Period: March 1, 2004 - July 31, 2007

0 TECHNICAL INFORMATION

Call specification:
Title:
Reference no:
Total grant:
Start date:
Duration:
Coordinator/
Person in charge of Management:
Team information:

Open Call 2003
Scheduling for modern manufacturing, logistics and supply chains
INTAS 03-51-5501
$€ 128,000.00$
March 01, 2004
41 months
Gerd Finke
Valery Gordon
LLI Grenoble (Prof. Gerd Finke)
University Joseph Fourier, Computer Science and Applied Mathematics
Leibniz-IMAG (now Laboratoire G-SCOP)
Grenoble, France.
gerd.finke@g-scop.inpg.fr
USouthampton (Prof. Chris Potts)
University of Southampton, Faculty of Mathematical Studies
Southampton, United Kingdom
C.N.Potts@maths.soton.ac.uk

UMagdeburg (Prof. Frank Werner)
Otto-von Guericke University of Magdeburg, Faculty of Mathematics
Magdeburg, Germany
Frank.Werner@Mathematik.Uni-Magdeburg.DE
EM StEtienne (Prof. Alexandre Dolgui)
ARMINES-Ecole des Mines de Saint Etienne, Center « Informatics, Mathematics, Management and Organisation» (SIMMO) (now Division for Industrial
Engineering and Computer Sciences, G2I)
Saint Etienne, France
dolgui@emse.fr
UGreenwich (Prof. Vitaly Strusevich)
University of Greenwich, School of Computing and Mathematical Sciences
Greenwich, London, United Kingdom
V. Strusevich@gre.ac.uk

UIIP NAS Belarus (Prof. Valery Gordon)
United Institute of Informatics Problems, Modeling of Intelligent Processes
Minsk, Belarus
gordon@newman.bas-net.by
BSU Minsk (Prof. Mikhail Kovalyov)
Belarus State University, Faculty of Economics
Minsk, Belarus
koval@newman.bas-net.by
IM NAS Belarus (Dr. Vitali Demidenko)
Institute of Mathematics, Mathematical Cybernetics
Minsk, Belarus
demidenko@im.bas-net.by

BSUIR Minsk (Dr. Irene Lushchakova)
Belarusian State University of Informatics and Radioelectronics, Computer
Science and Networks
Minsk, Belarus
IrinaLushchakova@yandex.ru
Omsk branch SIM RAS (Prof. Alexander Kolokolov)
Omsk Branch of Sobolev Institute of Mathematics, Department of Discrete
Optimization
Omsk, Russia
kolo@iitam.omsk.net.ru

Final report due:
Submission date of this report:

September 30, 2007
October 3, 2007

1. RESEARCH

1.0. Objectives/Concept

The objective of this research network is bringing together scientific activities in the field of deterministic scheduling of the teams which have experience of joint research on scheduling models and methods, in particular in the framework of INTAS projects (INTAS 93-257, INTAS 93-257-Ext, INTAS 96-0820) carried out in the years 1995-2000. The partnership of these teams will promote synergy on developing scheduling research to satisfy practical needs of modern manufacturing, resource planning, logistics and supply chains. The regular exchange of information within this network will be maintained by joint meetings both within the scheme of this proposal and at the international conferences and symposia on OR (Operations Research), CO (Combinatorial Optimization), MP (Mathematical Programming), PMS (Project Management and Scheduling), MAPSP (Models and Algorithms for Planning and Scheduling Problems), SCMS (Scheduling in Computers and Manufacturing Systems).

1.1. Overview of Research Activities / Conformance with the Work Programme

Research was carried out on fundamental issues in scheduling theory and on applications in manufacturing. General advances have been obtained on complexity results and the design of solution algorithms in scheduling. Particular emphasis was put on scheduling models combined with a material handling system (forming a robotic cell in which the production rate is to be maximized) and with a logistic system (in order to minimize the cost of delivering goods to the customers). New optimization methods have been developed for the design of manufacturing lines. They can be used in Decision Support Systems and CAD/CAM/CAE tools for the optimal design of complex manufacturing lines.

Main activities were carried out within the subtasks (see below) $\mathbf{1 . 1}$ (USouthampton, UGreenwich, UIIP NAS Belarus, BSU Minsk), $\mathbf{1 . 2}$ (LLI Grenoble, UMagdeburg, EM StEtienne, UIIP NAS Belarus, BSU Minsk, IM NAS Belarus, Omsk Branch SIM RAS), $\mathbf{1 . 3}$ (LLI Grenoble, USouthampton, UGreenwich, UMagdeburg, EM StEtienne, UIIP NAS Belarus, BSU Minsk, IM NAS Belarus, BSUIR, Minsk), $\mathbf{1 . 4}$ (LLI Grenoble, USouthampton, UGreenwich, BSUIR, Minsk, Omsk Branch SIM RAS), 2.1 (UMagdeburg, EM StEtienne, BSU Minsk, Omsk Branch SIM RAS), 2.2 (LLI Grenoble, USouthampton, UGreenwich, BSU Minsk, BSUIR Minsk), 3.1 (LLI Grenoble, USouthampton, UGreenwich, UMagdeburg, UIIP NAS Belarus, BSU Minsk, BSUIR Minsk), 3.2 (EM StEtienne, UIIP NAS Belarus, IM NAS Belarus, Omsk Branch SIM RAS), $\mathbf{3 . 3}$ (UGreenwich, UIIP NAS Belarus).

1.2 Compliance with the Work Programme

The research has been in accordance with the Work Programme. The duration of the project has been increased to 41 months.

1.3. Results

1.3.1. Scientific Results

- 1. Scheduling for hybrid manufacturing systems
1.1. Scheduling for perishable product manufacturing. Papers [185, 70] describe models, polynomial time algorithms, NP-hardness proofs and heuristics for scheduling problems with job processing times depending exponentially on their start times. Application areas for the results are perishable product manufacturing and optimal planning of rescue, de-activation or cleaning works in an area contaminated with radioactive or chemical materials.

A comprehensive study on single machine scheduling problems with start-time dependent and position dependent processing times is given in [122]. For various models the conditions are given under which an objective function is priority generating. Polynomial time algorithms for several scheduling problems with positional deteriorations are given in [123].
1.2. Grouping and sequencing operations for repeated jobs in multistage systems. Problems of grouping and sequencing of operations in multistage systems are considered when operations are grouped at two levels. The set of all operations is partitioned into subsets that are executed at a single stage. In turn, the operations of a stage are grouped into blocks that are performed by the corresponding device. Three kinds of such multistage systems are investigated: blocks of
the same stage are executed in series, simultaneously or in mixed order. These classes can be modeled as special partition problems. For solving them, exact and heuristic algorithms are developed. The exact algorithms use approaches that are based on graphs $[1,2,5,25,27,28,29,48,50,54,55,120,124,139,146,148]$ and on MIP $[28,37,38,40,50,84,111$, $118,141,162,148]$. The heuristic algorithms use the following: a random assignment of blocks to a current stage $[26,28,39,211]$, depth-first search techniques [6,28], decomposition of the initial problem into several sub-problems that are then solved by exact algorithms [28, 40, 41, 42, 54, 118, 119, 108, 147]. Experimental software was developed [140, 161] and numerical experiments were carried out. The mixed order of the bloc execution is considered in [10, 67, 81, 87, 104]. Decision support systems for multi-unit transmission systems are described in [167].

Finding the domination number of a graph is one of basic algorithmic graph theory problems occurring in many models in Computer Science and Operations Research. It is shown that this problem can be solved in polynomial time within several hereditary classes of graphs, e.g., the class of P_{3}-dominable graphs and the class of domination reducible graphs [22, 151].

The problem of approximating the size of a minimum (maximum) induced matching in a given n-vertices graph is considered in [33, 51, 57, 133, 143]. Induced matchings (a set of pairwise non-adjacent edges such that their end-vertices induce a 1-regular graph) are important in connection with applications for grouping operations in manufacturing, secure communication channels and VLSI design problems. It is shown that unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial-time constant approximation algorithm for the minimum induced matching problem in bipartite graphs. Some approximation and complexity results are also obtained for the maximum induced matching problem.

An $O(n \log n)$ time algorithm is developed in [127] for a two-stage flow shop problem with jobs forbidden to be processed in the first or last position. A polynomial-time algorithm is proposed for a special case of a three-stage flow-shop problem [203].
1.3. Scheduling with precedence constraints. In [21], an interesting applied problem with precedence constraints is introduced. The objective is to execute the tasks to be scheduled as fast as possible, but at the same time one wants to minimize the utilization of the required machines.

Scheduling with precedence constraints is closely related to the investigation of specific graph properties. Finding a minimum Hamiltonian path in a weighted graph is known to be equivalent to minimizing the makespan in a single machine scheduling problem with setups. Hamiltonian properties of finite induced subgraphs of a graph associated with the two-dimensional triangular grid are considered [7, 36, 52, 121, 144, 145, 155, 164, 165]. It is shown that all connected, locally connected triangular grid graphs on at least three vertices are fully cyclic extendable (with only one exception). Recognition of hamiltonicity for triangular grid graphs, in the general case, is established to be NP-complete, but it is shown that a Hamiltonian cycle in connected, locally connected triangular grid graphs can be found in polynomial time. The Hamiltonian properties are considered in [45, 46, 130, 154] for locally connected graphs with bounded vertex degree. If the maximum vertex degree Δ does not exceed 4 , all connected, locally connected graphs are explicitly described; if $\Delta=5$ and the minimum vertex degree is greater or equal to 3 , these graphs are shown to be fully cycle extendable. Recognition of hamiltonicity for locally connected graphs with $\Delta \leq 7$ is shown to be NP-complete.

The Quadratic Assignment Problem (QAP) is used as an adequate mathematical model for a number of problems in scheduling, location theory, statistical data analysis, and parallel or distributed computing. Conditions imposed on the input data of the QAP with bimonotone, additively monotone, and monotone matrices (which permit the inverse orderings of the elements of rows and columns) are derived such that an optimum of this problem is attained on a given permutation [$3,12,44,116]$. The proposed conditions describe four restricted versions of the QAP, two of which generalize all known well solvable cases of the QAP with monotone Anti-Monge and Toeplitz matrices. Four new classes of matrices, for which effective solvability of the QAP is a priori provided, are described in terms of the specified concept of additive monotony of matrices (the 1- and 2-additive nondecrease and/or nonincrease of elements of their rows and/or columns) [115, 132, 138, 209]. The obtained descriptions expand the existing list of special cases of the problem with a guaranteed optimum on a given permutation.

An application of the single machine scheduling problem with treelike precedence constraints for optimizing the search on graph structures is presented [91]. Combinatorial methods usually applicable for scheduling problems were used for a problem of reconstructing the DNA linear structure in [174].

The results obtained in [122] imply that many single machine scheduling problems with non-constant times are polynomially solvable under series-parallel precedence constraints.
1.4. Scheduling in robotic cells. Some problems involving a robot to move jobs between machines are modeled as coupled-operation scheduling. One such coupled-operation problem involves scheduling jobs, each consisting of two operations with a minimum and maximum time lag between them, on a single machine to minimize the maximum completion time. Construction algorithms and local search (descent and tabu search) algorithms are developed [94]. It has been shown that there is in fact a formal equivalence between the scheduling of coupled tasks and a certain type of onemachine no-wait robotic cells [135]. Further insight is obtained for the cyclic production of a single part in robotic flow shops [85, 89].

The two-machine flow shop and open shop problems with a single interchange transporter have been studied. The best possible heuristic approximation algorithms have been designed, provided that the transporter can take any number of jobs, and no more than two shipments are allowed [73]. Algorithms with improved performance guarantees are developed in [232, 233, 234] for the flow shop and in [128] for the open shop.

For a special case of the Cyclic Job Shop Problem with $C_{\max }$ criterion and bounded number H of parts processed within one cycle, a pseudo-polynomial algorithm is proposed, based on dynamic programming [224]. Also for this problem with fixed H a fully polynomial time approximation scheme (FPTAS) is constructed [$95,96,225,226$] and in the special case of $H=2$ a polynomial-time exact algorithm is proposed [223]. The cyclic job
shop problem with a no-wait constraint is proven to be NP-hard in the strong sense [227]. The Cyclic Job Shop Problem has a significant importance in modern manufacturing systems. Two FPTASs are constructed for the resource constrained project problem with bounded width of the partial order on the set of jobs. The time complexity of the FPTAS for these problems is estimated in two cases: minimization of the makespan and minimization of the average completion time. As a corollary, there is an FPTAS for the job shop scheduling problem with a bounded number of jobs [98, 228]. An exact algorithm combining branch-and-bound and dynamic programming approaches is proposed for the resource constrained project scheduling problem [230]. The resource constrained project scheduling problem with non-renewable resources and a special criterion is shown to be NP-hard [229, 231].

- 2. Coordinating scheduling with logistics

2.1. Scheduling models and methods for problems of re-inverse logistics. Papers [32, 126, 171, 172] address problems of re-inverse logistics. There, items of the same product are produced in batches. The processing of a batch includes two stages. In the first stage, all items of a batch are manufactured and good quality items go to the inventory to satisfy given demands. In the second stage, defective items of the same batch are reworked. During the waiting for rework, defective items deteriorate. Polynomial time algorithms have been developed to find batch sizes such that all the demands are satisfied and the total setup, rework and inventory holding cost is minimized.

Papers [190, 195] study discrete versions of the Economic Order Quantity problem, in which an inventory holder satisfies a constant rate discrete demand for the same product by sending orders to the producer. The problem is to determine the number of orders and the order sizes such that the demand is satisfied and the total order and inventory cost is minimized. Paper [195] assumes that the inventory costs apply to one order of maximum size, while paper [190] assumes that they apply to all the orders. Polynomial $O\left(\log ^{4} n\right)$ and $O(\log n)$ time algorithms are developed, respectively.

An FPTAS is proposed for the problem of finding a minimum cost delivery plan from a set of providers to a manufacturing unit, given lower and upper bounds on shipment sizes, lower-bounded demand and linear delivery costs [16, 198]. For the case of more general cost functions, another FPTAS (also based on dynamic programming but with different time complexity) is suggested [65]. Hardness of approximation is established for a larger number of manufacturing units [16, 198]. For a generalization of this problem, where a set of admissible intervals for the shipment sizes of each supplier is given, the FPTASs are proposed for linear [200] and concave delivery costs [199]. Several genetic algorithms and an exact Benders decomposition algorithm have been developed for a similar supply management problem with a number of manufacturing units and exact demand constraints. The computer experiments showed good results [15, 88, 101]. For a supply management problem with several manufacturing units and lower-bounded demands, an optimized crossover operator is proposed and a genetic algorithm, based on this operator is developed. The computer experiments showed competitive results in comparison with known genetic algorithms and ILOG CPLEX solver [112, 134]. L-class enumeration algorithms are developed for solving a production planning problem with interval input data [181]. Analysis of stability of some integer programming algorithms under small variations of the goal function coefficients is carried out. These results are applicable to the plant location problem and the supply management problem in an integer programming formulation [219]. A hybrid heuristic algorithm has been developed for scheduling a multiproduct chemical production, using MIP-formulation and ILOG CPLEX 9.0 solver in combination with greedy algorithms and local search [207].
2.2. Scheduling with setups and batching. For a problem, where n jobs are to be scheduled in a no-wait flow shop consisting of m batching machines with unbounded capacities, efficient exact and approximate algorithms have been derived to minimize the makespan for fixed m [34, 43]. Two fundamental questions have been addressed: (1) limiting the number of batches in an optimal schedule, independent of the number of tasks to execute; (2) determining the quality of schedules if one allows only a small number of batches. These results are extended in [97] to the case where the no-wait constraint is replaced with the zero-buffer constraint according to which a job completed on an upstream machine may stay on this machine until the downstream machine is ready for its processing. The latter constraint naturally arises in chemical processes where leaving a machine (a chemical tank) for a long time is not allowed because of oxidation and diffusion of a product.

