
On a generalized single machine scheduling
problem with time-dependent processing

times. ?

Alexander A. Lazarev ∗ Dmitry I. Arkhipov ∗∗

Frank Werner ∗∗∗

∗V.A. Trapeznikov Institute of Control Sciences of Russian Academy
of Sciences, Moscow, Russian Federation;

Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny,

Russian Federation;
International Laboratory of Decision Choice and Analysis, National
Research University Higher School of Economics, Moscow, Russian

Federation.
(e-mail: jobmath@mail.ru)

∗∗V.A. Trapeznikov Institute of Control Sciences of Russian Academy
of Sciences, Moscow, Russian Federation.

(e-mail: miptrafter@gmail.com)
∗∗∗ Faculty of Mathematics, Institute of Mathematical Optimization,

Otto-von-Guericke University Magdeburg, Germany
(frank.werner@ovgu.de)

Abstract: In this paper, a generalized formulation of a classical single machine scheduling
problem is considered. A set of n jobs characterized by their release dates, deadlines and a
start time-dependent processing time function p(t) has to be processed on a single machine.
The objective is to find a Pareto-optimal set of schedules with respect to the criteria ϕmax

and makespan, where ϕmax is a non-decreasing function depending on the completion times
of the jobs. We present an approach that allows to find an optimal schedule with respect to
different scheduling criteria, such as the minimization of makespan, lateness or weighted lateness,
tardiness and weighted tardiness etc. in time polynomially depending on the number of jobs.
The complexity of the presented algorithm is O(n3 max{log n,H, P}), where H and P are the
complexity of calculating ϕj(t) and p(t), respectively.

Keywords: scheduling algorithms, single-machine scheduling, polynomial algorithms,
makespan, Pareto set.

1. INTRODUCTION

We consider the problem of scheduling a set N of n jobs to
be processed on a single machine. Each job is characterized
by a release time rj and a deadline Dj . The processing
times of the jobs are defined by a start time-dependent
function p(t) such that the term t+ p(t) is non-decreasing
and the value p(t) can be calculated in P operations
for any t. The machine can process only one job at a
time. Preemption of processing is not allowed, i.e., the
processing of any job started at time t will be completed
at time t + p(t). A schedule π assigns a start time Sj(π)
to each job j such that Sj(π) ≥ rj and Sj(π) ≥ Sk(π) +
p(Sk(π)) for any job k with Sk(π) < Sj(π). Let us define
Cj(π) = Sj(π) + p(Sj(π)) as the completion time of the
job j under the schedule π. We define the set of feasible
schedules as Π(N), where for each j ∈ N the following
inequality holds under the schedule π ∈ Π(N):

? Supported by RFBR grants 13-01-12108, 15-07-07489, 15-07-03141
and DAAD grant A/1400328

Cj(π) < Dj .

We denote the objective function as maxϕj , where for each
job j ∈ N function ϕj is non-decreasing in the completion
time Cj and for each value y, it is possible to find the time
t′ with

t′ = min{t|ϕj(t) ≥ y}
in H operations. The goal is to find a feasible schedule
π ∈ Π(N) satisfying

min
π∈Π(N)

max
j∈N

ϕj(π). (1)

According to the classical 3-field scheduling classification
scheme proposed by Graham et al. (1979), this problem
can be denoted as 1|rj , pj = p(t), Dj |ϕmax. Such a problem
formulation includes the following special cases:

• 1|rj , pj = p(t), Dj |Cmax. ϕj(t) = t;
• 1|rj , pj = p(t)|Lmax. ϕj(t) = t− dj ;
• 1|rj , pj = p(t)|Tmax. ϕj(t) = max{0, t− dj};
• 1|rj , pj = p(t), wj ≥ 0|wLmax. ϕj(t) = wj(t− dj);



• 1|rj , pj = p(t), wj ≥ 0|wTmax. ϕj(t) = max{0, wj(t−
dj)},

where wj is the weight for job j. It should be noted that
in all cases the function p(t) can set time intervals of the
availability of the machine (time windows).

