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Abstract: A learning stage of scheduling tends to produce knowledge about a benchmark of priority 
dispatching rules which allows a scheduler to improve the solution quality for a set of similar job-shop 
problems. Once trained on the sample job-shop problems (usually with small sizes), the adaptive 
algorithm solves a similar job-shop problem (with a moderate size or a large size) better than heuristics 
used as a benchmark at the learning stage of scheduling. Our adaptive algorithm does not guarantee to 
perform as an exact algorithm or better than a more sophisticated heuristic algorithm (like e.g. the 
shifting bottleneck one) which need a large running time. For an adaptive algorithm with a learning stage, 
the job-shop scheduling problem is modeled via a weighted mixed (disjunctive) graph with the conflict 
resolution strategy used for finding an appropriate schedule.  
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1. INTRODUCTION 

Priority dispatching rules have been studied in the OR 
literature for several decades since they are widely used for 
different scheduling problems like the job-shop problem 
arising in real world: Haupt (1989); Muth and Thompson 
(1963); Panwalkar and Iskander (1977); Tanaev et al. (1994). 
However, the general conclusion from many years of 
academic and practical research is that no priority dispatching 
rule performs globally better than other ones tested for a wide 
class of scheduling problems which are NP-hard: Geiger et 
al. (2006); Gholami et al. (2012); Mouelhi-Chibani and 
Pierreval (2010); Shakhlevich et al. (1996). A priority 
dispatching rule may provide a good solution for a concrete 
scheduling problem but applied to another NP-hard problem, 
it may provide a bad solution the quality of which is far from 
that of an optimal schedule. To develop an efficient priority 
dispatching rule for a class of job-shop problems, which are 
binary NP-hard even for three jobs and three machines, 
Sotskov and Shakhlevich (1995), Brucker et al. (2007), takes 
a lot of research involving the implementation of different 
priority dispatching rules in a simulation. Therefore, several 
researchers developed tools to discover effective priority 
dispatching rules automatically: Abdolzadeh and Rashidi 
(2009); Gabel and Riedmiller (2007); Geiger et al. (2006); 
Dorndorf and Pesch (1995); Li and Shi (1994); Shakhlevich 
et al. (1996). Next, we review some scheduling approaches 
using a learning stage. A scheduling problem is denoted by a 
triplet γβα || , as Lawler et al. (1993) have proposed. 
A tabu search algorithm is a local search applied to various 
optimization problems, Glover (1989). Tabu search adopts 
local search with a memory implemented as a tabu list of 
moves which have been made in the past of the search, and 

which are forbidden (tabu) for certain iterations of the 
algorithm. A tabu move may be accepted if the solution 
obtained by the application of the move being better than the 
best solution previously obtained. 
Gabel and Riedmiller (2007) adopted an alternative view on 
scheduling problems by modelling them as multi-agent 
reinforcement learning problems. They interpreted a job-shop 
problem as a sequential decision process and attach to each 
machine an adaptive agent that makes its job dispatching 
decisions independently of the other agents and improves its 
behaviour by trial and error employing a reinforcement 
learning stage. A multi-agent algorithm was developed, 
which combines data-efficient batch-mode reinforcement 
learning, neural network-based value function approximation 
and the use of an optimistic inter-agent coordination scheme. 
Mouelhi-Chibani and Pierreval (2010) proposed an approach 
based on a neural network to select the most suited priority 
dispatching rule each time a machine becomes available. 
Contrary to the most learning approaches to select scheduling 
heuristics, no training set is needed. The parameters of the 
neural network are determined through a simulation. For the 
flow-shop problem, it was shown that the neural network can 
select the priority dispatching rule dynamically. Once trained 
offline, the resulting neural network can be used online in 
connection with a flexible manufacturing system.  
Abdolzadeh and Rashidi (2009) developed an approach of 
cellular learning automata for the job-shop problem. In their 
approach, there were two types of action sets. These actions 
were generated in order to transfer cells into the best states by 
changing the position of operations of some jobs. 
Geiger et al. (2006) proposed a genetic programming 
approach, which is capable of automatically discovering 
priority dispatching rules for several single machine 



 
 

     

 

scheduling problems, namely, for the problems ∑ iC||1  and 

max||1 L  which are polynomially solvable and for the 
problems ∑ ii Cr ||1 , max||1 Lri , ∑ ii Tr ||1 , (and problem 