An FPTAS for a capacitated economic lot-sizing problem with the most general cost structure is presented in [180]. A survey of the results on scheduling with setup times and costs is given in [169]. The k-traveling salesman problem, which is to find the cheapest salesman's tour visiting exactly k out of n cities, is considered [49]. Lower bounds for the optimal objective value are constructed based on 2-matching, 1-tree and linear programming relaxations. A new class of facet inequalities is suggested.

Batch scheduling under step deterioration is considered in [80]. In [17, 68, 218], the research on batch processing with task compatibility is continued. These problems connect the theory of scheduling and graph theory and arise in industrial applications. Scheduling problems for jobs that occur in families are frequent in applications. In such cases, the input length of an instance may be much smaller than the actual number of jobs. A framework for the complexity analysis of these socalled high-multiplicity problems is given in [64]. A problem of scheduling jobs on a single machine with family setup times is considered. A setup is necessary when the machine switches from processing jobs in one family to jobs in another family. A genetic algorithm and a tabu search method are developed [14]. A branch and bound algorithm for minimizing the number of late jobs is developed and evaluated using computational tests [66]. In an on-line version of the family scheduling problem, the jobs arrive over time and the goal is to minimize the makespan. A lower bound on the competitive ratio of any on-line algorithm is derived, and for two families an algorithm that achieves this lower bound is provided. As the number of families increases, the lower bound approaches 2 , and a simple algorithm with a competitive ratio of 2 is proposed [158].

Many scheduling models do not consider the cost of delivering jobs to customers, assuming implicitly that a separate shipment is made for each job. New models, which allow jobs to be delivered in batches to customers, are developed. Dynamic
programming algorithms are described for some problems, while NP-hardness has been established for other problems [69]. The two-machine open shop max-batch problem with at most two jobs in a batch has been studied in [56, 149, 150], a nontrivial linear time scheduling algorithm has been developed for a given batching decision. Contrary to an earlier assumption, the problem with three consistent batches has been shown to be polynomially solvable [184]. An improved $6 / 5$-approximation algorithm for the two-machine open shop scheduling problem with batch setup times has been designed in [58].

A batch processing machine is one that can process several jobs simultaneously. The cutting of sheets of material is modeled as a batch processing machine, where the items to be cut have due dates and the goal is to minimize the maximum lateness. A genetic algorithm is developed and compared with neighborhood search algorithms [82].

- 3. Scheduling in supply chains

3.1 Scheduling with release dates and deadlines. Simulated annealing and tabu search approaches to a single machine common due date assignment and scheduling problem with jobs available at different times are considered. The objective is to minimize the total weighted sum of earliness, tardiness and due date costs [19, 79, 90].

An $O\left(n^{2}\right)$ algorithm is developed for the problem of minimizing total flow time in a two machine environment with release dates, equal processing times and treelike precedence constraints provided that preemptions are allowed. This algorithm also can be used to solve the related two-machine open shop problem with integer release dates, unit processing times and analogous precedence constraints [74]. $O\left(n^{3}\right)$ algorithms are developed for the preemptive scheduling problem of minimizing total flow time (provided that jobs have release dates and equal processing requirements) [75] and total tardiness on two uniform parallel machines [93, 194]. A survey of the results on scheduling with fixed job processing intervals on parallel machines and possible job rejection is given in [191].

A segment of a supply chain (supplier - manufacturer - customer) has been modeled as a single machine scheduling problem with controllable processing times, machine speeds, release dates and release speeds. The complexity issues of the arising problems have been resolved, several new polynomial-time algorithms have been designed [196]. Several basic problems in supply chain scheduling have been addressed. In [20, 63, 192], the fundamental strategy of just-in-time scheduling in modern manufacturing systems is studied. Basic issues for the material handling (by machines or human operators) are presented in [103, 106]. Finally, genetic algorithms are used to solve distributed FMS scheduling problems with alternate routings [86] and with maintenance [179].

A comparison of different exact and heuristic solution procedures for the 2-machine flow shop problem has been done [59, 60, 175]. Dynamic Programming and other exact approaches for this problem have been given [61, 176]. Complexity of shop scheduling problems with a fixed number of jobs has been investigated [114]. Further results have been obtained on H-comparability graphs and irreducible sequences [83]. Intensive implementation work has been done in the area of open shop scheduling problems with different objective criteria, in particular for mean flow time [100, 102, 208]. A two-machine job shop problem with sequence-dependent setup and removal times has been considered in [160]. Different constructive and iterative algorithms for flexible flow shop problems with unrelated parallel machines, release dates, setup times and dual objective criteria have been given in [107]. For the latter problem, also a mixed integer programming formulation has been presented.

For a situation where a set of original jobs has been scheduled on a single machine, but not processed, and a set of new jobs arrives, the decision maker needs to insert the new jobs into the existing schedule. To avoid excessive disruption to the original schedule, specific release dates and deadlines are imposed on the original jobs. The problem of scheduling all jobs to minimize the maximum lateness is shown to be NP-hard. Several approximation algorithms are developed, and their worst-case performance is analyzed. Also a branch and bound algorithm is designed [11].
3.2. Assembly scheduling problems. For the problem of buffer allocation in a production line with unreliable machines we have developed a hybrid algorithm, combining a genetic algorithm and a branch-and-bound method with bounded error. In this model the failure and repair times of machines are supposed to be exponentially distributed, while the processing time of each machine is deterministic. The NP-hardness of a special case of this problem is established and its complexity is studied. The computational experiments show good results [4, 109, 117, 142]. A structure of local optima of the buffers allocation problem are experimentally investigated, it was shown that local optima tend to form clusters in the search space. This result allows to choose the most appropriate local search technique for solving the problem and also may be useful for developing new efficient algorithms [109, 204].

The simple assembly line balancing problem is studied in [35], where necessary and sufficient conditions are proven for optimality of the line balance when processing times of some operations are modified. It is shown how to calculate the maximal value of independent variations of the processing times, which definitely keep the feasibility and optimality of the given line balance.

A problem of optimal lot-sizing and scheduling of manufacturing items at a assembly line is considered. The following factors are taken into account: manufacturing time, set-up time between two lots of different types of items, random machine breakdowns and rejects. The goal is to maximize the probability of a desired output for a given period. A mathematical model of the problem and an optimization approach is proposed [30]. A survey of advanced methods for assembly line balancing and sequencing is presented in [105].
$O C$-convexity, defined by the intersections of conic semispaces of directional convexity, is investigated. Half-spaces of $O C$-convexity are described, and conditions on separability of $O C$-convex sets are obtained [13]. It is shown that there exists a connected halfspace of ortho-convexity being not simply connected in the three-dimensional space, which disproves the Fink - Wood conjecture [76]. Extreme properties of solutions to optimization problems on $O C$-convex sets are established [202].
3.3 Scheduling with controllable times and assignable due dates. A single machine scheduling problem of minimizing holding costs with no tardy jobs is considered subject to the SLK due date assignment rule. It is shown that the problem of minimizing a non-increasing function of slack and total weighted earliness or total weighted exponential earliness has a polynomial-time solution if precedence constraints are given by a series-parallel graph or by a graph which can be decomposed in such a way that the size of blocks (modules) is limited [8, 9, 24, 31, 47].

Single machine scheduling problems with due dates assigned depending on processing times are analyzed (assignment policies with common slack due dates, total-work-content or processing-plus-wait due dates), concentrated mainly on polynomially solvable problems where objective functions can be maximum tardiness, total weighted earlinesstardiness, or earliness costs with no tardy jobs [18, 23]. An improvement of an algorithm for single machine common due date assignment and scheduling problem with the rate-modifying activity is proposed in [99, 183, 210].

The two-machine flow-shop scheduling problem with random processing times of jobs is considered to find a minimal set of schedules that dominates all feasible schedules [77, 92, 110, 193, 201, 220]. Necessary and sufficient conditions for fixing the order of two jobs for the makespan criterion are obtained. The conditions for existence of a single schedule which is dominant for the makespan are found. The two-stage two-machine job-shop scheduling problem with random processing times of jobs is considered to find a minimal set of schedules that dominates all feasible schedules [193]. Necessary and sufficient conditions for fixing the order of two jobs for the makespan criterion are obtained.

Scheduling problems of minimizing the makespan in a two-machine job-shop with w given intervals of machine nonavailability is studied. Sufficient conditions for which Jackson's pair of permutations remains optimal for the two-machine job-shop problem with $w \leq 1$ non-availability intervals are found in [62].

Scheduling problems of minimizing the makespan in a two-machine job-shop with given sequence-dependent setup and removal times are studied. Sufficient conditions for which Jackson's pair of permutations remains optimal for the twomachine job-shop problem are found. The results provide lower and upper bounds for the makespan, which are used in a branch-and-bound algorithm. Computational results show that an exact solution for this problem may be obtained in a suitable time for the number of jobs no more than 280 . Heuristic algorithm and worst-case analysis for it have been developed [131, 159, 160, 168].

Several problems with machine maintenance periods of controllable duration have been studied. The length of a maintenance period depends on its start time. A number of exact and approximation algorithms have been designed [71, 72].

Polymatroid methods have been successfully applied to preemptive scheduling problems with controllable processing times, and a number of new polynomial-time algorithms have been described [78].

References

$1^{\text {st }}$ year

- Joint Publications of INTAS and NIS project teams
- International journals

1. Dolgui A., Guschinsky N., Levin G. Graph approach for optimal design of unit-head machines with a rotary table. International Journal of Production Research (in press).
2. Dolgui A., Guschinsky N., Levin G., Proth J.-M. Optimization of multi-position machines and transfer lines. European Journal of Operational Research (in press).

- Abstracts in proceedings

3. Demidenko V., Finke G., Gordon V. The quadratic assignment problem with monotone and bimonotone matrices: well solvable cases. Proceedings of the Second International Workshop "Discrete Optimization Methods in Production and Logistics", Omsk-Irkutsk, 2004, p.155-159.
4. Dolgui A., Eremeev A.V., Sigaev V.S. A hybrid algorithm for buffers allocation in tandem production lines with unreliable machines. Proceedings of the Second International Workshop "Discrete Optimization Methods in Production and Logistics", Omsk-Irkutsk, 2004, p.39-44.
5. Dolgui A., Guschinsky N., Levin G. Une approche de graphes pour la conception de machine outils avec une table rotative. Modélisation et simulation pour l'analyse et l'optimisation des systèmes industriels et logistiques. MOSIM 2004, Septembre 1-3, Nantes 2004. Actes, Vol. 1. p.259-266 (in French).
6. Dolgui A., Guschinsky N., Levin G. Heuristic algorithms for balancing transfer lines with simultaneously activated spindles. Preprints of the International Conference on Manufacturing, Modeling, Management and Control (IFAC-MIM'04), Athens, Greece, 20-21 October, 2004. CD-ROM, 6 p.
7. Gordon V., Orlovich Y., Werner F. Hamiltonian cycles in triangular grid graphs. Abstracts of the International Conference "Operations Research 2004", Sept. 1-3, 2004, Tilburg University, The Netherlands, Tilburg, 2004, p.147-148.
8. Gordon V., Proth J.-M., Strusevich V. Single machine scheduling under precedence constraints and due date assignment. Abstracts of the Ninth International Workshop on Projecty Management and Scheduling. April 26-28, 2004, Nancy, France. (A. Oulamara, M.-C. Portmann, Eds.), Nancy, 2004, p.132-134.
9. Gordon V., Proth J.-M., Strusevich V. Due date assignment and scheduling via modular decomposition. Abstracts of the Dagstuhl Seminar 04231 "Scheduling in Computer and Manufacturing Systems", 2004.

- Publications without INTAS-NIS co-authorship of the project teams
- International journals

10. Dolgui A., Ihnatsenka I. Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads, European Journal of Operational Research (in press)
11. Hall N.G., Liu Z., Potts C.N. Rescheduling for multiple orders. INFORMS Journal on Computing (submitted).

- National journals

12. Demidenko V. The assignment problem with the additively monotone and incomplete Anti-Monge matrices: conditions of the effective solvability. Diskretnaya Matematika (Discrete Mathematics) (submitted) (in Russian).
13. Naidenko V. Directional convexity recognition of the union of polyhedra. Matematicheskie Zametki (Mathematical Notes) (submitted) (in Russian).

- Abstracts in proceedings

14. Bennell J.A., Lee L.S., Potts C.N. A genetic algorithm for single machine scheduling with family setup times to minimize maximum lateness. Abstracts of the $20^{\text {th }}$ European Conference on Operational Research, EURO XX, Rhodes, Greece, July 2004, Rhodes, 2004.
15. Borisovsky P.A. Genetic algorithms for a supply management problem. Proceedings of the 5-th International Conference "Systems, mechanisms and machines dynamics", Omsk, 2004, p.255-258 (in Russian).
16. Chauhan S.S., Eremeev A.V., Romanova A.A., Servakh V.V. Approximation of linear cost supply management problem with lower-bounded demands. Proceedings of the Second International Workshop "Discrete Optimization Methods in Production and Logistics", Omsk-Irkutsk, 2004. p.16-21.
17. Finke G., Jost V., Queyranne M. Batch processing with interval graph compatibilities between tasks. Proceedings of International Workshop "Discrete Optimization Methods in Production and Logistics", Omsk-Irkutsk, 2004, p.88-94.
18. Gordon V. Scheduling problems with assigned due dates. Abstracts of the $20^{\text {th }}$ European Conference on Operational Research, EURO XX, Rhodes, Greece, July 2004, Rhodes, 2004, p. 84.
19. Gordon V.S., Tarasevich A.A. Simulated annealing approach to a common due date earliness-tardiness scheduling problem with given release dates. Proceedings of the Second International Workshop "Discrete Optimization Methods in Production and Logistics", Omsk-Irkutsk, 2004, p.127-130.
20. Jost V., Lebacque V., Brauner N. Classification des objectifs pour des problèmes de planification en juste-à-temps. Journées Francophones de Recherche Opérationnelle, FRANCORO IV, Fribourg, Suisse, 2004, p. 27 (in French).
21. Lemaire P., Finke G., Proth J.M., Queyranne M. Minimiser le nombre de machines pour des ordonnancements de durée minimale. Modélisation et simulation pour l'analyse et l'optimisation des systèmes industriels et logistiques. MOSIM 2004, Septembre 1-3, Nantes 2004. Actes, v.1, p.495-500 (in French).
22. Orlovich Y., Zverovich I. Domination in hereditary classes. Proceedings of the Second International Workshop "Discrete Optimization Methods in Production and Logistics", Omsk-Irkutsk, 2004, p.185-190.

