

Solving a job-shop scheduling problem by
an adaptive algorithm based on learning

Yuri N. Sotskov*, Omid Gholami**, Frank Werner***

* United Institute of Informatics Problems, Minsk, Belarus

(Tel: 217-375-2842120; e-mail: sotskov@newman.bas-net.by).
**Islamic Azad University - Mahmudabad Branch, Iran

 (Tel: 217-375-2842125; e-mail: gholami@iaumah.ac.ir).
***Faculty of Mathematics, Otto-von-Guericke-University, Magdeburg, Germany

(Tel: 49-391-67-12025; e-mail: frank.werner@ovgu.de)

Abstract: A learning stage of scheduling tends to produce knowledge about a benchmark of priority
dispatching rules which allows a scheduler to improve the solution quality for a set of similar job-shop
problems. Once trained on the sample job-shop problems (usually with small sizes), the adaptive
algorithm solves a similar job-shop problem (with a moderate size or a large size) better than heuristics
used as a benchmark at the learning stage of scheduling. Our adaptive algorithm does not guarantee to
perform as an exact algorithm or better than a more sophisticated heuristic algorithm (like e.g. the
shifting bottleneck one) which need a large running time. For an adaptive algorithm with a learning stage,
the job-shop scheduling problem is modeled via a weighted mixed (disjunctive) graph with the conflict
resolution strategy used for finding an appropriate schedule.

Keywords: Job-shop scheduling; Priority dispatching rules; Learning stage.

1. INTRODUCTION

Priority dispatching rules have been studied in the OR
literature for several decades since they are widely used for
different scheduling problems like the job-shop problem
arising in real world: Haupt (1989); Muth and Thompson
(1963); Panwalkar and Iskander (1977); Tanaev et al. (1994).
However, the general conclusion from many years of
academic and practical research is that no priority dispatching
rule performs globally better than other ones tested for a wide
class of scheduling problems which are NP-hard: Geiger et
al. (2006); Gholami et al. (2012); Mouelhi-Chibani and
Pierreval (2010); Shakhlevich et al. (1996). A priority
dispatching rule may provide a good solution for a concrete
scheduling problem but applied to another NP-hard problem,
it may provide a bad solution the quality of which is far from
that of an optimal schedule. To develop an efficient priority
dispatching rule for a class of job-shop problems, which are
binary NP-hard even for three jobs and three machines,
Sotskov and Shakhlevich (1995), Brucker et al. (2007), takes
a lot of research involving the implementation of different
priority dispatching rules in a simulation. Therefore, several
researchers developed tools to discover effective priority
dispatching rules automatically: Abdolzadeh and Rashidi
(2009); Gabel and Riedmiller (2007); Geiger et al. (2006);
Dorndorf and Pesch (1995); Li and Shi (1994); Shakhlevich
et al. (1996). Next, we review some scheduling approaches
using a learning stage. A scheduling problem is denoted by a
triplet γβα || , as Lawler et al. (1993) have proposed.
A tabu search algorithm is a local search applied to various
optimization problems, Glover (1989). Tabu search adopts
local search with a memory implemented as a tabu list of
moves which have been made in the past of the search, and

which are forbidden (tabu) for certain iterations of the
algorithm. A tabu move may be accepted if the solution
obtained by the application of the move being better than the
best solution previously obtained.
Gabel and Riedmiller (2007) adopted an alternative view on
scheduling problems by modelling them as multi-agent
reinforcement learning problems. They interpreted a job-shop
problem as a sequential decision process and attach to each
machine an adaptive agent that makes its job dispatching
decisions independently of the other agents and improves its
behaviour by trial and error employing a reinforcement
learning stage. A multi-agent algorithm was developed,
which combines data-efficient batch-mode reinforcement
learning, neural network-based value function approximation
and the use of an optimistic inter-agent coordination scheme.
Mouelhi-Chibani and Pierreval (2010) proposed an approach
based on a neural network to select the most suited priority
dispatching rule each time a machine becomes available.
Contrary to the most learning approaches to select scheduling
heuristics, no training set is needed. The parameters of the
neural network are determined through a simulation. For the
flow-shop problem, it was shown that the neural network can
select the priority dispatching rule dynamically. Once trained
offline, the resulting neural network can be used online in
connection with a flexible manufacturing system.
Abdolzadeh and Rashidi (2009) developed an approach of
cellular learning automata for the job-shop problem. In their
approach, there were two types of action sets. These actions
were generated in order to transfer cells into the best states by
changing the position of operations of some jobs.
Geiger et al. (2006) proposed a genetic programming
approach, which is capable of automatically discovering
priority dispatching rules for several single machine

scheduling problems, namely, for the problems ∑ iC||1 and

max||1 L which are polynomially solvable and for the
problems ∑ ii Cr ||1 , max||1 Lri , ∑ ii Tr ||1 , (and problem