In this paper, we consider the problem of constructing
a Pareto-set of schedules to solve the bi-criteria prob-
lem 1|rj , pj = p(t), Dj |ϕmax, Cmax. To the best of our
knowledge, there does not exist any solution algorithm
for the problem under consideration in the literature. The
existing literature about scheduling with time-dependent
processing times has been reviewed in Alidaee et al.
(1999) and Cheng et al. (2004). The detailed survey of
single machine and parallel machine scheduling problems
of jobs which have the deterioration and shorting rates
presented in S. Gawiejnowicz (2008). A lot of different
problems with time-dependent processing times was con-
sidered in Yin et al. (2015). The problem of minimiz-
ing the makespan for jobs with equal processing times
1|rj , pj = p,Dj |Cmax was considered by Simons (1978)
and Garey et al. (1981). A lot of scheduling problems with
equal processing times were considered in the survey by
Kravchenko and Werner (2011). A polynomial LP algo-
rithm for the problem P |rj , pj = p,Dj |maxϕj(Cj), where
ϕj is a non-decreasing function for any j, was presented
in Kravchenko and Werner (2007). The solution of the bi-
criteria problem 1|rj , pj = p|Lmax, Cmax was presented in
Lazarev et al. (2015).

The remainder of this paper is as follows. In Section 2,
an auxiliary problem is formulated and an algorithm for
its solution is presented. An algorithm to construct the
Pareto set with respect to the criteria ϕmax and makespan
is presented in Section 3. The complexity of the presented
algorithms is estimated in Section 4, and in Section 5 we
give some concluding remarks.

2. AUXILIARY PROBLEM

Let O1(π), . . . , On(π) be the sequence of jobs in which
they are processed under the schedule π, and O(j, π) be
the ordinal number of job j ∈ N under the schedule π, i.e.,

O(j, π) = i ⇔ Oi(π) = j.

We define a family of sets F = {N0, N1, . . . , Nn} such that
for each i = 0, 1, . . . , n, Ni is the set of jobs the ordinal
number of which must be not larger than i, i.e., we have
N0 ⊆ N1 ⊆ . . . ⊆ Nn. For any i = 0, . . . , n, we define
Ni = N \Ni. We say that schedule π satisfies the family
of sets F = {N0, N1, . . . , Nn} if for i = 1, . . . , n and for
any job j ∈ Ni, the inequality

O(j, π) ≤ i
holds. This implies that for each i = 1, . . . , n, only jobs
from the set Ni−1 can be processed under the ordinal
number i, i.e.,

Oi(π) ∈ Ni−1. (2)

It is obvious that N0 = ∅, Nn = N and for each i =
0, . . . , n, the number of jobs, which belong to set Ni is not
larger than i, i.e.,

|Ni| ≤ i. (3)

For each job j ∈ N , we define N(j, F ) = i if j ∈ Ni and
j /∈ Ni−1, i.e.,

N(j, F ) = min
i=0,...,n

{i|j ∈ Ni}.

Let Φ(N,F, y) ⊆ Π(N) be the set of schedules such that
π ∈ Φ(N,F, y) satisfies the given set F and for each job
j ∈ N , the inequality

ϕj(π) < y

holds. Note that, if F 0 = {∅, . . . , ∅, N}, then Φ(N,F 0,+∞) =
Π(N).

Now let us formulate the auxiliary problem.

Auxiliary problem. Find a schedule π(F, y) ∈ Φ(N,F, y)
satisfying

min
π∈Π(N)

max
j∈N
{Cj(π)|ϕj(π) < y,Cj(π) < Dj}. (4)

To solve this problem, we need to prove the following
lemma.

Lemma 1. Under the feasible schedule π ∈ Π(N), the start
time of the first job must satisfy the inequality

SO1(π)(π) ≥ rO1(π) (5)

and for each i = 2, . . . , n, the start time of the job Oi(π)
must satisfy the inequality

SOi(π)(π) ≥ max{rOi(π), SOi−1(π)(π) + p(SOi−1(π)(π))}.(6)

Proof. Due to the definition of the schedule π, each job
j ∈ N must satisfy the inequality

Sj(π) ≥ rj
and for any job k with Sk(π) ≥ Sj(π), the inequality

Sj(π) ≥ Sk(π) + p(Sk(π))

must hold. If j = O1(π), then statement (5) is true.
If k = Oi−1(π) and j = Oi(π) for i = 2, . . . , n, then
inequality (6) is true.

Now let us present an algorithm to solve the auxiliary
problem.