- Books, monographs, internal reports, thesis, patents

23. Gordon V., Proth J.-M., Strusevich V. Scheduling with Due Date Assignment. In: Handbook of Scheduling: Algorithms, Models and Performance Analysis (Ed. J.Y.-T. Leung) - USA, Boca Raton: Chapman \& Hall / CRC Press, 2004, p.21-1-21-22.
24. Gordon V., Proth J.-M., Strusevich V. Single machine scheduling with precedence constraints and SLK due date assignment. Operations Research Proceedings 2003 (D. Ahr, R. Fahrion, M. Oswald, G. Reinelt, Eds.) Springer-Verlag Heidelberg, 2004, p.157-163.
25. Finel B. Structuration de lignes d'usinage: méthodes exactes et heuristiques. PhD Thesis. University of Metz, Supervisors: A. Dolgui, F. Vernadat, 1st December 2004 (in French).
$2^{\text {nd }}$ year

- Joint Publications of INTAS and NIS project teams
- International journals

26. Dolgui A., Finel B., Vernadat F., Guschinsky N., Levin G. A heuristic approach for transfer lines balancing. Journal of Intelligent Manufacturing. 2005, v.16, n², p.159-172.
27. Dolgui A., Guschinskaya O., Guschinsky N., Levin G. Conception de machines-outils prototype d'un système d'aide à la décision. Journal of Decision Systems. 2005, v.14, nº4, p.489-516.
28. Dolgui A., Guschinsky N., Levin G. Exact and heuristic algorithms for balancing transfer lines with simultaneously activated spindle heads: a computational evaluation. International Transactions in Operational Research 2005 (in press).
29. Dolgui A., Guschinsky N., Levin G. A special case of transfer lines balancing by graph approach. European Journal of Operational Research. 2006, v.168, n³, p.732-746.
30. Dolgui A., Levin G., Louly M.A. Decomposition approach for a problem of lot-sizing and sequencing under uncertainties. International Journal of Computer Integrated Manufacturing, 2005, v.18, n5, p.376-385.
31. Gordon V., Proth J.-M., Strusevich V. Single machine scheduling and due date assignment under seriesparallel precedence constraints. Central European Journal of Operations Research 2005, v.13, Issue 1, p.15-35.
32. Inderfurth K., Janiak A., Kovalyov M.Y., Werner F. Batching work and rework processes with limited deterioration of reworkables. Computers and Operations Research. 2006, v.33, p.1595-1605.
33. Orlovich Y., Finke G., Gordon V., Zverovich I. Approximability for the minimum and maximum induced matching problems. Discrete Optimization 2006 (submitted).
34. Oulamara A., Kovalyov M.Y., Finke G. Scheduling a no-wait flow shop with unbounded batching machines. IIE Transactions. 2005, v.37, Issue 8, p.685-696.
35. Sotskov Y., Dolgui A., Portmann M.C. Stability analysis of optimal balance for assembly line with fixed cycle time. European Journal of Operational Research 2006, v.168, n³, p.783-797.

- National journals

36. Orlovich Y., Gordon V., Werner F. Hamiltonian cycles in graphs of triangular grid. Doklady NASB, 2005 v.49, n ${ }^{\circ} 5$, p.21-25 (in Russian).

- Abstracts in proceedings

37. Belmokhtar S., Dolgui A., Guschinsky N., Levin G. Un programme linéaire pour la conception des lignes de transfert à partir d'un ensemble fixe de têtes d'usinage. $6^{\text {ème }}$ Congrès de la Société Française de Recherche Opérationnelle et d'Aide à la Décision. Actes des articles longs. Collection Sciences, Technologies «Informatique», Presses Universitaires François-Rabelais, Tours, 2005, p.259-275.
38. Belmokhtar S., Dolgui A., Guschinsky N., Levin G. A new model for transfer line with simultaneous activation of multi-spindle heads at workstations. Proceedings of the 35th International Conference on Computer and Industrial Engineering, June 19-22, Istanbul, Turkey, 2005, CD-ROM, 6 p.
39. Dolgui A., Finel B., Guschinsky N., Levin G., Vernadat F. A random search and backtracking procedure for transfer line balancing. e-Proceedings of IESM'05 Conference, May 16-19, 2005, Marrakech - Morocco, ISBN 2-9600532-0-6, CD-ROM, 10 p .
40. Dolgui A., Finel B., Guschinsky N., Levin G., Vernadat F. MIP optimisation for large-scale transfer line balancing problems using decomposition. Proceedings of the $18^{\text {th }}$ International Conference on Production Research (ICPR'05), July 31-August 4, 2005, University of Salerno, ISBN 88-87030-96-0C, CD-ROM, 6p.
41. Dolgui A., Guschinskaya O., Guschinsky N., Levin G. A combined heuristic approach for optimization of a class of machining lines. Proceedings of the IEEE Conference on Automation Science and Engineering (IEEE-CASE 2005), August 1-2, 2005, Edmonton, Canada, CD-ROM, p.154-159.
42. Dolgui A., Guschinsky N., Levin G. Transfer line balancing by a combined approach. Preprints of the $16^{\text {th }}$ IFAC World Congress, P. Horacek, M. Simandl and P. Zitek (Eds.), Prague, Czech Republic, July 3-8, 2005, CD-ROM, 6 p.
43. Finke G., Kovalyov M.Y., Oulamara A. Batch scheduling in a no-wait flow shop. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.17-18.
44. Gordon V., Demidenko V., Finke G. On well solvable cases of the quadratic assignment problem with monotone and bimonotone matrices. Abstracts of the 17th Triennial Conference IFORS, Honolulu, July 1115, 2005, Hawaii, USA, 2005, p. 77.
45. Gordon V., Orlovich Y., Potts C. On Hamiltonian cycles in locally connected graphs with bounded vertex degree. Abstracts of the Annual International Scientific Conference Operations Research 2005 OR'2005, Bremen, Germany, September 7-9, 2005, Bremen 2005, p. 90.
46. Gordon V., Orlovich Y., Potts C. Cyclic properties of locally connected graphs with bounded vertex degree. Seminar on Scheduling for New Execution Supports. CIRM Center, Marseille-Luminy, France. 28 May- 3 June 2006, Marseille-Luminy, France, 2006. p. 12.
47. Gordon V., Proth J.-M., Strusevich V. Scheduling and due date assignment problems of minimizing earliness penalties under precedence constraints. $7^{\text {th }}$ Workshop on Models and Algorithms for Planning and Scheduling Problems - MAPSP, Sienne, Italy 2005, p.148-150.
48. Guschinsky N., Dolgui A., Levin G. . Constrained mixed graph colourings. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.19-20.
49. Horbach A., Girlich E., Kovalev M.M. The k-traveling salesman problem: discrete relaxations and the polytope. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.22-24.
50. Levin G., Dolgui A., Guschinsky N. Balancing paced production lines with blocks of parallel operations at stations. Abstracts of the 17th Triennial Conference IFORS, Honolulu, July 11-15, 2005, Hawaii, USA, 2005, p. 4.
51. Orlovich Y., Finke G., Gordon V., Zverovich I. On approximability of the minimum and maximum induced matching problems. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.48-49.
52. Werner F., Gordon V., Orlovich Y. On Hamiltonian cycles in triangular grid graphs. $2^{\text {nd }}$ Scientific Conference Tanaev's Lectures, Minsk, 2005, p.23-27. (In Russian).

- Books, monographs, internal reports, thesis, patents

53. Dolgui A., Eremeev A., Gordon V., Kolokolov A. (Eds). Special Issue on Discrete Optimization Methods in Production and Logistics, Journal of Mathematical Modeling and Algorithms, vol. 5, n ${ }^{\circ}$ 1, 2006, 140 pages.
54. Dolgui A., Guschinskaya O., Guschinsky N., Levin G. A hybrid heuristics for optimization of a class of machining lines. Research Report G2I-EMSE 2005-500-17, November 2005, Ecole des Mines de Saint Etienne, 32 p.
55. Dolgui A., Guschinsky N., Levin G. Graph approach for optimal design of unit-head machines with a rotary table. Research Report G2I-EMSE 2005-500-004, March 2005, Ecole des Mines de Saint Etienne, 30 p.
56. Lushchakova I.N., Strusevich V.A. Scheduling pairs of jobs on two machines. University of Greenwich, CMS Press, 2006, Paper No.06/IM/125.
57. Orlovich Y., Finke G., Gordon V., Zverovich I. Approximability for the minimum and maximum induced matching problems. Les Cahiers Leibniz, $\mathrm{n}^{\circ} 130$, Oct. 2005, Grenoble, 18 p.

- Publications without INTAS-NIS co-authorship of the project teams
- International journals

58. Billaut J.-C., Gribkovskaia I.V., Strusevich V.A.. An improved approximation algorithm for the twomachine open shop scheduling problem with family setup times. IIE Transactions. 2006 (accepted).
59. Blazewicz J., Pesch E., Sterna M., Werner F. A comparison of solution procedures for two-machine flow shop scheduling with late work criterion. Computers and Industrial Engineering. 2005, v.49, p.611-624.
60. Blazewicz J., Pesch E., Sterna M., Werner F. Flow shop scheduling with late work criterion - choosing the best strategy. Lecture Notes in Computer Science, v.3285, Springer, 2004, p.68-75.
61. Blazewicz J., Pesch E., Sterna M., Werner F. Metaheuristics for late work minimization in two-machine flow shops with common due date. Lecture Notes in Computer Science, v.3698, Springer, 2005, p. 408 - 415.
62. Braun O., Leshchenko N.M., Sotskov Y.N. Optimality of Jackson's permutations with respect to limited machine availability. International Transactions in Operational Research. 2006, 13, p.59-74.
63. Brauner N. and Crama Y. The maximum deviation just-in-time scheduling problem. Discrete Applied Mathematics, 2004, v. 134 (1-3), p.25-50.
64. Brauner N., Crama Y., Grigoriev A., and van de Klundert J. A framework for the complexity of highmultiplicity scheduling problems. Journal of Combinatorial Optimization, 2005, v.9, p.313-323.
65. Chauhan S.S., Eremeev A.V., Romanova A.A., Servakh V.V., Woeginger G.J. Approximation of the supply scheduling problem. Operations Research Letters 2005, v.33, n ${ }^{\circ}$ 3, p.249-254.
66. Crauwels H.A.J., Potts C.N., Van Oudheusden D., and Van Wassenhove L.N. Branch and bound algorithms for single machine scheduling with batching to minimize the number of late jobs. Journal of Scheduling 2005, v.8, p.161-177.
67. Dolgui A., Ihnatsenka I. Balancing transfer lines with mixed activation of spindle heads. Discrete Applied Mathematics, 2005 (submitted).
68. Finke G., Jost V., Queyranne M., Sebö A. Batch processing with graph compatibilities between tasks. Discrete Applied Mathematics. 2007 (in print).
69. Hall N.G., Potts C.N. The coordination of scheduling and batch deliveries. Annals of Operations Research 2005, v.135, p.41-64.
70. Janiak A., Kovalyov M.Y. Job sequencing with exponential functions of processing times. Informatica. 2006, v.17, p.1-11.
71. Kubzin M.A., Strusevich V.A. Two-machine flow shop no-wait scheduling with machine maintenance. 4OR 2005, v.3, p.303-313.
72. Kubzin M.A., Strusevich V.A. Planning machine maintenance in two-machine shop scheduling. Operations Research, 2006 (accepted).
73. Lee C.-Y., Strusevich V.A. Two-machine shop scheduling with an uncapacitated interstage transporter. IIE Transactions 2005, v.37, p.725-736.
74. Lushchakova I.N. Two machine preemptive scheduling problem with release dates, equal processing times and precedence constraints. European Journal of Operational Research. 2006, v.171, p.107-122.
75. Lushchakova I.N. Preemptive scheduling of equal length jobs with release dates on two uniform parallel machines. Discrete Optimization (submitted).
76. Naidenko V.G. On a conjecture of Fink and Wood. 2005 Journal of Geometry (submitted).
77. Ng C.T., Leshchenko N.M., Sotskov Y.N., Cheng T.C.E. Two-machine flow-shop scheduling problem with uncertain processing times. International Transactions in Operational Research, 2006 (submitted).
78. Shakhlevich N.V., Strusevich V.A.. Preemptive scheduling problems with controllable processing times. Journal of Scheduling, 2005, 8, 233-253.

-

National journals
79. Tarasevich A.A. Minimizing total penalty for scheduling jobs with non-zero release dates under a common due date based on tabu search. Informatika 2006 (accepted) (in Russian).
-
Abstracts in proceedings
80. Barketau M.S., Cheng T.C.E., Ng C.T. Batch scheduling of items under step deterioration. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.7-8.
81. Belmokhtar S., Dolgui A., Delorme X.. Conception préliminaire de ligne de transfert avec activation mixte des têtes d'usinage aux stations. 7ème congrès de la Société Française de Recherche Opérationnelle et d'Aide à la Décision, 6, 7, 8 Février 2006, Lille, CD-ROM.
82. Bennell J.A., Lee L.S., Potts C.N. Genetic algorithm for two-dimensional bin packing problems to minimize the maximum lateness, Abstracts of the 17th Triennial Conference IFORS, Honolulu, July 11-15, 2005, Hawaii, USA, 2005, p. 99.
83. Bräsel H., Mörig M.: H-comparability graphs and irreducible sequences. $7^{\text {th }}$ Workshop on Models and Algorithms for Planning and Scheduling Problems - MAPSP, Sienne, Italy 2005, p.55-57.
84. Bratcu A., Dolgui A., Belmokhtar S.. Reconfigurable transfer lines cost optimization - A linear programming approach. Proceedings of the $10^{\text {th }}$ IEEE International Conference on Emerging Technologies and Factory Automation, Catania -Italy, Lucia Lo Bello and Thilo Sauter (Ed.), IEEE, 2005, v.1, p.625632.
85. Brauner N., Finke G. Counter-example to Agnetis' conjecture for classical robotic cells. $7^{\text {th }}$ Workshop on Models and Algorithms for Planning and Scheduling Problems - MAPSP, Sienne, Italy 2005, p.58-61.
86. Chan F.T.S., Chung S.H., Chan P.L.Y., Finke G. and Tiwary M.K. Solving distributed scheduling problem with alternative routings by genetic algorithms, Proceedings of The $15^{\text {th }}$ International Conference on Flexible Automation and Intelligent Manufacturing FAIM 2005, University of Deusto, Bilbao, Spain, 2005, p.391-399.
87. Dolgui A., Ihnatsenka I. Mixed model for transfer lines with multi-spindles stations: an optimization algorithm. Proceedings of the $10^{\text {th }}$ IEEE International Conference on Emerging Technologies and Factory Automation, September 19-22, 2005, Lucia Lo Bello and Thilo Sauter (Ed.), IEEE, 2005, v.1, p.467-474.
88. Eremeev A. Borisovsky P. Solving the supply management problem by means of genetic algorithms. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.14-15.
89. Finke G., Brauner N. Robotic Cells : Configurations, Conjectures and Cycle Functions. Abstracts of the Annual International Scientific Conference Operations Research 2005 OR'2005, Bremen, Germany, September 7-9, 2005, Bremen 2005, p.173-174.
90. Gordon V., Tarasevich A.A. Heuristic approaches to a common due date earliness-tardiness scheduling problem. Proceedings of the $2^{\text {nd }}$ Multidisciplinary International Conference on Scheduling: Theory and Applications MISTA 2005, $18^{\text {th }}-21^{\text {st }}$ July 2005, Stern School of Business, New York University, USA (Ed. G. Kendall, L. Lei, M. Pinedo), Vol. 1, New York, 2005, p.132-139.
91. Ivashenko V. Applications of optimization methods for search of semantic network constructions. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.23-24.
92. Leshchenko N.M., Sotskov Y.N. Two-machine minimum-length shop-scheduling problems with uncertain processing times. Proceedings of the XI-th International Conference "Knowledge - Dialogue - Solution" (KDS-2005), Varna, Bulgaria, June 20-30, 2005, p.375-381.
93. Lushchakova I.N. Preemptive scheduling of two uniform parallel machines to minimize total tardiness. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.41- 42.
94. Potts C.N., Whitehead J.D. Local search for a single machine coupled-operation scheduling problem. $7^{\text {th }}$ Workshop on Models and Algorithms for Planning and Scheduling Problems - MAPSP, Sienne, Italy 2005, p.225-227.
95. Romanova A.A., Servakh V.V. Algorithms for solving some cyclic job shop problem. Proceedings of the 13-th Baikal International School-Seminar "Optimization Methods and Their Applications", v.1. Irkutsk, 2005, p.577-582. (in Russian).
96. Romanova A.A., Servakh V.V. On some cyclic machine scheduling problems. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.58-59.
97. Sas A.I. Scheduling a flow shop with unbounded batching machines. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p. 63.
98. Servakh V.V., Shcherbinina T.A. On some approximation of solution of resource constrained project scheduling problem. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p. 64.
99. Tarasevich A.A., Gordon V. On a single machine scheduling problem with rate-modifying activity. Abstracts of the Annual International Scientific Conference Operations Research 2005 OR'2005, Bremen, Germany, September 7-9, 2005, Bremen 2005, p.177-178.
100. Werner F., Bräsel H., Herms A., Mörig M., Tautenhahn T., Tusch J., A comparison of heuristic algorithms for the open shop problem with minimizing mean flow time, Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XVIII, Minsk, Belarus, May 26-28, 2005, Minsk, 2005, p.76-77.