∑ iT||1 ) which are unary NP-hard (binary NP-hard). The 
mechanism for discovery a composite dispatching rule using 
a benchmark of the priority dispatching rules was based on a 
genetic algorithm. In contrast to a usual implementation of an 
evolutionary-based search for creating new schedules, a 
genetic algorithm was used for creating a new composite 
dispatching rule, Geiger et al. (2006). Shakhlevich et al. 
(1996) showed how to generate a composite dispatching rule 
using a learning stage. To solve a problem max|| CJ  heuristi-
cally, Dorndorf and Pesch (1995) used a genetic algorithm 
served as a strategy to guide the design of suitable sequences 
of the priority dispatching rules. They considered both 
sequences of priority dispatching rules for job scheduling and 
job sequences on one bottleneck machine in the sense of the 
shifting bottleneck algorithm, Adams et al. (1988).  
In Section 4, we compare our adaptive algorithm with the 
shifting bottleneck algorithm, as one of the most efficient 
heuristics developed for the problem max|| CJ . This 
algorithm finds the best schedule for that single machine, 
which is currently a bottleneck, and calculates the throughput 
time for each job. The minimum lateness for each machine 
calculated by finding the paths through the machines that 
reduces the maximum lateness }:max{max JJdCL iii ∈−=  
observed for all the jobs on the bottleneck machine. 
Hereafter, id  and iC  denote the due date and the completion 
time of the job JJi ∈  respectively, where },...,,{ 21 nJJJJ =  
is the set of jobs to be processed. The operations on the 
bottleneck machine are scheduled due to solution of the NP-
hard problem max|,|1 Lprecri  of minimizing maximal 
lateness. Here ir  denotes the release time of the job iJ . After 
defining additional precedence constraints, the analysis for 
the remaining machines is continued. The above process is 
repeated until either all machines have been accounted for or 
the maximum lateness equals zero for all the remaining 
machines. As computational experiments showed, the 
shifting bottleneck algorithm runs in a reasonable CPU-time 
if the number m of machines is not much greater than the 
number n of jobs. Due to this reason, our adaptive algorithm 
was also compared with the algorithm Ordinal-ECT 
developed by Gholami et al. (2012). The latter algorithm runs 
faster than the shifting bottleneck one in the case of nm >  
while the quality of the solution obtained by the algorithm 
Ordinal-ECT is usually close to that obtained by the shifting 
bottleneck algorithm.  

2. A MIXED GRAPH MODEL FOR THE JOB-SHOP  

There are n jobs },...,,{ 21 nJJJJ = , which need to be 
processed on m  different machines },...,,{ 21 mMMMM = . 
The machine (technological) route ),...,,( 21 iiniii OOOO =  of 

each job JJi ∈  through the machines M  is fixed. The 
machine routes iO  may be different for different jobs .JJi ∈  

The time ijp  for processing operation ijO  of job JJi ∈  on 

the corresponding machine MMv ∈  is known. The objective 
of the problem max|| CJ  is to minimize the makespan 

},:max{max JJCC ii ∈=  which denotes the minimization of 
the time when all the jobs J  have been processed.  
The job-shop problem max|| CJ  may be described using a 
weighted mixed (or equivalently, disjunctive) graph 

),,( EAQG = , which is an appropriate model for 
constructing various exact and heuristic algorithms: Adams et 
al. (1988), Gholami et al. (2012), Shakhlevich et al. (1996), 
Lawler et al. (1993), Tanaev et al. (1994). In the mixed graph 
G , the vertex set Q  is the set of  operations: 

},...,,,...,,...,,,{ *2112,11,1 1
OOOOOOOOQ

nnnnnn=  including a 
dummy source operation O  preceding all the other vertices 
in the digraph ,,( AQ Ø) and a dummy sink operation *O . 
Each vertex of the set Q \ }{ *O  proceeds to vertex *O  in the 
digraph ,,( AQ Ø).  
The arc set A  defines all precedence constraints, and the 
edge set E  defines all machine constraints: at any time a 
machine from the set M  can process at most one job from 
the set .J  A weight ijp  is prescribed to operation QOij ∈  of 

