
A Polynomially Solvable Case of a Single Machine
Scheduling Problem When the Maximal Job Processing

Time is a Constant

Nodari Vakhania* Frank Werner**

*Science Faculty, UAEM, Mexico
** Faculty of Mathematics, Otto-von-Guericke Universität Magdeburg, Germany

INCOM 2012, Bucharest/Romania, May 23-25, 2012

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 1 / 20

Outline of the Talk

1 Introduction

2 Brief Description of the Algorithm

3 Binary Search Procedure

4 Seeking after S(δ): Procedure SEEK (S(δ))

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 2 / 20

1. Introduction

n jobs: 1, 2, . . . , n are to be scheduled on a single machine

for each job j , there are given:

pj - processing time

rj - release times

dj - due-date

schedule S : described by the starting time tj(S) (or the completion time
cj(S) = tj(S) + pj of all jobs j)

Objective: Find an optimal schedule S that minimizes the maximal
lateness f (S) = Lmax(S) = max{cj − dj | j = 1, 2, . . . , n}.

f (j) – lateness of job j

Garey and Johnson (1978): Problem 1|rj |Lmax is strongly NP-hard.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 3 / 20

1. Introduction

Polynomially solvable cases

Jackson (1955): O(n log n) algorithm for problem 1||Lmax (and problem
1|rj , dj = d |Lmax , respectively)

Garey et al. (1981): O(n log n) algorithm for problem 1|pj = p, rj |Lmax

Vakhania (2004): O(n2 log n) algorithm for problem 1|pj ∈ {p, 2p}, rj |Lmax

Vakhania (2011): O(n2 log n log pmax) algorithm for problem
1|pj : divisible, rj |Lmax

but: problem 1|pj ∈ {p, 2p, 3p, . . .}, rj |Lmax is NP-hard

now: consideration of problem 1|pj ∈ {p, 2p, 3p, . . . , kp}, rj |Lmax

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 4 / 20

2. Brief Description of the Algorithm

Our framework yields an O(n2 log n log pmax) algorithm. The algorithm
uses binary search and reduces the problem to a version of the bin
packing problem.

The set of jobs is partitioned into non-critical and critical subsets. The
non-critical subsets contain jobs that might be flexibly moved within the
schedule.

The critical sets (kernels) contain the jobs which form tight sequences in
the sense that the delay of the earliest scheduled job from the subset
cannot exceed some calculated parameter between (including) 0 and pmax.

When the delay of the latter job is 0, the lateness of the latest scheduled
job from the set defines a valid lower bound on the optimal value.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 5 / 20

2. Brief Description of the Algorithm

Just by applying the ED-heuristic to the original problem instance we
define the (initial) set of kernels and then determine the above lower
bounds yielded by each kernel. The maximum among them is a valid lower
bound for the problem.

It also delineates the maximal delay ∆ that might be imposed to other
kernels without increasing the maximum lateness, whereas the minimal
possible delay is 0.

Then we carry a binary search within the interval [0,∆] to find the
minimal possible delay δ that would result in an optimal schedule:

For each δ, we try to distribute non-kernel jobs in order to utilize the
intervals in between kernels in an optimal way so that no non-kernel job
has the lateness more than that of a kernel job.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 6 / 20

2. Brief Description of the Algorithm

Related bin packing problem

We have a fixed number of bins (intervals between the kernels) of different
capacities and we wish to know if the given items (non-kernel jobs) can be
distributed into these bins.

ED-heuristic

Iteratively, among all available jobs at time t, ED-H schedules a job with
the smallest due-date breaking ties by selecting a longest job. Here t is the
maximum between the minimal release time of yet unscheduled job and
the time when the machine completes the latest scheduled job (0 if no job
is yet scheduled).