- Books, monographs, internal reports, thesis, patents

101. Borisovsky P.A. Investigation of evolutionary algorithms for solving some discrete optimization problems. PhD thesis. Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk, October 5, 2005. (in Russian).
102. Bräsel H., Herms A., Mörig M., Tautenhahn T., Tusch J., Werner F. Heuristic algorithms for open shop scheduling to minimize mean flow time, Part I: Constructive algorithms, Preprint 30/05, FMA, Otto-vonGuericke University Magdeburg, 2005.
103. Brauner N., Finke G., Queyranne M. Optimisation combinatoire et planification de la production, Chapitre 8, 271-310. In «Optimisation Combinatoire 3 » (sous la direction de V. Th. Paschos). Série Informatique et Systèmes d'Information. Hermès-Lavoisier 2006, ISBN 2-7462-1179-3. (in French).
104. Dolgui A., I. Ihnatsenka. Balancing transfer lines with mixed activation of spindle heads. Research Report G2I-EMSE 2005-500-001, January 2005, Ecole des Mines de Saint Etienne, 33 p.
105. Dolgui A., Proth J.-M.. Systèmes de fabrication modernes. Tome 1 : Conception, gestion et optimisation. Hermès, 2006, (Book, ISBN: 2-7462-1249-8), 415 p.
106. Hait A., Baptiste P., Brauner N., Finke G. Approches intégrées à court terme, Chapitre 6, p.139-175. Gestion de Production et Ressources Humaines (sous la direction de Pierre Baptiste, Vincent Giard, Alain Haït, François Soumis), Presses Internationales Polytechnique 2005, ISBN 2-553-01145-8. (in French).
107. Jungwattanakit J., Reodecha M., Chaovalitwongse P., Werner F. An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines, Preprint 28/05, FMA, Otto-von-Guericke-University Magdeburg, 2005.
108. Makdessian L. Structuration et choix d'équipements des lignes de production: approaches mono et multicritère. PhD Thesis, Supervisors: A. Dolgui, F. Yalaoui, University of Technology of Troyes, June 20, 2005 (in French).
109. Sigaev V.S. Development and analysis of algorithms for solving optimization problems in production line design. PhD thesis, submitted to Omsk branch SIM RAS. (in Russian).
110. Sotskov Yu. N., Sotskova N.Yu., Scheduling theory. Systems with uncertain numerical data. United Institute of Informatics Problems, Minsk, 2004, 290 pages. (in Russian).
$3^{\text {rd }}$ year

- Joint Publications of INTAS and NIS project teams
- International journals

111. Belmokhtar S., Dolgui A., Guschinsky N., Levin G. An integer programming model for logical layout design of modular machining lines. Computers \& Industrial Engineering. 2006, v.51, p.502-518.
112. Borisovsky P. A., Dolgui A., Eremeev A.V. Genetic algorithms for a supply management problem: MIPrecombination vs greedy decoder. European Journal of Operational Research, 2007. (accepted).
113. Brauner N., Finke G., Lebacque V., Potts C., Whitehead J. Scheduling of coupled tasks and one-machine no-wait robotic cells. Special issue of Computers and Operations Research (accepted).
114. Brucker P., Sotskov Y., Werner F. Complexity of shop scheduling problems with fixed number of jobs: a survey. Mathematical Methods of Operations Research, v.65, n³3, 2007, p.461-481.
115. Demidenko V.M., Dolgui A. Generalized conditions of well solvability of the quadratic assignment problem with Anti-Monge matrices and additively monotonous matrices. Journal of Mathematical Modelling and Algorithms (JAMMA) 2007 (submitted).
116. Demidenko V., Finke G., Gordon V. Well solvable cases of the quadratic assignment problem with monotone and bimonotone matrices. Journal of Mathematical Modeling and Algorithms. 2006, v.5, n², p.167-187.
117. Dolgui A., Eremeev A.V., Sigaev V.S. HBBA: Hybrid Branch and Bound Algorithm for buffer space allocation in tandem production lines. Journal of Intelligent Manufacturing, 2007, v.18, n³, 2007, p.411420.
118. Dolgui A., Finel B., Guschinsky N., Levin G., Vernadat F. MIP approach to balancing transfer lines with blocks of parallel operations. IIE Transactions. 2006, v.38, p.869-882.
119. Dolgui A., Finel B., Guschinskaya O., Guschinsky N., Levin G., Vernadat F., Balancing large-scale machining lines with multi-spindle heads using decomposition. International Journal of Production Research, 2006, v.44, nº18-19, p.4105-4120.
120. Dolgui A., Guschinsky N., Levin G. A decomposition method for transfer line life cycle cost optimisation. Journal of Mathematical Modeling and Algorithms. 2006, v.5, p.215-238.
121. Gordon V.S., Orlovich Yu.L., Werner F. Hamiltonian properties of triangular grid graphs. Discrete Mathematics 2006 (submitted).
122. Gordon V.S., Potts C.N., Strusevich V.A., Whitehead J.D. Single machine scheduling models with deterioration and learning: handling precedence constraints via priority generation. Journal of Scheduling. 2007 (submitted).
123. Gordon V.S., Strusevich V.A. Single machine scheduling and due date assignment with positionally dependent processing times. European Journal of Operational Research. 2007 (submitted).
124. Guschinskaya O., Dolgui A., Guschinsky N., Levin G. A scheduling problem for multi-spindle head machines with a mobile table. Computers and Operations Research (submitted).
125. Guschinskaya O., Dolgui A., Guschinsky N., Levin G. A heuristic multi-start decomposition approach for optimal design of serial machining lines. European Journal of Operational Research (accepted).
126. Inderfurth K., Kovalyov M.Y., Ng C.T.D., Werner F. Cost minimizing scheduling of work and rework processes on a single facility under deterioration of reworkables. International Journal of Production Economics. 2007, v.105, n², p.345-356.
127. Kovalyov M.Y., Werner F. Problem F2||Cmax with forbidden jobs in the first or last position is easy, European Journal of Operational Research. 2007, v.177, n², p.1310-1311.
128. Lushchakova I.N., Soper A.J., Strusevich V.A. Transporting jobs through a two-machine open shop. Naval Research Logistics, 2007 (submitted).
129. Lushchakova I.N., Strusevich V.A. Scheduling pairs of jobs on two machines. European Journal of Operational Research 2007 (submitted).
130. Orlovich Yu., Gordon V., Potts C., Strusevich V. Hamiltonian properties of locally connected graphs with bounded vertex degree. Journal of Graph Theory 2007 (submitted).
131. Sotskov Y.N., Egorova N.G., Lai T.-C., Werner F. Sequence-dependent setup and removal times in a twomachine job-shop with minimizing the schedule length. International Journal of Operations Research, 2007 (accepted).

- National journals

132. Demidenko V.M, Dolgui A. Effectively solvable cases of the quadratic assignment problem with generally monotonous and incomplete matrices, Cybernetics and Systems Analysis, 2007, v.43, n ${ }^{\circ} 1$, p.135-151 (in Russian).
133. Orlovich Yu., Gordon V., Zverovich I., Finke G. Hardness of approximating minimum (or maximum) maximal induced matching graph problems. Doklady NASB, 2007 v.51, n${ }^{\circ}$ 2, p.11-16 (in Russian).

- Abstracts in proceedings

134. Borisovsky P. A., Dolgui A., Eremeev A.V. Genetic algorithms for supply management problem with lowerbounded demands. Information Control Problems In Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.521-526.
135. Brauner N., Finke G., Lebacque V., Potts C., Whitehead J. Scheduling of coupled tasks and one-machine nowait robotic cells. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.141-146.
136. Brauner N., Finke G., Lebacque V., Potts C., Whitehead J. Equivalence of coupled task problems and a class of robotic cells. Combinatorial Optimization and Applications. Osnabrück, March 1-2, 2007.
137. Brauner N., Finke G., Lebacque V., Rapine C., Potts C., Strusevich V. Scheduling with operator nonavailability periods. Eighth Workshop on: Models and Algorithms for Planning and Scheduling Problems MAPSP2007, Istanbul, July 2007.
138. Demidenko V.M., Dolgui A. Quadratic Assignment Problem: Easily solvable cases. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006. v.3, p.441-446.
139. Dolgui A., Guschinskaya O., Guschinsky N., Levin G. Optimization in design of unit-head machines with a mobile table. Information Control Problems In Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.2, p.413-418.

INTAS Guidelines for Periodic and Final Reports on Projects - January 2005 - page 12 of 27
140. Dolgui A., Guschinskaya O., Guschinsky N., Levin G. Machine tools engineering: Integrated decision support system for the logical layout design of unit head machines. Proceedings of the International Conference on Global Manufacturing and Innovation. July 27-29, 2006, Coimbatore, India (CD-ROM), 9 p.
141. Dolgui A., Guschinsky N.,. Levin G. An improved mixed integer programming model for a transfer line balancing problem. Proceedings of the International Conference on Industrial Engineering and Systems Management (IESM'2007), May 30-June 2, 2007, Beijing, China, S. Yang, G. Chen, A. Thomas, A. Artiba, Z. Xu (Eds.), Tsinghua University Press, p. 50. (Full paper on CD-ROM, 10 p).
142. Dolgui A., Eremeev A.V., Sigaev V.S. On complexity of a buffers allocation problem. In: Book of Abstracts of the 3rd All-Russia Conference "Optimization problems and Economical Applications", Omsk, 2006, p. 88. (In Russian).
143. Gordon V., Orlovich Yu., Finke G., Zverovich I. Complexity of approximating the maximum and minimum maximal induced matchings. 22nd European Conference on Operational Research, Prague, Czech Republic, July 8-11, 2007. p. 82.
144. Gordon V., Orlovich Yu., Werner F. Cycle extendability of triangular grid graphs. $20^{\text {th }}$ Anniversary Conference of the European Chapter on Combinatorial Optimization ECCO XX, Limassol, Cyprus, May 2426, 2007, p. 37.
145. Gordon V., Orlovich Yu., Werner F. On the complexity of the hamiltonian cycle problem in locally connected triangular grid graphs. Operations Research OR 2007, Saarbrücken, Germany, September 5-7, 2007 (accepted).
146. Guschinsky N., Dolgui A., Levin G. Exact methods for design of unit-head machines. Abstracts of the European Conference on Combinatorial Optimization (ECCO XIX) and the biennial International Symposium on Combinatorial Optimization (CO2006), Porto, Portugal, May 11-13, 2006. University of Porto, Porto, 2006, p. 29.
147. Guschinskaya O., Dolgui A, Guschinsky N., Levin G. New reduction methods for the transfer line balancing problem, Preprints of IMS' 2007: IFAC Workshop on Intelligent Manufacturing Systems, May 23-25, 2007, Alicante, Spain, 2007, p.75-80.
148. Levin G., Guschinsky N., Dolgui A. Some approaches to balancing production lines with blocks of parallel operations at stations Abstracts of the $21^{\text {st }}$ European Conference on Operational Research (EURO2006), Reykjavik, Iceland, 2006, p. 212.
149. Lushchakova I.N., Strusevich V.A. Scheduling pairs of jobs on two machines. Abstracts of the Conference of the European Chapter on Combinatorial Optimization ECCO XX, Limassol, Cyprus, May 24-26, 2007, Limassol, 2007, p.29-30.
150. Lushchakova I.N., Strusevich V.A. Scheduling pairs of jobs on two machines. $3^{\text {rd }}$ International Scientific Conference Tanaev's Lectures, Minsk, 2007, p.114-118.
151. Orlovich Yu., Blazewicz J., Finke G., Gordon V., Zverovich I. On independent domination in graphs with triangle condition. Operations Research OR 2007, Saarbrücken, Germany, September 5-7, 2007 (accepted).
152. Orlovich Yu., Finke G., Gordon V., Werner F. On the complexity of the maximum dissociation set problem for line graphs. Colloquium on Combinatorics, Otto-von-Guericke-Universitat Magdeburg, November 1618, 2006, p. 56.
153. Orlovich Yu., Finke G., Gordon V., Werner F. On maximal dissociation sets in graphs. 22nd European Conference on Operational Research, Prague, Czech Republic, July 8-11, 2007, p.115.
154. Orlovich Yu., Gordon V., Potts C., Strusevich V. On hamiltonian cycles in locally connected graphs with vertex degree constraints. EURO COMB 2007, Seville, Spain, September 11-15, 2007, p.169-173.
155. Orlovich Y., Gordon V., Werner F. Cyclic properties of triangular grid graphs. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, Elsevier Science 2006, v.3, p.147-152.
156. Orlovich Yu., Gordon V., Werner F. On the maximum dissociation set problem for line graphs. Abstracts of the International Conference on Operations Research OR 2006, September 6-8, 2006, Karlsruhe, 2006, p.69.
157. Orlovich Yu., Gordon V., Zverovich I., Finke G. On approximation of minimum and maximum maximal induced matchings. $3^{\text {rd }}$ International Scientific Conference Tanaev's Lectures, Minsk, March 28, 2007, p.136-140. (in Russian).
158. Potts C. N., Strusevich V.A., Whitehead J. D. On-line algorithms for single machine scheduling with family setup times. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.135-140.
159. Sotskov Y.N., Egorova N.G., Werner F. Sequence-dependent setup and clean-up times in a two-machine job-shop with minimizing makespan. Proceedings of ECCO XX, May 23-26, 2007, Limassol, p.30-31.
160. Sotskov Yu.N., Werner F. Sequence-dependent setup times in two-machine job-shop with minimizing makespan. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.51-56.

- Books, monographs, internal reports, thesis, patents

161. Dolgui A., Guschinskaya O., Guschinsky N., Levin G. Decision making and support tools for design of machining systems. Research Report G2I-EMSE 2006-500-12, October 2006, Ecole des Mines de Saint Etienne, 12 p.
162. Dolgui A., Guschinsky N., Levin G. An improved MIP approach for balancing transfer lines with simultaniously activated spindle heads. Research Report G2I-EMSE 2006-500-14, October 2006, Ecole des Mines de Saint Etienne, 22 p.
163. Finke G., Strusevich V., Werner, F. (eds.) Scheduling for modern manufacturing, logistics and supply chains, Computers \& Operations Research, Special Issue (to appear).
164. Gordon V.S., Orlovich Yu.L., Werner F. Hamiltonian properties of triangular grid graphs. Preprint 15/06, Otto-von-Guericke-University of Magdeburg, Germany, 2006, 22p.
165. Gordon V.S., Orlovich Yu.L., Werner F. Complexity of the hamiltonian cycle problem in triangular grid graphs. Preprint 04/07, Otto-von-Guericke-University of Magdeburg, Germany, 2007, 12p.
166. Guschinskaya O., A. Dolgui, N. Guschinsky, and G. Levin. Scheduling for multi-spindle head machines with a mobile table. Research Report G2I-EMSE 2007-500-002, January 2007, Ecole des Mines de Saint Etienne, 26 p.
167. Guschinsky N., Levin G., Dolgui A. Decision-Making Support in Power Transmission System Design.Minsk.: Belorusskaya nauka, 2006, 262 p. (in Russian).
168. Sotskov Y.N., Egorova N.G., Lai T.-C., Werner F. Sequence-dependent setup and removal times in a twomachine job-shop with minimizing the schedule length. Preprint 36/2006, Otto-von-Guericke-Universität, Fakultät für Mathematik, 2006.