∑ iT||1) which are unary NP-hard (binary NP-hard). The
mechanism for discovery a composite dispatching rule using
a benchmark of the priority dispatching rules was based on a
genetic algorithm. In contrast to a usual implementation of an
evolutionary-based search for creating new schedules, a
genetic algorithm was used for creating a new composite
dispatching rule, Geiger et al. (2006). Shakhlevich et al.
(1996) showed how to generate a composite dispatching rule
using a learning stage. To solve a problem max|| CJ heuristi-
cally, Dorndorf and Pesch (1995) used a genetic algorithm
served as a strategy to guide the design of suitable sequences
of the priority dispatching rules. They considered both
sequences of priority dispatching rules for job scheduling and
job sequences on one bottleneck machine in the sense of the
shifting bottleneck algorithm, Adams et al. (1988).
In Section 4, we compare our adaptive algorithm with the
shifting bottleneck algorithm, as one of the most efficient
heuristics developed for the problem max|| CJ . This
algorithm finds the best schedule for that single machine,
which is currently a bottleneck, and calculates the throughput
time for each job. The minimum lateness for each machine
calculated by finding the paths through the machines that
reduces the maximum lateness }:max{max JJdCL iii ∈−=
observed for all the jobs on the bottleneck machine.
Hereafter, id and iC denote the due date and the completion
time of the job JJi ∈ respectively, where },...,,{ 21 nJJJJ =
is the set of jobs to be processed. The operations on the
bottleneck machine are scheduled due to solution of the NP-
hard problem max|,|1 Lprecri of minimizing maximal
lateness. Here ir denotes the release time of the job iJ . After
defining additional precedence constraints, the analysis for
the remaining machines is continued. The above process is
repeated until either all machines have been accounted for or
the maximum lateness equals zero for all the remaining
machines. As computational experiments showed, the
shifting bottleneck algorithm runs in a reasonable CPU-time
if the number m of machines is not much greater than the
number n of jobs. Due to this reason, our adaptive algorithm
was also compared with the algorithm Ordinal-ECT
developed by Gholami et al. (2012). The latter algorithm runs
faster than the shifting bottleneck one in the case of nm >
while the quality of the solution obtained by the algorithm
Ordinal-ECT is usually close to that obtained by the shifting
bottleneck algorithm.

2. A MIXED GRAPH MODEL FOR THE JOB-SHOP

There are n jobs },...,,{ 21 nJJJJ = , which need to be
processed on m different machines },...,,{ 21 mMMMM = .
The machine (technological) route),...,,(21 iiniii OOOO = of

each job JJi ∈ through the machines M is fixed. The
machine routes iO may be different for different jobs .JJi ∈

The time ijp for processing operation ijO of job JJi ∈ on

the corresponding machine MMv ∈ is known. The objective
of the problem max|| CJ is to minimize the makespan

},:max{max JJCC ii ∈= which denotes the minimization of
the time when all the jobs J have been processed.
The job-shop problem max|| CJ may be described using a
weighted mixed (or equivalently, disjunctive) graph

),,(EAQG = , which is an appropriate model for
constructing various exact and heuristic algorithms: Adams et
al. (1988), Gholami et al. (2012), Shakhlevich et al. (1996),
Lawler et al. (1993), Tanaev et al. (1994). In the mixed graph
G , the vertex set Q is the set of operations:

},...,,,...,,...,,,{ *2112,11,1 1
OOOOOOOOQ

nnnnnn= including a
dummy source operation O preceding all the other vertices
in the digraph ,,(AQ Ø) and a dummy sink operation *O .
Each vertex of the set Q \ }{ *O proceeds to vertex *O in the
digraph ,,(AQ Ø).
The arc set A defines all precedence constraints, and the
edge set E defines all machine constraints: at any time a
machine from the set M can process at most one job from
the set .J A weight ijp is prescribed to operation QOij ∈ of

each job JJi ∈ and each stage },...,2,1{ inj∈ . Hereafter,

ijp is equal to the time needed to process the operation ijO

on the corresponding machine .MM v ∈ There exists a one-
to-one correspondence between all semi-active schedules and
all circuit-free digraphs ∆ generated by the mixed graph G
via orienting all edges from the set .E A schedule is called
semi-active if no operation QOij ∈ can start earlier without
delaying the processing of some other operation from the set
Q or without altering the processing sequence of the
operations on any of the machines .M For any regular
criterion, at least one optimal schedule is semi-active. An
optimal semi-active schedule is defined by an optimal
digraph ,,(ss AAQG = Ø) from the set ∆ , Tanaev et al.
(1994). One of the general scheduling approaches, based on
the mixed graph model, is the conflict resolution strategy,
which may be used to develop either exact or heuristic
scheduling algorithms. At an elementary step of such an
algorithm, the conflict resolution strategy means to deal with
one conflict edge of the mixed graph G and to decide which
of the two orientations of the conflict edge has to be chosen
for inclusion into the desired digraph ,,(ss AAQG = Ø).
An edge EOO uvij ∈],[is called a conflict edge if both of its

orientations),(uvij OO and),(ijuv OO lead to an increase

either of the starting time uvs of the operation uvO or of the
starting time ijs of the operation ijO .

3. AN ADAPTIVE SCHEDULING ALGORITHM

An adaptive algorithm schedules the jobs in a job-shop using
the knowledge on a benchmark of the priority dispatching
rules tested at a specific learning stage.

At a learning stage via solving small or moderate job-shop
problems optimally, the adaptive scheduler would be trained
with several characteristics based on priority dispatching
rules while constructing an optimal schedule. To this end, the
characteristics of the operations from the conflict edges are
calculated and stored in a learning database along with the
decision made in the optimal scheduling.
At the examination stage, the learning database is used for
scheduling the jobs appropriately in a job-shop with a
moderate size or with a large size by an adaptive scheduler as
a pattern. Our adaptive scheduler includes several modules
and two databases. The general scheme of the adaptive
scheduler can be seen in Fig. 1. In Subsections 3.1 – 3.4, the
main modules of the adaptive scheduler are discussed in more
detail as the page limit allows.

Figure 1: Scheme of the adaptive scheduler

3.1. The learning stage

For the learning stage, an optimal scheduler for the job-shop
problem, like a branch-and-bound method, is needed to solve
exactly instances with sufficiently restricted sizes. Then the
data achieved from the learning stage may be used at the
examination stage. A few small samples solved at the
learning stage reduce the accuracy of the learning data, while
a lot of samples or big samples solved increase the running
time needed to find their optimal schedules at the learning
stage. At the learning stage, the information about a
successful orientation of the conflict edges is stored in the
database. The learning table is analogous to those used in the
theory of pattern recognition and it describes which
orientation of a conflict edge is preferable while an optimal
digraph (and an optimal schedule) is constructed.

The learning database is filled by the data as it is depicted in
Table 1, where the learning data are filled in the first column,
in the columns ,,...,, 21 rXXX and in the last column. The
last column of Table 1 shows the decision made by an
optimal scheduler to resolve a conflict edge],[k

uv
k
ij OO from

the set E of the mixed graph),,(EAQG = . Hereafter, a

superscript k in the notation of the edge],[k
uv

k
ij OO is used to

distinguish different edges either for the same mixed graph
),,(EAQG = or for different mixed graphs modelling job-

shop problems max|| CJ used at the learning stage. For

simplicity of the notation, all conflict edges have same
subscripts ij and uv in the first column of Table 1.
If in the optimal digraph ,,(ss AAQG = Ø), a conflict edge

EOO k
uv

k
ij ∈],[was substituted by the arc s

k
uv

k
ij AOO ∈),(,

then we set 1Ω=Ωk . If in the optimal digraph

,,(ss AAQG = Ø), a conflict edge EOO k
uv

k
ij ∈],[was

substituted by the arc sijuv AOO ∈),(, then we set 2Ω=Ωk .

Table 1: Conflict resolutions in optimal schedules

Conflict edge
1X

2X …
rX Ω class

],[11
uvij OO 1

1g 1
2g

… 1
rg 1Ω

],[22
uvij OO 2

1g 2
2g

… 2
rg 2Ω

…

…

…

…

…

],[w
uv

w
ij OO wg1

 wg2
… w

rg wΩ

],[uvij OO 1g
2g

…
rg

?