each job JJi ∈  and each stage },...,2,1{ inj∈ . Hereafter, 

ijp  is equal to the time needed to process the operation ijO  

on the corresponding machine .MM v ∈  There exists a one-
to-one correspondence between all semi-active schedules and 
all circuit-free digraphs ∆  generated by the mixed graph G  
via orienting all edges from the set .E  A schedule is called 
semi-active if no operation QOij ∈  can start earlier without 
delaying the processing of some other operation from the set 
Q  or without altering the processing sequence of the 
operations on any of the machines .M  For any regular 
criterion, at least one optimal schedule is semi-active. An 
optimal semi-active schedule is defined by an optimal 
digraph ,,( ss AAQG = Ø) from the set ∆ , Tanaev et al. 
(1994). One of the general scheduling approaches, based on 
the mixed graph model, is the conflict resolution strategy, 
which may be used to develop either exact or heuristic 
scheduling algorithms. At an elementary step of such an 
algorithm, the conflict resolution strategy means to deal with 
one conflict edge of the mixed graph G  and to decide which 
of the two orientations of the conflict edge has to be chosen 
for inclusion into the desired digraph ,,( ss AAQG = Ø). 
An edge EOO uvij ∈],[  is called a conflict edge if both of its 

orientations ),( uvij OO  and ),( ijuv OO  lead to an increase 

either of the starting time uvs  of the operation uvO  or of the 
starting time ijs  of the operation ijO .  

3. AN ADAPTIVE SCHEDULING ALGORITHM 

An adaptive algorithm schedules the jobs in a job-shop using 
the knowledge on a benchmark of the priority dispatching 
rules tested at a specific learning stage.  



 
 

     

 

At a learning stage via solving small or moderate job-shop 
problems optimally, the adaptive scheduler would be trained 
with several characteristics based on priority dispatching 
rules while constructing an optimal schedule. To this end, the 
characteristics of the operations from the conflict edges are 
calculated and stored in a learning database along with the 
decision made in the optimal scheduling.  
At the examination stage, the learning database is used for 
scheduling the jobs appropriately in a job-shop with a 
moderate size or with a large size by an adaptive scheduler as 
a pattern. Our adaptive scheduler includes several modules 
and two databases. The general scheme of the adaptive 
scheduler can be seen in Fig. 1. In Subsections 3.1 – 3.4, the 
main modules of the adaptive scheduler are discussed in more 
detail as the page limit allows. 
 

 
Figure 1: Scheme of the adaptive scheduler  

3.1. The learning stage 

For the learning stage, an optimal scheduler for the job-shop 
problem, like a branch-and-bound method, is needed to solve 
exactly instances with sufficiently restricted sizes. Then the 
data achieved from the learning stage may be used at the 
examination stage. A few small samples solved at the 
learning stage reduce the accuracy of the learning data, while 
a lot of samples or big samples solved increase the running 
time needed to find their optimal schedules at the learning 
stage. At the learning stage, the information about a 
successful orientation of the conflict edges is stored in the 
database. The learning table is analogous to those used in the 
theory of pattern recognition and it describes which 
orientation of a conflict edge is preferable while an optimal 
digraph (and an optimal schedule) is constructed.  

The learning database is filled by the data as it is depicted in 
Table 1, where the learning data are filled in the first column, 
in the columns ,,...,, 21 rXXX  and in the last column. The 
last column of Table 1 shows the decision made by an 
optimal scheduler to resolve a conflict edge ],[ k

uv
k
ij OO  from 

the set E  of the mixed graph ),,( EAQG = . Hereafter, a 

superscript k  in the notation of the edge ],[ k
uv

k
ij OO  is used to 

distinguish different edges either for the same mixed graph 
),,( EAQG =  or for different mixed graphs modelling job-

shop problems max|| CJ  used at the learning stage. For 

simplicity of the notation, all conflict edges have same 
subscripts ij and uv in the first column of Table 1.  
If in the optimal digraph ,,( ss AAQG = Ø), a conflict edge 

EOO k
uv

k
ij ∈],[  was substituted by the arc s

k
uv

k
ij AOO ∈),( , 

then we set 1Ω=Ωk . If in the optimal digraph 

,,( ss AAQG = Ø), a conflict edge EOO k
uv

k
ij ∈],[  was 

substituted by the arc sijuv AOO ∈),( , then we set 2Ω=Ωk . 
 

Table 1: Conflict resolutions in optimal schedules 
 

Conflict edge 
1X  

2X  … 
rX  Ω class 

],[ 11
uvij OO  1

1g  1
2g  

… 1
rg  1Ω  

],[ 22
uvij OO  2

1g  2
2g  

… 2
rg  2Ω  

…
 

…
 

…
 

…
 

…
 

 

],[ w
uv

w
ij OO  wg1

 wg2  
… w

rg  wΩ  

],[ uvij OO  1g  
2g  

… 
rg  

? 