- Publications without INTAS-NIS co-authorship of the project teams
- International journals

169. Allahverdi A., Ng C.T., Cheng T.C.E., Kovalyov M.Y. A survey of scheduling problems with setup times or costs. European Journal of Operations Research, 2007 (accepted).
170. Andresen M., Bräsel, H., Mörig, M., Tusch J., Werner F., Willenius P. A comparison of metaheuristic algorithms for open shop scheduling to minimize mean flow time. Computers \& Industrial Engineering (submitted).
171. Barketau M.S., Cheng T.C.E., Kovalyov M.Y. Batch scheduling of deteriorating reworkables. European Journal of Operations Research. 2007 (accepted).
172. Barketau M.S., Cheng T.C.E., Ng C.T., Kotov V., Kovalyov M.Y. Batch scheduling of step deteriorating jobs. Journal of Scheduling. 2007 (accepted).
173. Belmokhtar S., Dolgui A., Ignatenko I., and Delorme X.. Optimizing modular machining line design problem with mixed activation mode of machining units, Decision Making in Manufacturing and Services, 2007 (accepted).
174. Blazewicz J., Burke E., Kasprzak M., Kovalev A., Kovalyov M.Y. Simplified Partial Digest Problem: enumerative and dynamic programming algorithms. IEEE Transactions on Computational Biology and Bioinformatics. 2007 (accepted).
175. Blazewicz J., Pesch E., Sterna M., Werner F. Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion and common due date. Computers and Operations Research. V. $35, \mathrm{n}^{\circ} 2,2008$, p.574-599 (forthcoming).
176. Blazewicz J., Pesch E., Sterna M., Werner F. A note on the two-machine scheduling problem with late work criterion. Journal of Scheduling, v.10, n², 2007, p.87-95.
177. Bräsel H., Herms A., Mörig M., Tautenhahn T., Tusch J., Werner F. Heuristic constructive algorithms for open shop scheduling to minimize mean flow time, European Journal of Operational Research, 2007 (accepted).
178. Capacho L., Pastor R., Dolgui A., Gushinskaya O. An evaluation of constructive heuristic methods for solving the alternative subgraphs assembly line balancing problem, Journal of Heuristics, 2007 (accepted).
179. Chan F.T.S., Chung S.H., Chan P.L.Y., Finke G. and Tiwary M.K. Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach, Int. Journal Robotics \& Computer Integrated Manufacturing 2006, v. 22, p.493-504.
180. Chubanov S., Kovalyov M.Y., Pesch E. An FPTAS for a single-item capacitated economic lotsizing problem with monotone cost structuire. Mathematical Programming, Ser. A 2006, v.106, p.453-466.
181. Devyaterikova M.V., Kolokolov A.A., Kolosov A.P. L-class enumeration algorithms for a discrete production planning problem with interval resource quantities. Computers \&Operations Research 2007. (submitted).
182. Finel B., Dolgui A., and Vernadat F.. A random search and backtracking procedure for transfer line balancing. International Journal of Computer Integrated Manufacturing, 2006 (accepted).
183. Gordon V.S., Tarasevich A.A. A note: Common due date assignment for a single machine scheduling with the rate-modifying activity. Computers \& Operations Research (submitted).
184. Gribkovskaia I.V., Lee C.-Y., Strusevich V.A., de Werra D. Three is easy, two is hard: open shop sumbatch scheduling problem refined. Operations Research Letters 2006, 34, p.459-464.
185. Janiak A., Kovalyov M.Y. Scheduling in a contaminated area: a model and polynomial algorithms. European Journal of Operations Research. 2006, v.173, p.125-132.
186. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. Algorithms for flexible flow shop scheduling with unrelated parallel machines, setup times, and dual criteria, International Journal of Advanced Manufacturing Technology, 2007 (accepted).
187. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. Constructive and simulated annealing algorithms for hybrid flow shop problems with unrelated parallel machines and setup times, Thammasat International Journal of Science and Technology, v.12, n ${ }^{\circ} 1,2007$, p.31-41.
188. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. Constructive and tabu search algorithms for flexible flow shop scheduling with unrelated parallel machines and setup times, International Journal of Computational Science, v.1, n², 2007, p.204-214.
189. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup times and dual criteria, Computers and Operations Research, 2007 (accepted).
190. Kovalev A., Ng C.T. A discrete EOQ problem is solvable in $O(\log n)$ time. European Journal of Operational Research 2007 (accepted).
191. Kovalyov M.Y., Ng C.T., Cheng T.C.E. Fixed interval scheduling: models, applications, computational complexity and algorithms. European Journal of Operational Research. 2007, v.178, p.331-342.
192. Lebacque V., Jost V., Brauner N. Optimization in JIT scheduling. European Journal of Operational Research 2007, v.182, p.29-39.
193. Leshchenko N.M., Sotskov Y.N. Realization of an optimal schedule for the two-machine flow-shop with interval job processing times. International Journal "Information Theory \& Application", v.14, 2007, p.182-189.
194. Lushchakova I.N. Preemptive scheduling of two uniform parallel machines to minimize total tardiness. Theoretical Computer Science, 2007 (submitted).
195. Ng C.T., Cheng T.C.E., Kotov V., Kovalyov M.Y. An $O\left(\log ^{4} n\right)$ time algorithm for a discrete EOQ problem. Discrete Optimization. 2007 (submitted).
196. Shakhlevich N.V., Strusevich V.A. Single machine scheduling with controllable release and processing parameters. Discrete Applied Mathematics 2006, v.154, p.2178-2199.
197. Soper A.J., Strusevich V.A. An improved approximation algorithm for the two-machine flow shop scheduling problem with an interstage transporter. Journal of Foundations of Computer Science 2007, v. 18, 565-591.

- National journals

198. Chauhan S.S., Eremeev A.V., Romanova A.A., Servakh V.V. Approximate solution of a supply management problem. Discrete Analysis and Operations Research Ser. 2, v.13, n ${ }^{\circ}$, 2006, p.27-39 (in Russian).
199. Eremeev A.V., Kovalyov M.Ya, Kuznetsov P.M. Approximate solution of a supply management problem with multiple intervals and concave cost functions. Avtomatika i Telemekhannika, 2007. (in Russian) (submitted).
200. Eremeev A.V., Kuznetsov P.M. Approximate solution of supply management problem with multiple intervals. Vestnik Omskogo Universiteta, n³, 2006, p.26-28. (in Russian).
201. Leshchenko N.M., Sotskov Y.N. Finding the optimal order for processing two conflict jobs. Proceedings of the National Academy of Sciences of Belarus, 2006, nº4, p.103-110 (in Russian).
202. Naidenko V. Optimization on OC-convex sets. Vestsi Nats. Akad. Navuk Belarusi. Ser. Fis.-Mat. Navuk (submitted) (in Russian).
203. Servakh V.V. A polynomially solvable case of three-stage Johnson's problem. Discrete Analysis and Operations Research Ser. 2, v.13, $\mathrm{n}^{\circ} 1,2006$, p.44-55 (in Russian).
204. Sigaev V.S. On properties of local optima in buffers allocation problem. Vestnik Omskogo Universiteta, n², 2006, p.32-34. (In Russian).

- Abstracts in proceedings

205. Andresen M., Bräsel, H., Mörig, M., Tusch J., Werner F., Willenius P. On mean flow time minimization for open shop scheduling to minimize mean flow time, Proceedings of EURO XXII, July 8-11, 2007, Prague, p. 231 .
206. Andresen M., Bräsel, H., Mörig, M., Tusch J., Werner F., Willenius P. On mean flow time minimization for open shop scheduling to minimize mean flow time, Proceedings of MAPSP, July 1-6, 2007, Istanbul.
207. Borisovsky P. A., Eremeev A.V. Approximate algorithms for scheduling multi-product production. In: Book of Abstracts of 13-th All-Russia Conference "Mathematical Programming and Applications", Ekaterinburg, Russia, 2007, p.98. (in Russian).
208. Bräsel H., Herms A., Mörig M., Tautenhahm T., Tusch J., Werner F., Willenius P. A comparison of heuristics for mean flow time open shop scheduling. Information Control Problems In Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.111-116.
209. Demidenko V.M. The quadratic assignment problem with generalized monotonous matrices: simply solvable cases. Proceedings of the Int. Conf. on Operations Research (OR 2006), University of Karlsruhe, (Germany), September 6-8, 2006, p.53.
210. Gordon V., Tarasevich A.A. On a single machine due date assignment and scheduling problem with the rate-modifying activity. Operations Research Proceedings 2005. Selected Papers of the Annual International Conference of the German Operations Research Society (Eds. H.-D.Haasis, H.Kopfer, J.Schonberger) Springer 2006, p.679-684.
211. Guschinskaya O., Dolgui A.. A comparative evaluation of exact and heuristic methods for transfer line balancing problem. Information Control Problems In Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.2, p.395-400.
212. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. Sequencing and tabu search heuristics for hybrid flow shops with unrelated parallel machines and setup times, Proceeding of the $7^{\text {th }}$ Asia-Pacific Industrial Engineering and Management Systems Conference \& the $9^{\text {th }}$ Asia-Pacific Regional Meeting of International Foundation for Production Research, Bangkok/Thailand, December 17-20, 2006, p.13301342.
213. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. Sequencing heuristics for flexible flow shop problems with unrelated parallel machines and setup times, Proceedings of the 2006 IE Network National Conference, Bangkok/Thailand, December 18-19, 2006, p.1-8.
214. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F. Solving the hybrid flow shop problem with unrelated parallel machines and sequence-dependent setup times by a simulated annealing algorithm, Proceedings of the $1^{s t}$ International Conference \& $7^{\text {th }}$ AUN/SEED-Net Fieldwise Seminar on Manufacturing and Material Process, Kuala Lumpur/Malaysia, March 14-15, 2006, p.640-645.
215. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F.: Constructive and simulated annealing heuristics for hybrid flow shops with unrelated parallel machines, Proceedings of the $3^{\text {rd }}$ OR-CRN Operations Research Conference, Bangkok/Thailand, August 31-September 1, 2006, p.110-121.
216. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F.: Fuzzy dispatching rules for flexible flow shop problems with unrelated parallel machines for a continuous fuzzy domain, APIEMS 2007, 10 p . (submitted).
217. Jungwattanakit J., Reodecha M., Chaowalitwongse P., Werner F.: Fuzzy LPT algorithms for flexible flow shop problems with unrelated parallel machines for a continuous fuzzy domain, IE Network Conference, October 24-26, 2007, 6 p. (submitted).
218. Kuiteing A. K., Oulamara A., Finke G. Flowshop scheduling problem with batching machines and task compatibilities. Information Control Problems In Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.33, p.39-44.
219. Kolokolov A.A., Kosarev N.A. Decomposition approach to optimal plant location problems. All-Russia Conference "Discrete Optimization and Operations Research", Vladivostok, Russia, 2007. (in Russian) (accepted).
220. Leshchenko N.M., Sotskov Y.N. A dominant schedule for the uncertain two-machine shop-scheduling problem. Proceedings of the XII-th International Conference "Knowledge - Dialogue - Solution" (KDS2006), Varna, Bulgaria, 20-30 June, 2006, p.291-297.
221. Levin G., Rozin B. Optimization of operating modes at transfer lines under group replacement of instruments. Abstracts of the 22nd European Conference on Operational Research, July 8-11, 2007, Prague, Czech Republic, p. 113.
222. Levin G., Rozin B. Optimization of cutting modes for transfer lines under group replacement of tools. Abstracts of the conference Optimization 2007, July 22-25, 2007, Porto, Portugal, p. 121.
223. Mezhetskaya M.A., Servakh V.V. On a scheduling problem with identical jobs. In: Book of Abstracts of 3rd All-Russia Conference "Optimization problems and Economical Applications", Omsk, 2006, p.111. (in Russian).
224. Romanova A.A., Servakh V.V. Scheduling identical jobs with complex processing route. In: Book of Abstracts of 3rd All-Russia Conference "Optimization problems and Economical Applications", Omsk, 2006, p.52. (in Russian).
225. Romanova A.A., Servakh V.V. On the cyclic schedules for shop scheduling problem with identical jobs. Abstracts of the International Conference on Operations Research, Karlsruhe, Germany, 2006, p.231.
226. Romanova A.A., Servakh V.V. On a cyclic scheduling problem. In: Book of Abstracts of 13-th All-Russia Conference "Mathematical Programming and Applications", Ekaterinburg, Russia, 2007, p.206. (in Russian).
227. Romanova A.A., Servakh V.V. On cyclic scheduling problem with additional constraints. All-Russia Conference "Discrete Optimization and Operations Research", Vladivostok, Russia, 2007. (in Russian) (accepted).
228. Servakh V.V., Shcherbinina T.A. A fully polynomial time approximation scheme for two project scheduling problems. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.129-134.
229. Servakh V.V., Shcherbinina T.A. On project scheduling problem with non-renewable resources and different criteria. In: Book of Abstracts of 3rd All-Russia Conference "Optimization problems and Economical Applications", Omsk, 2006, p. 93. (in Russian).
230. Servakh V.V., Shcherbinina T.A. Hybrid algorithms for some project scheduling problems. In: Book of Abstracts of 13-th All-Russia Conference "Mathematical Programming and Applications", Ekaterinburg, Russia, 2007, p.213-214. (in Russian).
231. Servakh V.V., Shcherbinina T.A. On complexity of resource constrained project scheduling problem with non-renewable resources. All-Russia Conference "Discrete Optimization and Operations Research", Vladivostok, Russia, 2007. (in Russian) (accepted).
232. Soper A.J., Strusevich V.A.. Two-machine flow shop scheduling with an interstage transporter: two shipments. Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, May 17-19, 2006, A. Dolgui, G. Morel, C. Pereira (Eds.), Elsevier Science, 2006, v.3, p.27-32.
233. Soper A.J., Strusevich V.A. An improved approximation algorithm for the two-machine flow shop scheduling problem with an interstage transporter. Invited Lecture at the $3^{\text {rd }}$ IEEE International Conference on Service Systems and Service Management- ICSSSM06, Troyes, France, 2006.
234. Soper A.J., Strusevich V.A. An improved approximation algorithm for the two-machine flow shop scheduling problem with an interstage transporter. $8^{\text {th }}$ Workshop on Models and Algorithms for Planning and Scheduling Problems - MAPSP, Istanbul, Turkey, 2007.

- Books, monographs, internal reports, thesis, patents

235. Andresen M., Bräsel H., Mörig M. Tusch J., Werner F., Willenius P. Metaheuristic algorithms for open shop scheduling to minimize mean flow time, FMA, Preprint 48/06, Otto-von-Guericke-University Magdeburg, 2006.
236. Belmokhtar S. Lignes d'usinage avec équipements standard : modélisation, configuration et optimisation. Ph.D Thesis, Ecole des Mines de Saint Etienne, December 11, 2006.
237. Dolgui A., Ihnatsenka I.. Transfer line balancing via a special set partitioning branch and bound algorithm. Research Report G2I-EMSE 2007-500-004, March 2007, Ecole des Mines de Saint Etienne, 28 p.
238. Guschinskaya O., Dolgui A. Comparative analysis of exact and heuristic methods for a transfer line balancing problem, Research Report G2I-EMSE 2007-500-004, April 2007, Ecole des Mines de Saint Etienne, 33 p.
239. Guschinskaya O., Dolgui A., Guschinsky N., Levin G. Scheduling for multi-spindle head machines with a mobile table. Research Report G2I-EMSE 2007-500-002, January 2007, Ecole des Mines de Saint Etienne, 26 p .