AUXILIARY ALGORITHM A:

0. Input data:
N,F,N(1, F ), . . . , N(n, F ), y.

1. For each j = 1, . . . , n and i = 0, . . . , n, set:
a) m := 0;
b) Dj(y) := min{min t|ϕj(t) ≥ y,Dj};
c) Nm

i := Ni.
2. Assign the ordinal numbers i = n, . . . , 1 to the jobs

according to the latest release date rule subject to the
inclusion (2):

Oi(π
m) := arg max

j∈Nm
i−1

rj .

3. Set the earliest possible start times of the jobs ac-
cording to Lemma 1:

SO1(πm)(π
m) := rO1(πm);

SOi(πm)(π
m) := max{rOi(πm), SOi−1(πm)(π

m)+

+p(SOi−1(πm)(π
m))}, i = 2, . . . , n.

4. For the jobs j = 1, . . . , n and the ordinal numbers
i = N(j, Fm), . . . , 0, check the inequalities

COi(πm)(π
m) < Dj(y). (7)



Fig. 1. Exchanging jobs under the schedule π′.

a) If for any pair j, i, inequality (7) does not
hold, include job j into the set Nm

i−1, change
N(j, Fm) := i − 1, and continue with checking
inequality (7).

b) If inequality (7) is correct and j 6= n, then check
the next job.

c) If j = n and the inequalities are correct for all
pairs j, i with i = O(j, π), then return{πm}.

d) If j = n and for any pair j, i with i = O(j, π)
the inequality is incorrect, go to step 5.

5. For the sets Nm
i , i = 0, . . . , n check inequalities (3):

|Nm
i | ≤ i.

a) If for all sets condition (3) is correct, then set
m := m + 1, for all i = 0, 1, . . . , n, set Nm

i :=
Nm−1
i and go to the next iteration (step 2).

b) Otherwise, return{∅}.
Lemma 2. Suppose that πm is the schedule, constructed
at iteration m of Algorithm A subject to Fm. Then
for each schedule π′ ∈ Φ(N,Fm, y), which satisfies the
family of sets Fm, the following inequality holds for each
i = 1, . . . , n:

SOi(πm)(π
m) ≤ SOi(π′)(π

′).

Proof. Let us compare the schedules π and π′ successively
looking for a difference between the jobs with the ordinal
numbers n, n − 1, . . . , 1. Suppose that the first difference
was found for a job with the ordinal number l, i.e.:

On(π) = On(π′), . . . , Ol+1(π) = Ol+1(π′),

Ol(π) 6= Ol(π
′).

In this case, we get Ol(π) = j, Ol(π
′) = j′ and O(j, π′) < l.

Both schedules π and π′ satisfy the family of sets Fm =
{Nm

0 , . . . , N
m
n }. Since the job at the step 2 of Algorithm

A was selected according to the latest release date rule, we
have

Sj(π
′) ≥ rj ≥ rj′ ,

and hence,
SOl(π′)(π

′) ≥ rj .
Thus, we can exchange the ordinal numbers of the jobs j
and j′ under the schedule π′ (see Fig. 1). Note that the
schedule obtained after the exchange satisfies the set Fm

because of j, j′ /∈ Nm
i . Repeat such an operation until for

each job j and the obtained set π′′, the equality

O(j, π) = O(j, π′′)

will hold and for any i = 1, . . . , n, the equality

SOi(π′)(π
′) = SOi(π′′)(π

′′)

will hold. According to Lemma 1, we have

SO1(π′′)(π
′′) ≥ rO1(π′′) = SO1(π)(π),

and for i = 2, . . . , n, the inequalities

SO1(π′′) ≥ max{rOi(π′′), SOi−1(π′′)(π
′′)+p(SOi−1(π′′)(π

′′))}

≥ max{rOi(π), SOi−1(π)(π)+p(SOi−1(π)(π))} = S(Oi(π))(π)

hold. Therefore, for each i = 1, . . . , n, the inequality

SOi(πm)(π
m) ≤ SOi(π′′)(π

′′) = SOi(π′)(π
′)

holds.

Lemma 3. Suppose that πm−1 is the schedule constructed
at the iteration m − 1 of Algorithm A subject to the set
Fm−1 and after the inclusions at step 4, the family of sets
Fm was obtained. Then each schedule π′ ∈ Φ(N,Fm−1, y),
which satisfies Fm−1, satisfies Fm as well.