 
For each conflict edge },,...,2,1{],,[ wkOO k

uv
k
ij ∈  which was 

treated while branching in a branch-and-bound method, the 
characteristics corresponding to the priorities of the 
operations k

ijO  and k
uvO  on the corresponding machine 

MMv ∈  have to be calculated and stored in the columns 

rXXX ,...,, 21  of Table 1. To be more precise: for each 
priority dispatching rule from the database used in the 
learning stage, a priority k

ijπ  of operation k
ijO  and priority 

k
uvπ  of operation k

uvO  are calculated. Respecting the priority 
dispatching rule, the operation with a larger priority has to be 
processed on the corresponding machine MMv ∈  before 
processing the operation with a smaller priority. The 
characteristic tX  of the conflict edge EOO k

uv
k
ij ∈],[  

corresponding to the priority dispatching rule is defined as 
the relative difference of the priorities k

ijπ  and k
uvπ  of the 

operations k
ijO  and k

uvO  as follows:  

},max{ k
uv

k
ij

k
uv

k
ijk

tg
ππ

ππ −
= . 

The sign of the value k
tg  shows which of the operations k

ijO  

or k
uvO  has priority to be processed first on the machine 

.MM v ∈  The absolute value of k
tg  shows how much the 

superiority of the operation with the larger priority is?  
There are a lot of priority dispatching rules that are used in a 
variety of heuristic algorithms for scheduling the jobs JJi ∈  
in a job-shop: Haupt (1989), Muth and Thompson (1963), 
Panwalkar and Iskander (1977). Some characteristics of the 
priority dispatching rules are gathered before scheduling 
while some other characteristics are post scheduling ones. As 



 
 

     

 

an example of a priority dispatching rule, let us consider the 
Earliest Completion Time rule (ECT–rule, for short) that 
recommends to process first the operation with the earlier 
completion time. Let the earliest completion time for 
operation k

ijO  (for operation k
uvO ) be equal to 90 (to 73, 

respectively). Then one can calculate the value of the 
corresponding characteristic tX  as follows:  

18.0
90

7390
},max{

=
−

=
−

= k
uv

k
ij

k
uv

k
ijk

tg
ππ

ππ
.  

A positive value k
tg  indicates that operation k

uvO  has to be 

processed before operation k
ijO  respecting the ECT–rule. 

 
3.2. The examination stage 
 
At the examination stage, a job-shop problem max|| CJ  with 
a moderate or with a large size has to be solved using a 
natural principle of precedence: it is reasonable in a new 
conflict situation to adopt a decision which has lead to 
success (i.e., to an optimal schedule in our case) at the 
learning stage in a similar conflict situation.  
Let the weighted mixed graph ),,( EAQG =  model a job-
shop problem max|| CJ  to be solved at the examination stage 
by an adaptive scheduler. In the scheduling process for each 
conflict edge EOO uvij ∈],[  of the mixed graph G  which 
was met by the adaptive scheduler, the characteristic vector 

),...,,( 21 rggg  has to be calculated and then compared with 

the characteristic vectors ),,...,,( 21
k
r

kk ggg },...,2,1{ wk ∈ , of 
the conflict edges stored in Table 1 during the learning stage.  
Let the characteristic vector ),...,,( 21

e
r

ee ggg  (here the index 
},...,2,1{ we∈  is fixed) be the closest to the vector 

),...,,( 21 rggg  among all vectors ),...,,( 21
k
r

kk ggg  (here the 
index },...,2,1{ wk ∈  varies) presented in Table 1. Then, to 
resolve a conflict edge EOO uvij ∈],[  in the mixed graph 

),,( EAQG = , an adaptive scheduler uses the same decision 

as in the class eΩ  stored in Table 1.  
It should be noted that sometimes the characteristic vectors 
appear so close to each other, that the heuristic fundamental 
of the algorithm makes a mistake implying a circuit 
appearance in a digraph ,,( ss AAQG = Ø) constructed by 
the adaptive scheduler. A circuit in the digraph 

,,( ss AAQG = Ø) means a deadlock in machine binding, 
and to prevent from this phenomenon, a circuit test procedure 
has been applied. For example, if the adaptive scheduler 
decides to introduce the arc ),( uvij OO  in the digraph 
generated by the mixed graph G , a circuit tester examines 
while a path from the vertex uvO  to the vertex ijO  exists in 
the already constructed subgraph of the digraph 

,,( ss AAQG = Ø). If such a path exists, adding the arc 

),( uvij OO  to the constructed subgraph will generate a 

circuit. Therefore, the symmetric arc ),( ijuv OO  has to be 

added to this subgraph of the digraph ,,( ss AAQG = Ø). 
 