- Summarise the scientific output (number of papers, etc.) in the table below:

	ALL PUBLICATIONS			ONLY: Jointly by INTAS and
Scientific Output	Published	in press/accepted	Submitted	
Paper in an International Journal	44	22	19	33
Paper in a National Journal *)	8 (Russian)	1 (Russian)	4 (Russian)	3 (Russian)
Abstract in proceedings (conferences, workshops)	$\begin{gathered} 87 \text { (English) }+ \\ 6 \text { (French) }+ \\ 10 \text { (Russian) } \\ \hline \end{gathered}$	$\begin{aligned} & 2 \text { (English) } \\ & 3 \text { (Russian) } \end{aligned}$	2 (English)	$\begin{gathered} 44 \text { (English) }+3 \text { (Russian) }+ \\ 3 \text { (French) } \end{gathered}$
Book, Monograph *)	$\begin{gathered} \hline 3 \text { (English) }+ \\ 3 \text { (French) }+ \\ 2 \text { (Russian) } \\ \hline \end{gathered}$	1 (English)		$\begin{aligned} & 4 \text { (English) } \\ & 1 \text { (Russian) } \end{aligned}$
Internal Report **)	17			10
Thesis (MSc, PhD, etc.) *)	$\begin{gathered} \hline 3 \text { (French) }+ \\ 1 \text { (Russian) } \\ \hline \end{gathered}$		1 (Russian)	
Patent				

${ }^{*}$) Indicate the language ${ }^{* *}$) Indicate if a report has not been published purely in order to protect intellectual property rights.

1.3.2 Impact and Applications

Results can be used in a computer-aided control of a combined manufacturing and remanufacturing system. Results of [185] can be used in optimal and safe planning of works in areas contaminated with chemical or radioactive materials. Results of [34] can be applied in optimal production planning of chemical, galvanic and pharmaceutical baths. Results [35] have a large area of application for manual assembly systems with stochastic processing times.

Many theoretical results have been obtained on fundamental issues in scheduling theory. These advances of general knowledge in the field concern algorithmic complexity results [23, 63, 64, 71, 114, 127, 184, 191] as well as the design of exact and approximate solution methods [11, 58-60, 65, 66, 170, 175, 177, 179, 192]. Emphasis has been on scheduling models with application-oriented features such as setup times [14, 58, 169], precedence constraints [31, 68, 74, 122], batching (i.e., grouping of jobs) [32, 34, 66, 68, 69, 171, 172], and non-availability periods of machines or operators [34, 71, 73, 113]. These results could be explored and helped to develop software for an industrial partner in the chemical industry. The concepts of setups, precedences, and batching have also been incorporated in the design of very general and complex manufacturing lines [27, 111, 120]. New optimization methods have been developed that help to balance the lines and to reduce the production costs [2, 10, 26, 28, 29, 118, 119]. These methods can be used, in the future, in Decision Support Systems and CAD/CAM/CAE tools for the optimal design of assembly lines.

1.3.3 Summary of results

The INTAS project 03-51-5501, entitled Scheduling for modern manufacturing, logistics and supply chains, took place from March 1, 2004, to July 31, 2007. Ten research teams participated in the project, coming from five countries: Belarus (4 teams from Minsk), Russia (Omsk), France (St. Etienne and Grenoble), Germany (Magdeburg), and United Kingdom (Greenwich and Southampton). During this period, 15 meetings were held, often in connection with international conferences. Also three conferences were organized by members of this project and under the given theme: Second International Workshop on Discrete Optimization Methods in Production and Logistics - DOM'2004, July 20-27, Omsk-Irkutsk, 2004 (organizer : A. Kolokolov) ; ECCO XVIII, European Chapter on Combinatorial Optimization, Minsk, May 26-28, 2005 (organizers : M. Kovalyov, V.Gordon) ; 12th IFAC Symposium on Information Control Problems in Manufacturing - INCOM 2006 (organizer : A. Dolgui) with the special Track Scheduling for modern manufacturing, logistics and supply chains. As a result of this last mentioned conference, a special issue of the journal Computers and Operations Research is forthcoming, edited by the members of this project.

Research was carried out on fundamental issues in scheduling theory and on applications in manufacturing. General advances have been obtained on complexity results and the design of solution algorithms in scheduling, in particular for problems with precedence constraints and with grouping of jobs (so-called batching). Many of the models investigated arose from practical situations, for instance in connection with the planning of rescue operations and the cleaning tasks in contaminated areas. Particular emphasis was also put on scheduling models combined with a material handling system (forming a robotic cell in which the production rate is to be maximized) and with a logistic system (in order to minimize the cost of delivering goods to the customers). New optimization methods have been developed for the design of manufacturing lines. These methods allow decreasing the production costs. They can be used in Decision Support Systems and CAD/CAM/CAE tools for the optimal design of complex manufacturing lines.

The intensity of the collaboration between the research groups as well as the output of joint publications have greatly exceeded our hopes at the beginning of the project. In fact, 36 co-authored journal papers and 5 books or chapters in books have been published or are accepted and forthcoming. In addition, 50 joint conference papers have been presented during the time of the project. Several new research directions evolved during the numerous discussions between the participants. For instance, some fundamental aspects in scheduling that can be formulated in terms of graph theory will be addressed. These topics, initiated through this INTAS project, will continue to be studied in the future by this group of researchers.

List of 10 references of key papers

1. Gordon V., Proth J.-M., Strusevich V. Scheduling with Due Date Assignment. In: Handbook of Scheduling: Algorithms, Models and Performance Analysis (Ed. J.Y.-T. Leung) - USA, Boca Raton: Chapman \& Hall / CRC Press, 2004, p.21-1 - 21-22.
2. Gordon V., Proth J.-M., Strusevich V. Single machine scheduling and due date assignment under series-parallel precedence constraints. Central European Journal of Operations Research 2005, v.13, Issue 1, p.15-35.
3. Oulamara A., Kovalyov M.Y., Finke G. Scheduling a no-wait flow shop with unbounded batching machines. IIE Transactions. 2005, v.37, Issue 8, p.685-696.
4. Inderfurth K., Janiak A., Kovalyov M.Y., Werner F. Batching work and rework processes with limited deterioration of reworkables. Computers and Operations Research. 2006, v.33, p.1595-1605.
5. Belmokhtar S., Dolgui A., Guschinsky N., Levin G. An integer programming model for logical layout design of modular machining lines. Computers \& Industrial Engineering. 2006, v.51, p.502-518.
6. Demidenko V., Finke G., Gordon V. Well solvable cases of the quadratic assignment problem with monotone and bimonotone matrices. Journal of Mathematical Modeling and Algorithms, 2006, v.5, $n^{\circ} 2$, p.167-187.
7. Dolgui A., Finel B., Guschinskaya O., Guschinsky N., Levin G., Vernadat F. Balancing large-scale machining lines with multi-spindle heads using decomposition. International Journal of Production Research, 2006, v.44, nº18-19, p.4105-4120.
8. Dolgui A., Guschinsky N., Levin G. A special case of transfer lines balancing by graph approach. European Journal of Operational Research. 2006, v.168, n³, p.732-746.
9. Brucker P., Sotskov Y., Werner F. Complexity of shop scheduling problems with fixed number of jobs: a survey. Mathematical Methods of Operations Research, v.65, n³, 2007, p.461-481.
10. Brauner N., Finke G., Lebacque V., Potts C., Whitehead J. Scheduling of coupled tasks and onemachine no-wait robotic cells. Special issue of Computers and Operations Research (to appear).

1.3.4 Role and Impact of INTAS

Role of INTAS	Definitely yes	rather yes	rather not	definitely not
Would the project have been started without funding by INTAS?			x	
Would the project have been carried out without funding from INTAS?			x	

Main achievement of the project	very important	quite important	less important	not important	
exciting science	x				
new international contacts	x				
additional prestige for my lab		x			
additional funds for my lab		x			
helping scientists in NIS					
other (specify):	x				

The co-operation among the project teams will certainly continue in the future.

2. MANAGEMENT

2.1. General management

2.1.1. Project management

- Co-ordination meetings, exchange visits of scientists, or major field trips which took place up to now:

Co-ordination meetings:

1) Dagstuhl, Germany, May 30-June 5, 2004. Six teams present (LLI Grenoble, USouthampton, UGreenwich, UMagdeburg, UIIP NAS Belarus, BSU Minsk).
2) Omsk - Irkutsk, Russia, July 18-28, 2004. Four teams present (LLI Grenoble, EM StEtienne, UIIP NAS Belarus, Omsk branch SIM RAS).
3) StEtienne, France, March 1, 2005. Four teams present (LLI Grenoble, EM StEtienne, UIIP NAS Belarus, IM NAS Belarus).
4) Minsk, Belarus, May 24-28, 2005. On the occasion of the ECCO conference. All teams present.
5) Siena, Italy, June 6-10, 2005. On the occasion of the MAPSP workshop. Four teams present (LLI Grenoble, USouthampton, UGreenwich, UIIP NAS Belarus).
6) Honolulu, USA, July $9-16,2005$. On the occasion of IFORS meeting. Four teams present (LLI Grenoble, USouthampton, EM StEtienne, UIIP NAS Belarus).
7) Bremen, Germany, September 5-11, 2005. On the occasion of OR'2005 conference. Four teams present (LLI Grenoble, UIIP NAS Belarus, BSU Minsk, Omsk branch SIM RAS).
8) Greenwich, UK, February 9, 2006. Four teams present (LLI Grenoble, USouthampton, UGreenwich, BSUIR Minsk).
9) StEtienne, France, May 16-20, 2006. On the occasion of $12^{\text {th }}$ IFAC International Symposium. Eight teams present (LLI Grenoble, USouthampton, UGreenwich, EM StEtienne, UMagdeburg, UIIP NAS Belarus, IM NAS Belarus, Omsk branch SIM RAS).
10) Marseille, France, May 28 -June 3, 2006. On the occasion of the Workshop on Scheduling Algorithms for New Emerging Applications. Five teams present (USouthampton, UGreenwich, UMagdeburg, UIIP NAS Belarus, BSU Minsk).
11) Reykjavik, Iceland, July 2-7, 2006. On the occasion of the $21^{\text {st }}$ European Conference on Operational Research Five teams present (LLI Grenoble, USouthampton, UGreenwich, UMagdeburg, UIIP NAS Belarus).
12) Grenoble, France, February 11, 2007. Three teams present (LLI Grenoble, UIIP NAS Belarus, BSU Minsk).
13) Limassol, Cyprus, May 23-26, 2007. On the occasion of the International conference ECCO XX. Five teams present (UGreenwich, UMagdeburg, UIIP NAS Belarus, BSU Minsk, BSUIR Minsk).
14) Istanbul, Turkey, June 30-July 6, 2007. On the occasion of the Workshop MAPSP’07. Four teams present (LLI Grenoble, UGreenwich, UMagdeburg, BSU Minsk)
15) Prague,Czech Republic, July 8-12, 2007. On the occasion of the $22^{\text {nd }}$ European Conference on Operational Research. Five teams present (LLI Grenoble, UGreenwich, UMagdeburg, UIIP NAS Belarus, IM NAS Belarus)

Visits:

Name of the	Place of travel	Dates	Purpose	Notes
$\begin{aligned} & \text { 1. Sotskov Yu., } \\ & \text { UIIP NAS Belarus } \end{aligned}$	Magdeburg, Germany	March 1-6, 2004	Joint work with Prof. F.Werner	
2. Levin G. UIIP NAS Belarus	StEtienne, France	April 9-26, 2004	Joint work with Prof. A.Dolgui	
3.Guschinsky N. UIIP NAS Belarus	StEtienne, France	April 9-26, 2004	Joint work with Prof. A.Dolgui	
4. Gordon V. UIIP NAS Belarus	Magdeburg, Dagstuhl, Germany	$\begin{gathered} \text { May } 26 \text { - June } 7, \\ 2004 \end{gathered}$	$1^{\text {st }}$ INTAS meeting Joint work with Prof. F.Werner	Expenses are partly covered by Dagstuhl seminar
5. Gordon V. UIIP NAS Belarus	Omsk-Irkutsk, Russia	July 17 - 30, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. conference DOM'04	
6. Guschinsky N. UIIP NAS Belarus	Omsk-Irkutsk, Russia	July 17 - 29, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. conference DOM'04	Expenses are partly covered by EM StEtienne
7. Guschinsky N. UIIP NAS Belarus	StEtienne, France	$\begin{array}{\|c\|} \hline \text { June } 29-\text { December } \\ 24,2004 \\ \hline \end{array}$	Joint work with Prof. A.Dolgui	Expenses are partly covered by EM StEtienne
8. Gordon V. UIIP NAS Belarus	Magdeburg, Germany	November 27 December 6, 2004	Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
9. Orlovich Y., IM NAS Belarus	Magdeburg, Germany	November 27 December 6, 2004	Joint work with Prof. F.Werner	
10. Aneichyk A.S., BSU Minsk	Magdeburg, Germany	May $22-28,2004$	Joint work with Prof. F.Werner and Prof. K. Inderfurth	
11. Kovalyov M.Y., BSU Minsk	Magdeburg, Dagstuhl, Germany	$\begin{gathered} \text { May } 22 \text { - June } 6, \\ 2004 \end{gathered}$	$1^{\text {st }}$ INTAS meeting Joint work with Prof. F.Werner and Prof. K. Inderfurth	Expenses are partly covered by Dagstuhl seminar
12. Barketau M.S., BSU Minsk	Omsk-Irkutsk, Russia	July 17-23, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. Conference DOM'04	
13. Kovalev M.M., BSU Minsk	Magdeburg, Germany	$\begin{gathered} \text { December } 9-19, \\ 2004 \end{gathered}$	Joint work with Prof. F.Werner and Prof. K. Inderfurth	
14. Lushchakova I. BSUIR Minsk	London, UK	$\begin{gathered} \text { January } 30- \\ \text { February } 13,2005 \\ \hline \end{gathered}$	Joint work with Prof. V.Strusevich	
15. Eremeev A.V. Omsk branch SIM RAS	Irkutsk, Russia	July 24-28, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. Conference DOM'04	
16. Kolokolov A.A. Omsk branch SIM RAS	Irkutsk, Russia	July 24-28, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. Conference DOM'04	
17. Servakh V.V. Omsk branch SIM RAS	Irkutsk, Russia	July 24-28, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. Conference DOM'04	
18. Borisovsky P.A. Omsk branch SIM RAS	StEtienne, France	$\begin{gathered} \text { November } 7-15, \\ 2004 \end{gathered}$	Joint work with Prof. A.Dolgui	
$\begin{aligned} & \text { 19. Sigaev V.S. } \\ & \text { Omsk branch SIM } \\ & \text { RAS } \end{aligned}$	StEtienne, France	$\begin{gathered} \text { November } 7-15, \\ 2004 \end{gathered}$	Joint work with Prof. A.Dolgui	
$\begin{aligned} & \text { 20. Finke G. } \\ & \text { LLI Grenoble } \end{aligned}$	Dagstuhl, Germany	$\begin{gathered} \text { May } 30-\text { June } 5, \\ 2004 \end{gathered}$	$1{ }^{\text {st }}$ INTAS meeting	
$\begin{aligned} & \text { 21. Finke G. } \\ & \text { LLI Grenoble } \\ & \hline \end{aligned}$	Omsk-Irkutsk, Russia	July 18-28, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. Conference DOM'04	