For each conflict edge },,...,2,1{],,[wkOO k

uv
k
ij ∈ which was

treated while branching in a branch-and-bound method, the
characteristics corresponding to the priorities of the
operations k

ijO and k
uvO on the corresponding machine

MMv ∈ have to be calculated and stored in the columns

rXXX ,...,, 21 of Table 1. To be more precise: for each
priority dispatching rule from the database used in the
learning stage, a priority k

ijπ of operation k
ijO and priority

k
uvπ of operation k

uvO are calculated. Respecting the priority
dispatching rule, the operation with a larger priority has to be
processed on the corresponding machine MMv ∈ before
processing the operation with a smaller priority. The
characteristic tX of the conflict edge EOO k

uv
k
ij ∈],[

corresponding to the priority dispatching rule is defined as
the relative difference of the priorities k

ijπ and k
uvπ of the

operations k
ijO and k

uvO as follows:

},max{ k
uv

k
ij

k
uv

k
ijk

tg
ππ

ππ −
= .

The sign of the value k
tg shows which of the operations k

ijO

or k
uvO has priority to be processed first on the machine

.MM v ∈ The absolute value of k
tg shows how much the

superiority of the operation with the larger priority is?
There are a lot of priority dispatching rules that are used in a
variety of heuristic algorithms for scheduling the jobs JJi ∈
in a job-shop: Haupt (1989), Muth and Thompson (1963),
Panwalkar and Iskander (1977). Some characteristics of the
priority dispatching rules are gathered before scheduling
while some other characteristics are post scheduling ones. As

an example of a priority dispatching rule, let us consider the
Earliest Completion Time rule (ECT–rule, for short) that
recommends to process first the operation with the earlier
completion time. Let the earliest completion time for
operation k

ijO (for operation k
uvO) be equal to 90 (to 73,

respectively). Then one can calculate the value of the
corresponding characteristic tX as follows:

18.0
90

7390
},max{

=
−

=
−

= k
uv

k
ij

k
uv

k
ijk

tg
ππ

ππ
.

A positive value k
tg indicates that operation k

uvO has to be

processed before operation k
ijO respecting the ECT–rule.

3.2. The examination stage

At the examination stage, a job-shop problem max|| CJ with
a moderate or with a large size has to be solved using a
natural principle of precedence: it is reasonable in a new
conflict situation to adopt a decision which has lead to
success (i.e., to an optimal schedule in our case) at the
learning stage in a similar conflict situation.
Let the weighted mixed graph),,(EAQG = model a job-
shop problem max|| CJ to be solved at the examination stage
by an adaptive scheduler. In the scheduling process for each
conflict edge EOO uvij ∈],[of the mixed graph G which
was met by the adaptive scheduler, the characteristic vector

),...,,(21 rggg has to be calculated and then compared with

the characteristic vectors),,...,,(21
k
r

kk ggg },...,2,1{ wk ∈ , of
the conflict edges stored in Table 1 during the learning stage.
Let the characteristic vector),...,,(21

e
r

ee ggg (here the index
},...,2,1{ we∈ is fixed) be the closest to the vector

),...,,(21 rggg among all vectors),...,,(21
k
r

kk ggg (here the
index },...,2,1{ wk ∈ varies) presented in Table 1. Then, to
resolve a conflict edge EOO uvij ∈],[in the mixed graph

),,(EAQG = , an adaptive scheduler uses the same decision

as in the class eΩ stored in Table 1.
It should be noted that sometimes the characteristic vectors
appear so close to each other, that the heuristic fundamental
of the algorithm makes a mistake implying a circuit
appearance in a digraph ,,(ss AAQG = Ø) constructed by
the adaptive scheduler. A circuit in the digraph

,,(ss AAQG = Ø) means a deadlock in machine binding,
and to prevent from this phenomenon, a circuit test procedure
has been applied. For example, if the adaptive scheduler
decides to introduce the arc),(uvij OO in the digraph
generated by the mixed graph G , a circuit tester examines
while a path from the vertex uvO to the vertex ijO exists in
the already constructed subgraph of the digraph

,,(ss AAQG = Ø). If such a path exists, adding the arc

),(uvij OO to the constructed subgraph will generate a

circuit. Therefore, the symmetric arc),(ijuv OO has to be

added to this subgraph of the digraph ,,(ss AAQG = Ø).