3.3. Procedures for monitoring variable parameters 
 
It should be noted that each time a scheduler wants to make a 
decision, different job characteristics like the operation 
starting time, completion time, due date, processing time and 
some other parameters are needed for the right decision. 
Some of these data like the operation processing time are 
unchangeable, while others like the operations completion 
time may be changed due to adding a new arc in the digraph 

,,( ss AAQG = Ø).  
Thus, at each such time point, it is necessary to refresh the 
characteristics of the jobs which are in conflict. It is clear that 
such recalculations are mass and therefore, time-consuming. 
To get rid of this computation problem, we developed special 
procedures for monitoring variable parameters. These 
procedures are used both at the learning and at the 
examination stages of the adaptive algorithm.  
The main duty of these procedures is to control on-line the 
digraph ,,( ss AAQG = Ø) while it is constructing. At 
every time point when an arc is added to the digraph, the side 
effect of adding this arc is analyzed. If a new arc has an 
influence on the corresponding parameters of the subsequent 
jobs, then the data about those jobs have to be updated. 
Procedures for monitoring variable parameters prevent a 
scheduler to regenerate the whole set of parameters each time 
when they are needed for decision-making. 
As an example, the following procedure shows how to update 
the starting times of the operations when a scheduler decided 
to add an arc ),( uvij OO  in the digraph ,,( ss AAQG = Ø).  
 
IF ijijuv pss +<  THEN { ijijuv pss +=  ; )(: uvOAddBuffer = } 

WHILE NOT ( )(Bufferempty ) DO  

{ )(: Bufferremovenode =  
FOR each subsequent of (node) as sub DO 

IF ( nodenodesub pss +< ) THEN  

{ nodenodesub pss += )(: subAddBuffer = }} 
 
Other parameters needed for a scheduler to make the right 
decision for conflict resolution may be monitored similarly.  
 
3.4. Three strategies for considering a set of conflict edges 
 
One challenge in an adaptive algorithm is how to find a 
conflict edge EOO uvij ∈],[  and compare the characteristics 

of the jobs JJi ∈  and ,JJu ∈  which are waiting for 
processing on the same machine. It is clear that the order, in 
which the conflict edges will be resolved, will influence the 
quality of the objective function value in the constructed 
schedule. There are several strategies for scanning the job 
requests for processing. Some algorithms, like the shifting 
bottleneck one, determine which machine is currently 



 
 

     

 

the bottleneck. This is realized via considering the times ijp  

needed for processing the jobs JJi ∈  on the machines, 
which are involved in the routes iO , the release times of the 
jobs JJi ∈  on these machines, and the due dates of the jobs 
on these machines. As our experiments showed, if the 
machine number is considerably larger than the job number, 
such an algorithm is time-consuming.  
An algorithm of another type looks for a critical job (i.e., a 
job with the largest total processing time on the machines 
involved in the job route) and tries to process first the 
operations of the critical job. Then the algorithm tries to 
process next the operations of the second critical job, and so 
on. Another algorithm, which could also be considered, tries 
to process first the operations 1iO  of jobs ,JJi ∈  then the 
second operations 2iO  of the jobs ,JJi ∈  then the third 
operations 3iO  of the jobs ,JJi ∈  and so on until the last 
operations 

iinO  of the jobs JJi ∈  are processed.  
We have treated three strategies of scanning the conflict 
edges in order to choose the most effective strategy to 
schedule the jobs in the adaptive algorithm. The first strategy 
uses the critical path method and sorts the jobs JJi ∈  by 
decreasing the total job processing times and starts with 
processing a job having the largest total processing time. In 
Fig. 2, this version of the adaptive algorithm is called Max-
PT (Maximum Processing Time first). The second strategy 
makes the same as the first one but sorts the jobs oppositely: 
in increasing order of the total job processing times. In Fig. 2, 
this adaptive algorithm is called Min-PT (Minimum 
Processing Time first). The third strategy processes first the 
operations 1iO  of the jobs ,JJi ∈  then the operations 2iO  
of the jobs ,JJi ∈  and so on. This adaptive algorithm is 
called Ordinal in Fig. 2. The evaluation of a wide set of 
randomly generated job-shop problems by these three 
strategies shows that the Ordinal algorithm performs better 
with respect to the objective function maxC  than the two 
other strategies. So, the Ordinal strategy was used in the 
adaptive algorithm to resolve the set of conflict edges. 
 