Proof. According to the inclusion rule of step 4a) of
Algorithm A, for any job Oj and sets Nm−1

i ∈ Fm−1,

Nm
i ∈ Fm with Oj /∈ Nm−1

i , Oj ∈ Nm
i , the inequality

COi+1(πm−1)(π
m−1) ≥ Dj(y)

must hold. The schedules π and π′ satisfy the family of sets
Fm−1. Hence, according to Lemma 2, for any i = 0, . . . , n−
1, the inequality

SOi+1(πm−1)(π
m−1)) ≤ SOi+1(π′)(π

′)

holds. Since the expression t+ p(t) is non-decreasing in t,
we get the inequality

COi+1(πm−1)(π
m−1)) ≤ COi+1(π′)(π

′),

and therefore,

COi+1(π′)(π
′) ≥ Dj(y).

Hence, inequality O(j, π′) ≤ i holds for any j ∈ Nm
i . Thus,

the schedule π′ satisfies the family of sets Fm.

Corollary 1. Suppose that Algorithm A constructed the
schedule π(F, y) successfully and at the last iteration,
the family of sets Fm was obtained. Then each schedule
π′ ∈ Φ(N,F, y) which satisfies F , satisfies Fm as well, i.e.,
we have Φ(N,F, y) = Φ(N,Fm, y).

Theorem 1. Suppose that Algorithm A returns the sched-
ule π(F, y) 6= ∅. Then π(F, y) has the minimal makespan
value among all schedules of the set Φ(N,F, y). If π(F, y) =
∅, then Φ(N,F, y) = ∅.

Proof. According to Corollary 1 of Lemma 3, any sched-
ule π′ ∈ Φ(N,F, y), satisfies the family of sets Fm ob-
tained at the last iteration of the construction of the
schedule π(F, y) by Algorithm A, i.e., π′ ∈ Φ(N,Fm, y).
Hence, if Algorithm A failed at iteration m, then for some
i = 0, . . . , n, inequality (3) is violated and Φ(N,Fm, y) =
Φ(N,F, y) = ∅. The second statement of the theorem is
proved.

According to Lemma 1, for any π′ ∈ Φ(N,Fm, y), the
inequality

SOi(π(F,y))(π(F, y)) ≤ SOi(π′)(π
′)

holds for i = 1, . . . , n. Since the expression t+ p(t) is non-
decreasing in t and inequality

SOn(π(F,y))(π(F, y)) ≤ SOn(π′)(π
′)

holds, we have

COn(π(F,y))(π(F, y)) ≤ COn(π′)(π
′).

Thus, for any π′ ∈ Φ(N,F, y), the following inequality
holds:

Cmax(π(F, y)) ≤ Cmax(π′).

Hence, Algorithm A constructs an optimal schedule with
respect to the criterion (4).



3. SOLUTION OF THE MAIN PROBLEM

Now let us present an approach to construct the Pareto
set Ω(N) with respect to the criteria ϕmax and makespan.

MAIN ALGORITHM M:

0. Input data:
N,Ω(N) = ∅, y = +∞.

1. Set s := 0, Ns
n := N and for all i = 0, . . . , n−1: Ns

i :=
∅. Moreover, for each job j ∈ N set N(j, F s) = N.

2. Construct the schedule πs+1 = π(F s, y) using Algo-
rithm A. Let upon the completion of Algorithm A
the family of sets F s+1 = {Ns+1

0 , Ns+1
1 , . . . , Ns+1

n }
be obtained.

3. If πs+1 6= ∅ :
a) set π∗(N) := πs+1, y := max

j∈N
ϕj(πs+1);

b) if Cmax(πs) < Cmax(πs+1), include πs+1 into the
Ω(N), set s := s+ 1 and go to the next iteration
(step 2);

c) if Cmax(πs) = Cmax(πs+1), replace πs on πs+1 in
the set Ω(N), set F s := F s+1 and go to the next
iteration (step 2).

4. If πs+1 = ∅, then return {Ω(N), π∗(N)}.
Lemma 4. Suppose that πs+1 = π(F s, ys) is a schedule
constructed at the iteration s + 1 of Algorithm M. Then
each schedule π′ ∈ Π(N) with ϕmax(π′) < ys satisfies the
set F s, i.e., we have

Φ(N,F s, ys) = Φ(N,F 0, ys),

where F 0 = {∅, . . . , ∅, N}.

Proof. Note that Π(N) = Φ(N,F 0,+∞). At the first it-
eration of Algorithm M, the schedule π1 = π(F 0, y0), y0 =
+∞ was constructed by Algorithm A and a family F 1 was
obtained. According to Corollary 1 of Lemma 3, we have

Φ(N,F 1, y0) = Φ(N,F 0, y0).