The initial ED-schedule σ is the one generated by ED-H for the originally
given problem instance. By modifying job release times, we may create
different feasible ED-schedules by ED-H.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 7 / 20

2. Brief Description of the Algorithm

Overflow jobs and the kernels

A job o in and ED-schedule S that realizes the maximal lateness, i.e., one
with fS(o) = max{f (j) | 1 ≤ j ≤ n} is an overflow job.

A kernel is a maximal job sequence/set in S ending with an overflow job o
such that no job from this sequence has a due-date more than do (if there
are several successively scheduled overflow jobs then o is the latest one).

Observation

An ED-schedule S is optimal if it contains a kernel with its earliest
scheduled job starting at its release time.

Proof. Reordering kernel jobs cannot reduce the lateness.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 8 / 20

2. Brief Description of the Algorithm

Emerging jobs

Otherwise, the earliest scheduled job of every kernel K is immediately
preceded and is delayed by a job e with de > do .

Such a job is an emerging job for K , and the latest scheduled one the
delaying emerging job.

Job j scheduled after K as a passive emerging job for K if dj > do and
rj < r(K).

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 9 / 20

2. Brief Description of the Algorithm

Activating an emerging job

If we remove (reschedule later) a (non-passive) emerging job then the
kernel jobs might be restarted earlier reducing in this way Lmax.

In this way, to restart the kernel jobs earlier, we activate an emerging job
e for K , that is, we force it and all passive emerging jobs to be rescheduled
after K by increasing their release times to a sufficiently large magnitude
(the latter jobs also are said to be activated for K).

Then, when ED-H is again applied, neither job e nor any passive emerging
job will surpass any kernel job and hence the earliest job in K will start at
r(K).

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 10 / 20

3. Binary Search Procedure

Immediate Bounds

Consider an (incomplete) ED-schedule σ∗∗ in which the delay job of every
K ∈ K is just omitted, and let f ′(i) be the new (reduced) value of the
lateness of each kernel job i in σ∗∗. Since every K is (re)started at time
r(K) in σ∗∗, L(K) = maxi∈K{f ′(i)} is a lower bound on the value of the
optimal schedule.

For any feasible S , f (S) ≥ L∗ = maxκ{L(Kκ)} is a stronger lower bound.

Furthermore, if δ(K) = L∗ − L(K), then in any feasible S we may allow
the delay of δ(K) ≥ 0 without increasing the current maximal lateness, for
every K .

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 11 / 20

3. Binary Search Procedure

We shall refer to the interval before each K ∈ Kδ as the bin defined by K
and denote it by BK .

δ-balanced schedule S(δ)

In an optimal schedule Sopt , either each kernel K starts no later than at
time r(K) + δ(K) or K is to be delayed by some δ, 0 ≤ δ ≤ ∆, where
∆ = f (o)− L∗.

If the earliest job of every K starts no later than at time r(K) + δ(K) + δ
then f (i) ≤ L∗ + δ, for any i ∈ K . More generally, we call a feasible
schedule S(δ) with f (S(δ)) ≤ L∗ + δ δ-balanced (we may note that
σ = S(∆)).

L∗+ δ is our δ-boundary; job j surpasses the δ-boundary if f (j) > L∗+ δ.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 12 / 20

3. Binary Search Procedure

Does there exist S(δ)?

As a result of a simple preprocessing, we may guarantee that no job from
K will surpass the δ-boundary when ED-H with the above restriction is
again applied.

However, there may arise a non-kernel job that surpasses the δ-boundary:
we wish to find out if there exists S(δ).

At the first iteration of the binary search procedure, we use σ = S(∆),
δ = ∆.

The next value for δ is 0; if there exists no S(0) then the next value of δ is
[∆/2]. So δ is derived from the interval [0,∆], whereas the change from
larger to smaller value of δ is carried out if a δ-balanced schedule for the
current δ was successfully created; otherwise, δ is increased respectively on
the next iteration.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 13 / 20

3. Binary Search Procedure

Observation

S(δ) with minimal possible δ is optimal.