4. COMPUTATIONAL RESULTS 

For the computational experiments, we used a laptop 
computer: Intel®, coreTM 2 Duo, CPU T6400, 2.00 GHz and 
2GB Internal Memory, Windows 7, Ultimate 32 bit. Only one 
instance of a job-shop problem with 6 jobs, 6 machines and 
the equality 6=in  for all jobs JJi ∈ , given by Muth and 
Thompson (1963) was used at the learning stage. This 
example is named as MT-6. The benchmark of the priority 
dispatching rules includes the following four rules: Earliest 
Due Date rule (EDD–rule), First Come First Served rule 
(FCFS–rule), Longest Processing Time rule (LPT–rule) and 
Shortest Processing Time rule (SPT–rule). 
In Table 2, the effectiveness of the adaptive algorithm is 
compared with the Ordinal-ECT algorithm; Gholami et al. 
(2012), the Shifting bottleneck algorithm, Adams et al. 
(1988), and with four heuristic algorithms based on a single 

priority dispatching rule from the benchmark used at the 
learning stage. 
 

 
Figure 2: Comparison of the maxC  values obtained by the three 

strategies to process the operations QOij ∈  

Table 2 shows the values of maxC  obtained for the 
benchmark problems max|| CJ , namely: for problem MT-6; 
for the famous problem MT-10 with 10 jobs and 10 
machines, given by Muth and Thompson (1963); for another 
problem with 10 jobs and 10 machines; for two problems 
with 10 jobs and 5 machines, and for a problem with 18 jobs 
and 5 machines. The CPU-times used for running the 
adaptive algorithm are given in the last two figures.  
In Fig. 3, the number of jobs is fixed, ,10=n  and the 
number of machines is increased from 10 to 40. In Fig. 4, the 
number of machines is fixed, ,10=m and the number of jobs 
is increased from 10 to 40. Thus, one can see that the 
adaptive algorithm is both effective and efficient. 
 

 
Figure 3: Average CPU-times used by the adaptive algorithm for 

solving a set of problems with a fixed number of jobs 
 
Our experience showed that sample job-shop problems 
having different patterns of operation topology and 
parameters (e.g., the range of the job processing times) have a 
different impact on the training of the adaptive algorithm at 
the learning stage. As only the optimal MT-6 solution was 
used for learning, the adaptive algorithm could not show its 
ability in the presented experiments. To get better objective 
function values, it is desirable to train the adaptive algorithm 
on different optimal solutions, which are closer to the 
instances that have to be solved at the examination stage. 
Furthermore, it is desirable to have a faster exact algorithm 
for the job-shop problems when it is necessary to solve large 
job-shop problems very well. The exact algorithm may be 
used to solve a part of a large problem, e.g., a sub-problem 
with size 6×6 or 7×7, and the obtained optimal schedules 



 
 

     

 

may be used at the learning stage. It is clear that, if the 
adaptive algorithm is trained on the original problem, it can 

produce better results.  
 

Table 2: Makespan values for six benchmark instances max|| CJ  calculated by seven heuristic algorithms 

Benchmark problems 
max|| CJ  

Ordinal-ECT 
algorithm 

Shifting 
bottleneck 

EDD-
rule 

FCFS-
rule  

LPT-
rule 

SPT-
rule 

Adaptive 
algorithm 

MT-6 (6×6)  59  58  63  65  67 73 58 
MT-10 (10×10)  1252  1094  1246  1184  1168 1338 1167 
Job-shop-10 (10×10) 82  94  122  87  86 118 86 
Job-shop-18 (18×5)  1419  1220  1263  1462  1393 1451 1370 
SGW-10-1 (10×5) 662 564 629 638 627 762 564 
SGW-10-2 (10×5) 714 620 673 650 638 807 620 

 

 
Figure 4: Average CPU-time used by the adaptive algorithm for 

solving a set of problems with a fixed number of machines 

5. CONCLUSION 

An adaptive scheduling algorithm was developed to solve the 
unary NP-hard problem max|| CJ  with a large size. Due to 
the learning stage, it could schedule the jobs with a good 
value of the objective function maxC  (Table 2) in reasonable 
CPU-time (Fig. 3 and Fig. 4). Using a pattern recognition 
technique to find the best answer for conflict resolution helps 
the adaptive scheduler to obtain schedules with good values 
of the objective function. By tuning the adaptive algorithm on 
different optimal solutions of such instances, which are close 
to those that have to be solved, the quality of the results will 
be improved without any side effect on the running time of 
the adaptive algorithm at the examination stage.  
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