3.3. Procedures for monitoring variable parameters

It should be noted that each time a scheduler wants to make a
decision, different job characteristics like the operation
starting time, completion time, due date, processing time and
some other parameters are needed for the right decision.
Some of these data like the operation processing time are
unchangeable, while others like the operations completion
time may be changed due to adding a new arc in the digraph

,,(ss AAQG = Ø).
Thus, at each such time point, it is necessary to refresh the
characteristics of the jobs which are in conflict. It is clear that
such recalculations are mass and therefore, time-consuming.
To get rid of this computation problem, we developed special
procedures for monitoring variable parameters. These
procedures are used both at the learning and at the
examination stages of the adaptive algorithm.
The main duty of these procedures is to control on-line the
digraph ,,(ss AAQG = Ø) while it is constructing. At
every time point when an arc is added to the digraph, the side
effect of adding this arc is analyzed. If a new arc has an
influence on the corresponding parameters of the subsequent
jobs, then the data about those jobs have to be updated.
Procedures for monitoring variable parameters prevent a
scheduler to regenerate the whole set of parameters each time
when they are needed for decision-making.
As an example, the following procedure shows how to update
the starting times of the operations when a scheduler decided
to add an arc),(uvij OO in the digraph ,,(ss AAQG = Ø).

IF ijijuv pss +< THEN { ijijuv pss += ;)(: uvOAddBuffer = }

WHILE NOT ()(Bufferempty) DO

{)(: Bufferremovenode =
FOR each subsequent of (node) as sub DO

IF (nodenodesub pss +<) THEN

{ nodenodesub pss +=)(: subAddBuffer = }}

Other parameters needed for a scheduler to make the right
decision for conflict resolution may be monitored similarly.

3.4. Three strategies for considering a set of conflict edges

One challenge in an adaptive algorithm is how to find a
conflict edge EOO uvij ∈],[and compare the characteristics

of the jobs JJi ∈ and ,JJu ∈ which are waiting for
processing on the same machine. It is clear that the order, in
which the conflict edges will be resolved, will influence the
quality of the objective function value in the constructed
schedule. There are several strategies for scanning the job
requests for processing. Some algorithms, like the shifting
bottleneck one, determine which machine is currently

the bottleneck. This is realized via considering the times ijp

needed for processing the jobs JJi ∈ on the machines,
which are involved in the routes iO , the release times of the
jobs JJi ∈ on these machines, and the due dates of the jobs
on these machines. As our experiments showed, if the
machine number is considerably larger than the job number,
such an algorithm is time-consuming.
An algorithm of another type looks for a critical job (i.e., a
job with the largest total processing time on the machines
involved in the job route) and tries to process first the
operations of the critical job. Then the algorithm tries to
process next the operations of the second critical job, and so
on. Another algorithm, which could also be considered, tries
to process first the operations 1iO of jobs ,JJi ∈ then the
second operations 2iO of the jobs ,JJi ∈ then the third
operations 3iO of the jobs ,JJi ∈ and so on until the last
operations

iinO of the jobs JJi ∈ are processed.
We have treated three strategies of scanning the conflict
edges in order to choose the most effective strategy to
schedule the jobs in the adaptive algorithm. The first strategy
uses the critical path method and sorts the jobs JJi ∈ by
decreasing the total job processing times and starts with
processing a job having the largest total processing time. In
Fig. 2, this version of the adaptive algorithm is called Max-
PT (Maximum Processing Time first). The second strategy
makes the same as the first one but sorts the jobs oppositely:
in increasing order of the total job processing times. In Fig. 2,
this adaptive algorithm is called Min-PT (Minimum
Processing Time first). The third strategy processes first the
operations 1iO of the jobs ,JJi ∈ then the operations 2iO
of the jobs ,JJi ∈ and so on. This adaptive algorithm is
called Ordinal in Fig. 2. The evaluation of a wide set of
randomly generated job-shop problems by these three
strategies shows that the Ordinal algorithm performs better
with respect to the objective function maxC than the two
other strategies. So, the Ordinal strategy was used in the
adaptive algorithm to resolve the set of conflict edges.