1|rj |Lmax is already solved given that we have a procedure that either
constructs a S(δ) or asserts that it does not exist.

As ∆ < pmax, the number of iterations for the binary search procedure is
bounded by log pmax.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 14 / 20

4. Seeking after S(δ): Procedure SEEK (S(δ))

Instance of alternative (b1)

If ED-H with the restrictions above has succeeded to construct a complete
schedule so that no bin job has surpassed the δ-boundary, then this
schedule is S(δ).

Otherwise, let Kδ be the set of kernels corresponding to δ, and let K was
the latest scheduled kernel from Kδ when there has occurred (a non-kernel
job) j surpassing the δ-boundary.

If j is a former emerging job (one activated for K or/and some preceding
kernel) then we will say that an instance of alternative (b1) (IA(b1))
with job j occurs.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 15 / 20

4. Seeking after S(δ): Procedure SEEK (S(δ))

Defining new kernels

If job j above is not a former emerging job, then an activated (former
emerging) job must be pushing j . If among such jobs there is an emerging
job for j , let e be the latest scheduled one.

If e was included before K , then the jobs from K together with j and all
jobs that were included after e (before j has occurred) define a new kernel,
also denoted by K .

If e was included after K , then the sequence of jobs in between e and j
(including j) forms a new kernel K ′ for the current δ. We update the
current Kδ correspondingly.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 16 / 20

4. Seeking after S(δ): Procedure SEEK (S(δ))

Instance of alternative (b2)

If no new kernel can be defined, i.e., there is no e, let i be an activated
(former emerging) job pushing j . Then an instance of alternative (b2)
(IA(b2)) with job i is said to occur.

It follows that if there has arisen a non-kernel job surpassing the
δ-boundary, then there must be occurring an IA(b1/b2).

Hence, if no IA(b1/b2) occurs then we already have a correct answer (for
the general problem 1|rj |Lmax). Otherwise, we need to describe how we
rearrange non-kernel jobs for an IA(b1/b2).

In the rest assume IA(b1/b2) with job j occurs.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 17 / 20

4. Seeking after S(δ): Procedure SEEK (S(δ))

At least one passive emerging job q for K is to be rescheduled before K .
This will not be possible (in S(δ)), unless some job s scheduled in BK or
some earlier bin is rescheduled after K (if this were possible, ED-H would
include q in BK).

We call job s pushing q a substitution job for q if it is an emerging job
for K (s is from BK or some earlier bin).

⇒ SUBST (K , δ) - set of substitution jobs for K

Observation

Suppose there occurs an IA(b1/b2) behind kernel K . Then there exists no
S(δ) if there arises no valid gap for none of the passive emerging jobs for
K subject to some substitution jobs.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 18 / 20

4. Seeking after S(δ): Procedure SEEK (S(δ))

Thus all we need to do is to activate substitution jobs for K in a proper
fashion, whenever IA(b1/b2) occurs.

Complexity of SEEK (S(δ))

For fixed p∗, the number of non-congruent subsets S ⊆ SUBST (K , δ) is
equal to the number P(p∗) of representations of p∗ as a sum of positive
integers (without considering the order), where P(p∗) is the partition
function:

P(p∗) ≈
exp(π

√
2p∗/3)

4p∗
√

3

p∗ < pmax ⇒ total number of non-congruent subsets is

O(pmaxP(p∗)) = O(1)

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 19 / 20

4. Seeking after S(δ): Procedure SEEK (S(δ))

⇒ complexity of procedure SEEK (S(δ)) : O(n2 log n)

Theorem

The binary search procedure finds an optimal schedule in time
O(n2 log n log pmax) (or O(dmaxn log n log pmax).

Remark: Problem 1|pj ∈ {p, 2p, 3p, . . . , kp}, rj |Lmax is the maximal
polynomially solvable case of problem 1|rj |Lmax.

Vakhania and Werner (UAEM, OvGU) Single Machine Scheduling INCOM 2012 20 / 20