Since y1 = ϕmax(π0) < y0, we have

Φ(N,F 1, y1) = Φ(N,F 0, y1),

and subject to Corollary 1 of Lemma 3

Φ(N,F 2, y1) = Φ(N,F 1, y1) = Φ(N,F 0, y1).

Hence
Φ(N,F 2, y2) = Φ(N,F 0, y2).

Apply successively a similar argument to iteration i =
3, . . . , s, we obtain

Φ(N,F i, yi) = Φ(N,F 0, yi).

Theorem 2. The set of schedules Ω(N) returned by the
Algorithm M is Pareto-optimal with respect to the cri-
teria ϕmax and Cmax. The schedule π∗(N) returned by
Algorithm M satisfies the optimality criterion (1).

If Ω(N) = ∅, then there is no feasible schedule, i.e.,
Π(N) = ∅.

Proof. According to Theorem 1, the schedule π(F 0,+∞)
obtained at the first iteration of Algorithm M has the
minimal makespan value among all schedules of the set
Φ(N,F 0,+∞) = Π(N). If π(F 0,+∞) = ∅, then Π(N) =
∅. The second statement is proved.

Suppose that πi = π(F i, yi)) is a schedule constructed
at the iteration i of Algorithm M. According to Theorem
1 and Lemma 4, the schedule πi is optimal with respect

to the makespan criterion among all schedules of the
set Φ(N,F i, yi) = Φ(N,F 0, yi), i.e., for each π′ with
ϕmax(π′) < ys, the inequality

Cmax(πi) ≤ Cmax(π′)

holds. According to the Theorem 1 we have, that

Cmax(πi+1) ≥ Cmax(πi)

for each two schedules πi, πi+1 ∈ Ω(N). Subject to the
steps 3b) and 3c) of the Algorithm M, for each two
schedules πi, πi+1 ∈ Ω(N) holds

Cmax(πi+1) > Cmax(πi)

. Since yi = ϕmax(πi−1) and Cmax(πi+1) > Cmax(πi), we
have

Cmax(π1) < Cmax(π2)) < . . . < Cmax(πs),

ϕmax(π1) > ϕmax(π2) > . . . > ϕmax(πs).

If the schedule π(F s, ys) does not exist, then according
to Theorem 1 and Lemma 4, we have Φ(N,F 0, ys) =
Φ(N,F s, ys) = ∅, i.e., there is no schedule with an
objective function ϕmax lower than ys. Thus, the schedule
π∗(N) = πs satisfies the optimality criterion (1):

ϕmax(πs) = min
π∈Π(N)

max
j∈N
{ϕj(π)|Cj(π) < Dj} ,

and Ω(N) is a Pareto-optimal set with respect to the
criteria ϕmax and makespan.

4. ESTIMATION OF THE COMPLEXITY

Theorem 3. The overall complexity of Algorithm M is
O(n3 max{log n,H, P}), where n is the number of jobs,
H is the complexity of finding time t′ such that

t′ = min {t|ϕj(t) ≥ y} ,
and P is the complexity of the calculation of p(t).

Proof. First, let us estimate the complexity of Algorithm
A step by step.

• We calculate the values D1(y), . . . , Dn(y) in O(nH)
operations and make some assignments in O(n) oper-
ations at step 1.
• The assignments of the ordinal numbers to the jobs

at step 2 takes O(n log n) operations.
• Setting the start times at step 3 takes O(nP ) opera-

tions, where P is the complexity of the calculation of
p(t).
• The complexity of the steps 4b) and 4d) is O(n) and
O(1), respectively. The complexity of steps 4a) and
4c) will be estimated later.
• Checking n + 1 inequalities at step 5 takes O(n)

operations.

Hence, the steps 1, 2, 3, 4b), 4d), 5 of one iteration of
Algorithm A take O(nmax{log n,H, P}) operations.

At each iteration m of Algorithm A except the final one,
there are some inclusions into the sets Nm

0 , N
m
1 , . . . , N

m
n−1.

Suppose that the maximum value of the objective function
under the schedule π(F, y) was achieved for the job j, i.e.,
we have

ϕmax(π(F, y)) = ϕj(π(F, y)).