4. COMPUTATIONAL RESULTS

For the computational experiments, we used a laptop
computer: Intel®, coreTM 2 Duo, CPU T6400, 2.00 GHz and
2GB Internal Memory, Windows 7, Ultimate 32 bit. Only one
instance of a job-shop problem with 6 jobs, 6 machines and
the equality 6=in for all jobs JJi ∈ , given by Muth and
Thompson (1963) was used at the learning stage. This
example is named as MT-6. The benchmark of the priority
dispatching rules includes the following four rules: Earliest
Due Date rule (EDD–rule), First Come First Served rule
(FCFS–rule), Longest Processing Time rule (LPT–rule) and
Shortest Processing Time rule (SPT–rule).
In Table 2, the effectiveness of the adaptive algorithm is
compared with the Ordinal-ECT algorithm; Gholami et al.
(2012), the Shifting bottleneck algorithm, Adams et al.
(1988), and with four heuristic algorithms based on a single

priority dispatching rule from the benchmark used at the
learning stage.

Figure 2: Comparison of the maxC values obtained by the three

strategies to process the operations QOij ∈

Table 2 shows the values of maxC obtained for the
benchmark problems max|| CJ , namely: for problem MT-6;
for the famous problem MT-10 with 10 jobs and 10
machines, given by Muth and Thompson (1963); for another
problem with 10 jobs and 10 machines; for two problems
with 10 jobs and 5 machines, and for a problem with 18 jobs
and 5 machines. The CPU-times used for running the
adaptive algorithm are given in the last two figures.
In Fig. 3, the number of jobs is fixed, ,10=n and the
number of machines is increased from 10 to 40. In Fig. 4, the
number of machines is fixed, ,10=m and the number of jobs
is increased from 10 to 40. Thus, one can see that the
adaptive algorithm is both effective and efficient.

Figure 3: Average CPU-times used by the adaptive algorithm for

solving a set of problems with a fixed number of jobs

Our experience showed that sample job-shop problems
having different patterns of operation topology and
parameters (e.g., the range of the job processing times) have a
different impact on the training of the adaptive algorithm at
the learning stage. As only the optimal MT-6 solution was
used for learning, the adaptive algorithm could not show its
ability in the presented experiments. To get better objective
function values, it is desirable to train the adaptive algorithm
on different optimal solutions, which are closer to the
instances that have to be solved at the examination stage.
Furthermore, it is desirable to have a faster exact algorithm
for the job-shop problems when it is necessary to solve large
job-shop problems very well. The exact algorithm may be
used to solve a part of a large problem, e.g., a sub-problem
with size 6×6 or 7×7, and the obtained optimal schedules

may be used at the learning stage. It is clear that, if the
adaptive algorithm is trained on the original problem, it can

produce better results.

Table 2: Makespan values for six benchmark instances max|| CJ calculated by seven heuristic algorithms

Benchmark problems
max|| CJ

Ordinal-ECT
algorithm

Shifting
bottleneck

EDD-
rule

FCFS-
rule

LPT-
rule

SPT-
rule

Adaptive
algorithm

MT-6 (6×6) 59 58 63 65 67 73 58
MT-10 (10×10) 1252 1094 1246 1184 1168 1338 1167
Job-shop-10 (10×10) 82 94 122 87 86 118 86
Job-shop-18 (18×5) 1419 1220 1263 1462 1393 1451 1370
SGW-10-1 (10×5) 662 564 629 638 627 762 564
SGW-10-2 (10×5) 714 620 673 650 638 807 620

Figure 4: Average CPU-time used by the adaptive algorithm for

solving a set of problems with a fixed number of machines

5. CONCLUSION

An adaptive scheduling algorithm was developed to solve the
unary NP-hard problem max|| CJ with a large size. Due to
the learning stage, it could schedule the jobs with a good
value of the objective function maxC (Table 2) in reasonable
CPU-time (Fig. 3 and Fig. 4). Using a pattern recognition
technique to find the best answer for conflict resolution helps
the adaptive scheduler to obtain schedules with good values
of the objective function. By tuning the adaptive algorithm on
different optimal solutions of such instances, which are close
to those that have to be solved, the quality of the results will
be improved without any side effect on the running time of
the adaptive algorithm at the examination stage.

REFERENCES

J. Adams, E. Balas, D. Zawack, The shifting bottleneck
procedure for jobshop scheduling. Management Science,
34(3): 391–401, 1988.

M. Abdolzadeh, H. Rashidi, An approach of cellular learning
automata to job shop scheduling problem. International
Journal of Simulation: Systems, Science and Technology,
11(2):56–64, 2010.

