|Cmax .

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

General points
Preliminary reduction of the solution space

The bounds
Concluding remarks

Further bounds and computational results

We have also developed some alternative methods to obtain more
sophisticated lower bounds.

We have tested the generated C++ code for the reduction
algorithm (without the lower bounds) on randomly generated
instances of moderate sizes (up to 20 operations on 5 groups of
parallel machines).

The reduction of the solution space was between 15 and 25 %
compared to the number of active schedules.

A more essential reduction is expected for larger instances when
also lower bounds will be incorporated into the code (what is
planned as future work)

Carballo, Lazarev, Vakhania and Werner Multiprocessor Job-Shop Problem

	General points
	Preliminary reduction of the solution space
	The bounds
	The auxiliary multiprocessor scheduling problem
	Dealing with Akh

	Concluding remarks