22. Lemaire P. LLI Grenoble	Dagstuhl, Germany	May 30 - June 5,	$1{ }^{\text {st }}$ INTAS meeting	
23. Strusevich V. UGreenwich	Dagstuhl, Germany	$\begin{gathered} \text { May } 30 \text { - June 5, } \\ 2004 \\ \hline \end{gathered}$	$1{ }^{\text {st }}$ INTAS meeting	
24. Strusevich V. UGreenwich	Minsk, Belarus	July 17 - 30, 2004	Joint work with Dr. I. Lushchakova	
25. Dolgui A, EM StEtienne	Omsk-Irkutsk, Russia	July 18-29, 2004	$2^{\text {nd }}$ INTAS meeting, Intern. Conference DOM'04	
26. Dolgui A, EM StEtienne	Minsk, Belarus	$\begin{gathered} \text { July } 29 \text { - August } 10, \\ 2004 \\ \hline \end{gathered}$	Joint work with Prof. Y.Sotskov	
$\begin{aligned} & 27 \text { Potts C. } \\ & \text { USouthampton } \\ & \hline \end{aligned}$	Dagstuhl, Germany	$\begin{gathered} \hline \text { May } 30-\text { June } 5, \\ 2004 \\ \hline \end{gathered}$	$1{ }^{\text {st }}$ INTAS meeting	
$\begin{aligned} & 28 \text { Potts C. } \\ & \text { USouthampton } \\ & \hline \end{aligned}$	Greenwich, UK	$\begin{aligned} & \hline \text { May, } \\ & 2004 \\ & \hline \end{aligned}$	Joint work with Prof. V.Strusevich	
29. Werner F. UMagdeburg	Dagstuhl, Germany	$\begin{gathered} \hline \text { May } 30 \text { - June 5, } \\ 2004 \\ \hline \end{gathered}$	$1{ }^{\text {st }}$ INTAS meeting	Expenses are covered by Magdeburg University
$\begin{aligned} & \text { 30. Gordon V. } \\ & \text { UIIP NAS Belarus } \end{aligned}$	IM NAS Belarus, Minsk	$\begin{gathered} \text { April } 12-16, \\ 2004 \end{gathered}$	Joint work with Dr. V.Demidenko	Expenses are covered by UIIP NAS Belarus
31. Demidenko V. IM NAS Belarus	UIIP NAS Belarus, Minsk	$\begin{gathered} \text { April } 19-23, \\ 2004 \end{gathered}$	Joint work with Prof. V.Gordon	Expenses are covered by IM NAS Belarus
32. Gordon V. UIIP NAS Belarus	IM NAS Belarus, Minsk	$\begin{gathered} \hline \text { January } 10-12, \\ 2005 \end{gathered}$	Joint work with Dr. Y.Orlovich	Expenses are covered by UIIP NAS Belarus
33. Orlovich Y. IM NAS Belarus	UIIP NAS Belarus, Minsk	$\begin{gathered} \text { January } 13,14, \\ 17-21,2005 \\ \hline \end{gathered}$	Joint work with Prof. V.Gordon	Expenses are covered by IM NAS Belarus
$\begin{aligned} & \text { 34. Sotskov Yu., } \\ & \text { UIIP NAS Belarus } \\ & \hline \end{aligned}$	Magdeburg, Germany	$\begin{gathered} \text { April } 29-\text { May } 5, \\ 2004 \\ \hline \end{gathered}$	Joint work with Prof. F.Werner	
$\begin{aligned} & \text { 35. Sotskov Yu., } \\ & \text { UIIP NAS Belarus } \end{aligned}$	Magdeburg, Germany	July 12-28, 2004	Joint work with Prof. F.Werner	
36. Leshchenko N. UIIP NAS Belarus	Magdeburg, Germany	$\begin{gathered} \text { February 23-March } \\ 5,2005 \\ \hline \end{gathered}$	Joint work with Prof. F.Werner	
37. Gordon V. UIIP NAS Belarus	StEtienne, Grenoble, France	February 26-March 14, 2005	$3^{\text {rd }}$ INTAS meeting, Joint work with Prof.G.Finke	
38. Orlovich Y. IM NAS Belarus	StEtienne, Grenoble, France	February 26-March 14, 2005	$3^{\text {rd }}$ INTAS meeting, Joint work with Prof.G.Finke	
39. Finke G. LLI Grenoble	StEtienne, France	March 1, 2005	$3{ }^{\text {rd }}$ INTAS meeting	
$\begin{aligned} & \text { 40. Finke G. } \\ & \text { LLI Grenoble } \end{aligned}$	Minsk, Belarus	May 23-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference Joint work with Prof.V. Gordon and Dr. Y. Orlovich	
41. Strusevich V. UGreenwich	Minsk, Belarus	$\begin{gathered} \text { May 23-June } 6, \\ 2005 \end{gathered}$	$4^{\text {th }}$ INTAS meeting, ECCO conference Joint work with I.Lushchakova	
42. Whitehead J. USouthampton	Minsk, Belarus	May 24-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
43. Potts C. USouthampton	Minsk, Belarus	May 24-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference Joint work with Prof.V. Gordon and Dr. Y. Orlovich	
44. Werner F. UMagdeburg	Minsk, Belarus	May 24-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference Joint work with Prof.Y. Sotskov, Prof.V. Gordon and Dr. Y. Orlovich	
45. Mörig M. UMagdeburg	Minsk, Belarus	May 24-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
46. Dolgui A, EM StEtienne	Minsk, Belarus	$\begin{gathered} \text { May 24-June 3, } \\ 2005 \end{gathered}$	$4^{\text {th }}$ INTAS meeting, ECCO conference Joint work with Prof.	Expenses are covered by EM StEtienne

			G.Levin and Dr.N. Guschinsky	
47. Gordon V. UIIP NAS Belarus	$\begin{gathered} \text { BSU } \\ \text { Minsk } \end{gathered}$	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
48. Levin G. UIIP NAS Belarus	$\begin{gathered} \hline \text { BSU } \\ \text { Minsk } \end{gathered}$	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
49. Guschinsky N. UIIP NAS Belarus	BSU Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
50. Kovalyov M.Y., BSU Minsk	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
51. Kovalev M.M., BSU Minsk	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
$\begin{aligned} & \text { 52. Barketau M.S., } \\ & \text { BSU Minsk } \\ & \hline \end{aligned}$	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
$\begin{aligned} & \text { 53. Sas A.I., } \\ & \text { BSU Minsk } \end{aligned}$	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
54. Kovalev A., BSU Minsk	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
55. Demidenko V. IM NAS Belarus	BSU, UIIP NAS Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
56. Naidenko V. IM NAS Belarus	$\begin{aligned} & \hline \text { BSU, UIIP NAS } \\ & \text { Minsk } \end{aligned}$	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
57. Orlovich Y. IM NAS Belarus	$\begin{aligned} & \text { BSU, UIIP NAS } \\ & \text { Minsk } \end{aligned}$	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
58. Gordon V. UIIP NAS Belarus	Siena, Italy	June 6-10, 2005	$5^{\text {th }}$ INTAS meeting, MAPSP workshop	Expenses are covered by ISTC
$\begin{aligned} & \text { 59. Gordon V. } \\ & \text { UIIP NAS Belarus } \end{aligned}$	Honolulu, Hawaii	July 9-16, 2005	$6^{\text {th }}$ INTAS meeting, IFORS meeting	Expenses are covered by ISTC
60. Levin G. UIIP NAS Belarus	Honolulu, Hawaii	July 9-16, 2005	$6^{\text {th }}$ INTAS meeting, IFORS meeting	Expenses are covered by ISTC
61. Guschinsky N. UIIP NAS Belarus	StEtienne, France	July 14-30, 2005	Joint work with Prof. A.Dolgui	
62. Tarasevich A. UIIP NAS Belarus	Bremen, Germany	$\begin{gathered} \hline \text { September 5-11, } \\ 2005 \end{gathered}$	$7^{\text {th }}$ INTAS meeting, OR'2005 conference	
63. Gordon V. UIIP NAS Belarus	Bremen, Germany	$\begin{gathered} \text { September 5-11, } \\ 2005 \end{gathered}$	$7^{\text {th }}$ INTAS meeting, OR'2005 conference	Expenses are covered by ISTC and OR'2005
64. Gordon V. UIIP NAS Belarus	Magdeburg, Germany	November 25- December 5, 2005	Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
65. Orlovich Y. IM NAS Belarus	Magdeburg, Germany	November 25December 5, 2005	Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
66. Sotskov Yu., UIIP NAS Belarus	Magdeburg, Germany	$\begin{gathered} \text { November 8-26, } \\ 2005 \end{gathered}$	Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
67. Orlovich Y. IM NAS Belarus	UIIP NAS Belarus, Minsk	$\begin{gathered} \text { January } 9-13, \\ 16-18,2006 \\ \hline \end{gathered}$	Joint work with Prof. V.Gordon	Expenses are covered by IM NAS Belarus
$\begin{aligned} & \text { 68. Gordon V. } \\ & \text { UIIP NAS Belarus } \end{aligned}$	IM NAS Belarus, Minsk	February $20-24$, 2006	Joint work with Dr. Y.Orlovich	Expenses are covered by UIIP NAS Belarus
69. Kovalyov M.Y., BSU Minsk	Magdeburg, Bremen, Germany	$\begin{gathered} \text { September 1-14, } \\ 2005 \end{gathered}$	$7^{\text {th }}$ INTAS meeting, OR'2005 conference, joint work with Prof. F.Werner and Prof. K. Inderfurth	Expenses are partly covered by OR' 05 conference
70. Kovalev M.M., BSU Minsk	Magdeburg, Germany	November 28- December 7, 2005	Joint work with Prof. F.Werner and Prof. E. Girlich	Expenses are partly covered by Magdeburg University
71. Lushchakova I., BSUIR Minsk	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	Expenses are partly covered by BSUIR
72. Ivashenko V. BSUIR Minsk	UIIP NAS Belarus, Minsk	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	Expenses are partly covered by BSUIR
73. Lushchakova I., BSUIR Minsk	Greenwich, UK	$\begin{gathered} \text { January } 29- \\ \text { February } 12,2006 \end{gathered}$	$8^{\text {th }}$ INTAS meeting, Joint work with Prof. V.Strusevich	
74. Eremeev A.V. Omsk branch SIM	Minsk, Belarus	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	

INTAS Guidelines for Periodic and Final Reports on Projects - January 2005 - page 22 of 27

RAS				
75. Kolokolov A.A. Omsk branch SIM RAS	Minsk, Belarus	May 24-29, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
76. Servakh V.V. Omsk branch SIM RAS	Minsk, Belarus	May 24-29, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
77. Kolokolov A.A. Omsk branch SIM RAS	Bremen, Germany	$\begin{gathered} \hline \text { September 5-10, } \\ 2005 \end{gathered}$	$7^{\text {th }}$ INTAS meeting, OR'2005	
$\begin{aligned} & \text { 78. Finke G. } \\ & \text { LLI Grenoble } \\ & \hline \end{aligned}$	Magdeburg, Germany	August 17-21, 2005	Joint work with Prof. F.Werner	
$\begin{aligned} & \text { 79. Strusevich V. } \\ & \text { UGreenwich } \end{aligned}$	Grenoble, France	March 30-April 2, 2005	Joint work with Prof.G.Finke	
$\begin{aligned} & \text { 80. Strusevich V. } \\ & \text { UGreenwich } \end{aligned}$	Siena, Italy	June 5-11, 2005	$5^{\text {th }}$ INTAS meeting, MAPSP workshop	
$\begin{aligned} & \text { 81. Finke G. } \\ & \text { LLI Grenoble } \end{aligned}$	Siena, Italy	June 5-10, 2005	$5^{\text {th }}$ INTAS meeting, MAPSP workshop	
82. Brauner N. LLI Grenoble	Siena, Italy	June 5-10, 2005	$5^{\text {th }}$ INTAS meeting, MAPSP workshop	
83. Potts C. USouthampton	Siena, Italy	June 5-11, 2005	$5^{\text {th }}$ INTAS meeting, MAPSP workshop	
84. Whitehead J. USouthampton	Siena, Italy	June 5-11, 2005	$5^{\text {th }}$ INTAS meeting, MAPSP workshop	
85. Potts C. USouthampton	Honolulu, Hawaii	July 9-16, 2005	$6^{\text {th }}$ INTAS meeting, IFORS meeting	
$\begin{aligned} & \hline \text { 86. Finke G. } \\ & \text { LLI Grenoble } \\ & \hline \end{aligned}$	Honolulu, Hawaii	July 9-16, 2005	$6^{\text {th }}$ INTAS meeting, IFORS meeting	
87. Dolgui A, EM StEtienne	Honolulu, Hawaii	July 10-17, 2005	$6^{\text {th }}$ INTAS meeting, IFORS meeting	
88. Potts C. USouthampton	Greenwich, UK	February 28, 2005	Joint work with Prof. V.Strusevich	
89. Strusevich V. Ugreenwich	Southampton,UK	June 27, 2005	Joint work with Prof. C.Potts and J.Whitehead	
90. Strusevich V. Ugreenwich	Minsk, Belarus	July 23-August 7,	Joint work with I. Lushchakova	
91. Potts C. Usouthampton	Greenwich, UK	September 21, 2005	Joint work with Prof. V.Strusevich	
92. Whitehead J. Usouthampton	Greenwich, UK	September 21, 2005	Joint work with Prof. V.Strusevich	
93. Potts C. Usouthampton	Greenwich, UK	February 9, 2006	$8{ }^{\text {th }}$ INTAS meeting	
94. Finke G. LLI Grenoble	Greenwich, UK	February 9, 2006	$8^{\text {th }}$ INTAS meeting	
95. Finke G. LLI Grenoble	Bremen, Germany	$\begin{gathered} \hline \text { September 5-10, } \\ 2005 \end{gathered}$	$7^{\text {th }}$ INTAS meeting, OR'2005	
96. Guschinskaya O. EM StEtienne	Minsk, Belarus	$\begin{gathered} \text { May } 25 \text {-June } 4, \\ 2005 \end{gathered}$	$4^{\text {th }}$ INTAS meeting, ECCO conference, Joint work with Prof. G.Levin	Expenses are covered by EM StEtienne
97. Dolgui A, EM StEtienne	Grenoble, France	January 5, 2006	Joint work with Dr.N.Brauner	Expenses are covered by EM StEtienne
$\begin{aligned} & \text { 98. Sotskov Yu., } \\ & \text { UIIP NAS Belarus } \\ & \hline \end{aligned}$	Magdeburg, Germany	March 30-April 3, 2005	Joint work with Prof. F.Werner	
99. Leshchenko N., UIIP NAS Belarus	$\begin{gathered} \text { BSU } \\ \text { Minsk } \end{gathered}$	May 25-28, 2005	$4^{\text {th }}$ INTAS meeting, ECCO conference	
100. Tarasevich A. UIIP NAS Belarus	$\begin{gathered} \text { BSU } \\ \text { Minsk } \end{gathered}$	May 25-28, 2005	$4^{\text {th }} \text { INTAS meeting, ECCO }$ conference	
$\begin{aligned} & \text { 101.Kovalyov M.Y., } \\ & \text { BSU Minsk } \end{aligned}$	Poznan, Poland	$\begin{gathered} \text { April } 25 \text { - May } 5, \\ 2006 \end{gathered}$	Workshop PMS'06	
102.Kovalyov M.Y., BSU Minsk	Marseille, France	$\begin{gathered} \text { May } 28 \text { - June 3, } \\ 2006 \end{gathered}$	$10^{\text {th }}$ INTAS meeting. Workshop on Scheduling Algorithms for New Emerging Applications	Expenses are partly covered by Ecole des Mines de Nancy