According to Lemma 1, Algorithm A constructs a schedule
π(F, y) with minimal possible starting times among all
schedules from the set Φ(N,F, y). Since ϕj is a non-
decreasing completion time-dependent function, according



to Lemma 4, job j must be processed under any schedule
with an objective function value lower than ϕmax(π(F, y))
with an ordinal number lower than O(j, π(F, y)). Hence,
at each iteration of Algorithm M (steps 2-3), there are
one or more inclusions into the sets of the family F s.
Thus, the total number of iterations of Algorithm A in the
performance of Algorithm M can be estimated by the total
number of possible inclusions into the sets N0, . . . , Nn.
According to (3), we obtain that the number of possible
inclusions is not larger than

n−1∑
i=0

|Ni| ≤
n2 − n

2
= O(n2).

Thus, the overall complexity contribution of steps 1, 2, 3,
4b), 4d), and 5 of Algorithm A is O(n3 max{log n,H, P}).
Let us estimate the overall complexity contribution of
steps 4a) and 4c) of Algorithm A. Note that the number of
steps 4a) in the performance of Algorithm M for any job
j ∈ N is equal to the number of inclusions of job j into
the sets N0, . . . , Nn−1. Thus, the total number of steps 4a)
is not more than the total number of possible inclusions
n2−n

2 = O(n2). Since the complexity of step 4a) is O(1),
the total contribution of the steps 4a) in the performance
of Algorithm M is O(n2).

The total number of steps 4c) of Algorithm A in the
performance of Algorithm M is equal to the number of
schedules in the set Ω(N). This value is not more than the
number of iterations of Algorithm A in the performance

of Algorithm M, which is not more than n2−n
2 = O(n2)

as it was noted earlier. The complexity of step 4c) is O(1)
and hence, the total complexity contribution of steps 4c)
in the performance of Algorithm M is O(n2).

Thus, the overall complexity of Algorithm M is not more
than O(n3 max{log n,H, P}) operations.

Corollary 2. The number of schedules in the set Ω(N) is
not larger than

n−1∑
i=0

|Ni| ≤
n2 − n

2
.

5. CONCLUDING REMARKS

In this paper, an approach to solve the problem 1|rj , pj =
p(t), Dj |ϕmax was presented. In addition, the Pareto set
with respect to the criteria ϕmax and Cmax was con-
structed. The core idea of our approach was to construct a
schedule with lower value ϕmax than in the previous step
using strict deadlines and the knowledge obtained in the
previous steps for filling the family of sets F .

In future research we are going to focus on the problems
with different time-dependent processing time functions
pj(t) and on the development of some practical applica-
tions of the presented method.

REFERENCES

B Alidaee, N.K. Womer. Scheduling with time-dependent
processing times: Review and Extensions. Journal of
the Operational Research Society, Vol. 50, 711 - 720 pp.,
1999.

T.C.E. Cheng, Q. Ding, B.M.T. Lin. A concise survey
of scheduling with time-dependent processing times.
European Journal of Operational Research, Vol. 152, 1 -
13 pp., 2004.

S. Gawiejnowicz. Time Dependent Scheduling. Springer.
377 p., 2008.

Y. Yin, T.C.E. Cheng, and C. Wu. Scheduling with Time-
Dependent Processing Times. Math. Probl. Eng. 2015.

R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G Rinnooy
Kan. Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete
Math. V.5. 287-326 pp., 1979.

B. Simons. A fast algorithm for single processor schedul-
ing. In 19th Annual Symposium on Foundations of
Computer Science, Ann Arbor, Mich., 246 - 252 pp.,
1978.

M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan.
Scheduling unit-time tasks with arbitrary release times
and deadlines. SIAM Journal on Computing, Vol. 10,
No. 2, 256 - 269 pp., 1981.

S. Kravchenko and F. Werner. Parallel machine problems
with equal processing times: a survey. Journal of
Scheduling, Vol. 14, No. 5, 435 - 444 pp., 2011.

S. Kravchenko and F. Werner. On a parallel machine
scheduling problem with equal processing times. Otto-
von-Guericke-Universität Magdeburg, FMA, Preprint
26/07, 9 pp., 2007.

A. Lazarev, D. Arkhipov, F. Werner Single machine
scheduling: Finding the Pareto setwith equal processing
times with respect to criteria Lmax and Cmax. Pro-
ceedings of the 7th MISTA Conference, Prague / Czech
Republic, 797 - 800 pp., 2015.