103.Kovalyov M.Y., BSU Minsk	St.Etienne, France	July 2-6, 2006	Joint work with Prof. A.Dolgui and his team	Expenses are partly covered by EM StEtienne
104.Kovalyov M.Y., BSU Minsk	Karlsruhe	$\begin{gathered} \text { September 4-10, } \\ 2006 \\ \hline \end{gathered}$	Inter. conference SOR'06	
105.Kovalyov M.Y., BSU Minsk	Magdeburg	$\begin{gathered} \hline \text { December 9-25, } \\ 2006 \end{gathered}$	Joint work with Prof. F.Werner and Prof. K. Inderfurth	
106. Kovalev A., BSU Minsk	Magdeburg	$\begin{gathered} \hline \text { December 9-25, } \\ 2006 \end{gathered}$	Joint work with Prof. F.Werner and Prof. K. Inderfurth	
107. Kovalev M.M. BSU Minsk	Magdeburg	$\begin{gathered} \text { January } 27- \\ \text { February } 12,2007 \end{gathered}$	Joint work with Prof. F.Werner and Prof. K. Inderfurth	
$\begin{aligned} & \text { 108.Kovalyov M.Y., } \\ & \text { BSU Minsk } \end{aligned}$	Limassol Cyprus	May 19-26, 2007	$13^{\text {th }}$ INTAS meeting. International conference ECCO XX	Expenses are mainly covered by ISTC
109. Kovalev A., BSU Minsk	Limassol, Cyprus	May 23-26, 2007	$13^{\text {th }}$ INTAS meeting. International conference ECCO XX	Expenses are mainly covered by Poznan University
$\begin{aligned} & \text { 110.Kovalyov M.Y., } \\ & \text { BSU Minsk } \end{aligned}$	Istanbul, Turkey	July 2-5, 2007	$14^{\text {th }}$ INTAS meeting. Workshop MAPSP'07	
111. Kovalev A., BSU Minsk	Prague Czech Republic	July 7-11, 2007	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	Expenses are mainly covered by Poznan University
112. Demidenko V., IM NAS Belarus	StEtienne, France	$\begin{gathered} \hline \text { May 16-June 9, } \\ 2006 \end{gathered}$	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium, Joint work with Prof. A.Dolgui	
113. . Orlovich Yu., IM NAS Belarus	UIIP NAS Belarus, Minsk	$\begin{gathered} \hline \text { September 25-29, } \\ 2006 \\ \hline \end{gathered}$	Joint work with Prof. V.Gordon	Expenses are covered by IM NAS Belarus
114. Orlovich Yu., IM NAS Belarus	Magdeburg, Germany	November 16-27, 2006	Colloquium on Combinatorics, Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
115. Orlovich Yu., IM NAS Belarus	UIIP NAS Belarus, Minsk	December 4-8, 2006	Joint work with Prof. V.Gordon	Expenses are covered by IM NAS Belarus
116. Orlovich Yu., IM NAS Belarus	Grenoble, France	February 10-19, 2007	$12^{\text {th }}$ INTAS meeting. Joint work with Prof. G.Finke	Expenses are partly covered by LLI Grenoble (G-SCOP)
117. Orlovich Yu., IM NAS Belarus	Prague, Czech Republic	$\begin{gathered} \text { July } 7-13, \\ 2007 \end{gathered}$	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	
118. Eremeev A.V. Omsk branch SIM RAS	StEtienne, France	May 16-20, 2006	$\begin{gathered} 9^{\text {th }} \text { INTAS meeting. } \\ 12^{\text {th }} \text { IFAC International } \\ \text { Symposium } \\ \hline \end{gathered}$	
119.Kolokolov A.A. Omsk branch SIM RAS	StEtienne, France	May 16-20, 2006	$\begin{gathered} 9^{\text {th }} \text { INTAS meeting. } \\ 12^{\text {th }} \text { IFAC International } \\ \text { Symposium } \\ \hline \end{gathered}$	
$\begin{array}{\|l\|} \text { 120. Lushchakova I., } \\ \text { BSUIR Minsk } \end{array}$	University of Greenwich, London, UK	$\begin{gathered} \hline \text { December 3-13, } \\ 2006 \end{gathered}$	Joint work with Prof. V.Strusevich	
121. Lushchakova I., BSUIR Minsk	University of Greenwich, London, UK	$\begin{gathered} \text { January } 28- \\ \text { February } 14,2007 \end{gathered}$	Joint work with Prof. V.Strusevich	
122. Lushchakova I., BSUIR Minsk	Limassol Cyprus	May 19-26, 2007	$13^{\text {th }}$ INTAS meeting. International conference ECCO XX	
123. Guschinsky N. UIIP NAS Belarus	StEtienne, France	May 14-23, 2006	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium, Joint work with Prof. A.Dolgui	Expenses are partly covered by the $12^{\text {th }}$ IFAC International Symposium
124. Levin G. UIIP NAS Belarus	St Etienne, France	May 16-26, 2006	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium,	Expenses are partly covered by the $12^{\text {th }}$ IFAC International Symposium

			Joint work with Prof. A.Dolgui	
125. Gordon V. UIIP NAS Belarus	StEtienne, Grenoble, France	$\begin{gathered} \text { May } 16-27, \text { June 4- } \\ 6,2006 \end{gathered}$	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium, Joint work with Prof. G.Finke	Expenses are partly covered by LLI Grenoble and by the $12^{\text {th }}$ IFAC International Symposium
$\begin{aligned} & \text { 126. Gordon V. } \\ & \text { UIIP NAS Belarus } \end{aligned}$	Marseille, France	$\begin{gathered} \hline \text { May } 28 \text { - June } 3, \\ 2006 \end{gathered}$	$10^{\text {th }}$ INTAS meeting. Workshop on Scheduling Algorithms for New Emerging Applications	Expenses are partly covered by the Organizing Committee of the Workshop
127. Gordon V. UIIP NAS Belarus	Magdeburg, Germany	November 18-27, 2006	Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
128. Guschinsky N. UIIP NAS Belarus	StEtienne, France	September 19- November 11, 2006	Joint work with Prof. A.Dolgui	Expenses are partly covered by EM StEtienne
129. Sotskov Yu., UIIP NAS Belarus	Magdeburg, Germany	$\begin{gathered} \text { December 2-25, } \\ 2006 \\ \hline \end{gathered}$	Joint work with Prof. F.Werner	Expenses are partly covered by Magdeburg University
$\begin{aligned} & \text { 130. Gordon V. } \\ & \text { UIIP NAS Belarus } \end{aligned}$	University of Greenwich, London, UK	$\begin{gathered} \text { January } 14- \\ \text { February } 4,2007 \end{gathered}$	Joint work with Prof. V.Strusevich	
131. Gordon V. UIIP NAS Belarus	Grenoble, France	$\begin{gathered} \text { February } 10-19, \\ 2007 \end{gathered}$	$12^{\text {th }}$ INTAS meeting. Joint work with Prof. G.Finke	Expenses are partly covered by LLI Grenoble (G-SCOP)
132. Gordon V. UIIP NAS Belarus	Limassol Cyprus	May 19-26, 2007	$13^{\text {th }}$ INTAS meeting. International conference ECCO XX	Expenses are mainly covered by ISTC
133. Gordon V. UIIP NAS Belarus	Prague, Czech Republic	July 7-12, 2007	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	Expenses are partly covered by EUROXXII Organizing Committee and ISTC
134. Levin G. UIIP NAS Belarus	Prague, Czech Republic	July 7-12, 2007	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	
$\begin{aligned} & \text { 135. Sotskov Yu., } \\ & \text { UIIP NAS Belarus } \\ & \hline \end{aligned}$	Magdeburg, Germany	July 14-24, 2007	Joint work with Prof. F.Werner	
$\begin{aligned} & \text { 136. Rozin B.M., } \\ & \text { UIIP NAS Belarus } \end{aligned}$	Porto, Portugal	July 21-26, 2007	International .Conference on. Optimization 2007	
137. Guschinsky N. UIIP NAS Belarus	StEtienne, France	July 9-31, 2007	Joint work with Prof. A.Dolgui	
138. Werner F. UMagdeburg	StEtienne, France	May 16-20, 2006	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium	
139. Werner F. UMagdeburg	Marseille, France	$\begin{gathered} \hline \text { May } 28 \text { - June 4, } \\ 2006 \end{gathered}$	$10^{\text {th }}$ INTAS meeting. Workshop on Scheduling Algorithms for New Emerging Applications	
$\begin{aligned} & \text { 140. Werner F. } \\ & \text { UMagdeburg } \end{aligned}$	Reykjavik, Iceland	July 2-7, 2006	$11^{\text {th }}$ INTAS meeting $21^{\text {st }}$ European Conference on Operational Research	
141. Werner F. UMagdeburg	St Etienne, Grenoble, France	$\begin{gathered} \hline \text { March 25-April 1, } \\ 2007 \end{gathered}$	Joint work with Prof. A.Dolgui and Prof. G.Finke	
142. Werner F. UMagdeburg	Limassol Cyprus	May 21-28 2007	$13^{\text {th }}$ INTAS meeting. Inter. conference ECCO'07	
143. Andresen M. UMagdeburg	Istanbul, Turkey	$\begin{gathered} \hline \text { June } 30-\text { July } 6, \\ 2007 \end{gathered}$	$14^{\text {th }}$ INTAS meeting. Workshop MAPSP'07	Expenses are partly covered by Magdeburg University
144. Werner F. UMagdeburg	Prague, Czech Republic	July 8-12, 2007	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	
$\begin{aligned} & \text { 145. Finke G. } \\ & \text { LLI Grenoble } \end{aligned}$	St Etienne, France	May 19-20, 2006	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium	
$\begin{aligned} & \text { 146. Finke G. } \\ & \text { LLI Grenoble } \\ & \hline \end{aligned}$	Istanbul, Turkey	June 1- July 7, 2007	$14^{\text {th }}$ INTAS meeting. Workshop MAPSP'07	
147. Strusevich V.A.	Southampton,	February 28, 2006	Joint work with Prof. C.N.	

Greenwich	U.K.		Potts and Dr J.D. Whitehead	
148. Strusevich V.A. Greenwich	St.Etienne, France	May 16-20, 2006	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium	
149. Strusevich V.A. Greenwich	Marseille, France	$\begin{gathered} \hline \text { May } 28 \text { - June } 3, \\ 2006 \end{gathered}$	$10^{\text {th }}$ INTAS meeting. Workshop on scheduling	Expenses are partly covered by CMS School, University of Greenwich
150. Strusevich V.A. Greenwich	Minsk, Belarus	July 15-August 5, 2006	Joint work with Dr I.N. Lushchakova and Prof. M.Y. Kovalyov	
151. Strusevich V.A. Greenwich	Grenoble, France	$\begin{gathered} \text { September 18-22, } \\ 2006 \end{gathered}$	Joint work with Prof. G.Finke and his team	
152. Strusevich V.A. Greenwich	Southampton, U.K.	October 10-11, 2006	Joint work with Prof. C.N. Potts and Dr J.D. Whitehead	
153. Strusevich V.A. Greenwich	Minsk, Belarus	$\begin{gathered} \text { November 15-22, } \\ 2006 \end{gathered}$	Joint work with Dr I.N. Lushchakova and Prof. M.Y. Kovalyov	
154. Strusevich V.A. Greenwich	Limassol Cyprus	May 20-28, 2007	$13^{\text {th }}$ INTAS meeting. Inter. conference ECCO’07	
155. Strusevich V.A. Greenwich	Istanbul, Turkey	June 1- July 7, 2007	$14^{\text {th }}$ INTAS meeting. Workshop MAPSP'07	
156. Strusevich V.A. Greenwich	Prague, Czech Republic	July 8-12, 2007	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	
157. Dolgui A, EM StEtienne	Minsk, Belarus	December 23, 2006 - January 3, 2007	Joint work with Prof. G. Levin and Dr. N. Guschinsky	
$\begin{gathered} \text { 158. Dolgui A, } \\ \text { EM StEtienne } \\ \hline \end{gathered}$	Minsk, Belarus	$\begin{gathered} \text { May 6, 2007 - May } \\ 13,2007 \\ \hline \end{gathered}$	Joint work with Prof. G. Levin and Dr. N. Guschinsky	
$\begin{aligned} & \text { 159. Dolgui A, } \\ & \text { Guschinskaya O., } \\ & \text { Delorme X., } \\ & \text { Hnaien F., } \\ & \text { EM StEtienne } \\ & \hline \end{aligned}$	Grenoble, France	$\begin{gathered} \text { May } 6,2007 \text { - May } \\ 13,2007 \end{gathered}$	ROADEF/FRANCORO conference organized by LLI Grenoble	
$\begin{aligned} & \text { 160. Potts C. } \\ & \text { USouthampton } \end{aligned}$	Marseille, France	$\begin{gathered} \hline \text { May } 29 \text { - June } 2, \\ 2006 \end{gathered}$	$10^{\text {th }}$ INTAS meeting. Workshop on Scheduling Algorithms for New Emerging Applications	
161. Whitehead J. USouthampton	St.Etienne, France	May 16-20, 2006	$9^{\text {th }}$ INTAS meeting. $12^{\text {th }}$ IFAC International Symposium	
$\begin{aligned} & \text { 162. Brauner N. } \\ & \text { LLI Grenoble } \end{aligned}$	Prague, Czech Republic	July 8-12, 2007	$15^{\text {th }}$ INTAS meeting. $22^{\text {nd }}$ European Conference on Operational Research	

- The meetings and visits are summarised in the table below:

Visits	Number of scientists (visits)	Number of person days
West $==>$ East	17	172
East $==>$ West	67	962
West $==>$ West	43	230
East $==>$ East	32	161

2.1.2. Collaboration

- In your opinion, how intense was the collaboration among the different Contractors up to now?

Intensity of Collaboration	High	Rather high	rather low	low
West $<=>$ East	+			
West $<=>$ West		+		
East $<=>$ East	+			

- In this project, do you co-operate to a major extent with additional (inter)national organisations and institutions not mentioned in the Co-operation Agreement? If yes, please, specify:
Cooperation with INRIA-Lorraine, Metz; Ecole des Mines de Nancy (France); RUTCOR, Rutgers University (USA); University of Leeds (UK); Institute of Engineering Cybernetics of Wroclaw University of Technology; Poznan University of Technology (Poland); Department of Logistics of the Hong Kong Polytechnic University (China).

2.1.3. Time schedule

In accordance with the Work Programme, but with an extension of 5 months.

2.1.4. Problems encountered: None

Problems encountered	Major	Minor	none	Not applicable
Co-operation of team Members			+	
Transfer of funds			+	
Telecommunication			+	
Transfer of goods			+	
Other				

3. FINANCES (in EURO)

3.1 This grant

	Contractor	Cost Category						TOTAL (Euro)
\# *)	Name of Contractor *)	Individ. Grants Labour Costs	Overheads	Travel and Subsistence	Consumables	Equipment **)	Other Costs	
1	LLI Grenoble	6720	500	9000				16220
2	USouthampton		500	9000				9500
3	UMagdeburg		500	8613				9113
4	EM StEtienne		500	9000				9500
5	UGreenwich		500	9000				9500
6	UIIP NAS Belarus	6210	-	25500				31710
7	BSU Minsk		-	15000				15000
8	IM NAS Belarus		500	9300				9800
9	BSUIR Minsk		470	5800				6270
10	Omsk branch SIM RAS		500	10500				11000
TOTAL (Euro)		12930	3970	110713				127613

Spending has been in accordance with the Work Programme.

3.2 Other funding

This project did not receive substantial funding from other sources than INTAS.