P. Brucker, Y.N. Sotskov, F. Werner, Complexity of shop-
scheduling problems with fixed number of jobs: A survey.
Mathematical Methods of Operations Research, 65(3):
461–481, 2007.

U. Dorndorf, E. Pesch, Evoluation based learning in a job
shop scheduling environment. Computers & Operations
Research, 22(1): 25–40, 1995.

T. Gabel, M. Riedmiller, Adaptive reactive job-shop
scheduling with learning agents. International Journal of
Information Technology and Intelligent Computing, IEEE
Press, 2(4), 2007.

C.D. Geiger, R. Uzsoy, H. Aytug, Rapid modelling and
discovery of priority dispatching rules: an autonomous
learning approach. Journal of Scheduling, 9:7–34, 2006.

O. Gholami, Y.N. Sotskov, F. Werner, Job-shop problems
with objectives appropriate to train scheduling in a single-
track railway. SIMULTECH 2012 - Proceedings of 2nd
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, 425–430,
2012.

F. Glover, Tabu search – part 1. ORSA Journal on
Computing, 1(2):190–206, 1989.

R. Haupt, A survey of priority rule-base scheduling. OR
Spectrum, 11(1): 3–16, 1989.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmo-
ys, Sequencing and Scheduling: Algorithms and
Complexity. In: Handbooks in Operations Research and
Management Science, Volume 4: Logistic of Production
and Inventory, Edited by Graves, S.C., Rinnooy
Kan, A.H.G., Zipkin, P., North-Holland, 445–522, 1993.

D.-C. Li, I.-S. Shi, Using unsupervised learning technologies
to induce scheduling knowledge for FMSs. International
Journal of Production Research, 32(9): 2187–2199, 1994.

W. Mouelhi-Chibani, H. Pierreval, Training a neural network
to select dispatching rules in real time. Computers &
Industrial Engineering, 58:249–256, 2010.

J.F. Muth, G.L. Thompson, Industrial Scheduling. Prentice-
Hall, Englewood Cliffs, N.J., 1963.

S.S. Panwalkar and W. Iskander, A survey of scheduling
rules, Operations Research, 25(1):45–61, 1977.

N.V. Shakhlevich, Y.N. Sotskov, F. Werner, Adaptive
scheduling algorithm based on mixed graph model. IEE
Proceedings: Control Theory and Applications, 143(1):
9–16, 1996.

Y.N. Sotskov, N.V. Shakhlevich, NP-hardness of shop-
scheduling problems with three jobs. Discrete Applied
Mathematics, 59: 237–266, 1995.

V.S. Tanaev, Yu.N. Sotskov, V.A. Strusevich, Scheduling
Theory: Multi-Stage Systems. Kluwer Academic
Publishers, Dordrecht, Netherlands, 1994.

http://www.scopus.com.scopeesprx.elsevier.com/record/display.url?eid=2-s2.0-34249887362&origin=resultslist&sort=cp-f&src=s&nlo=&nlr=&nls=&sid=1QjN5dDZ-Zn9ODa51XELs7p%3a260&sot=aut&sdt=a&sl=36&s=AU-ID%28%22Sotskov%2c+Yuri+N.%22+7003392480%29&relpos=31&relpos=11&searchTerm=AU-ID(\%22Sotskov,%20Yuri%20N.\%22%207003392480)�
http://www.scopus.com.scopeesprx.elsevier.com/record/display.url?eid=2-s2.0-34249887362&origin=resultslist&sort=cp-f&src=s&nlo=&nlr=&nls=&sid=1QjN5dDZ-Zn9ODa51XELs7p%3a260&sot=aut&sdt=a&sl=36&s=AU-ID%28%22Sotskov%2c+Yuri+N.%22+7003392480%29&relpos=31&relpos=11&searchTerm=AU-ID(\%22Sotskov,%20Yuri%20N.\%22%207003392480)�
http://www.scopus.com.scopeesprx.elsevier.com/source/sourceInfo.url?sourceId=21805&origin=resultslist�
http://www.scopus.com.scopeesprx.elsevier.com/source/sourceInfo.url?sourceId=21805&origin=resultslist�
http://www.scopus.com.scopeesprx.elsevier.com/source/sourceInfo.url?sourceId=21805&origin=resultslist�
http://www.scopus.com.scopeesprx.elsevier.com/record/display.url?eid=2-s2.0-0029752345&origin=resultslist&sort=plf-f&src=s&st1=Sotskov&st2=Y+N&nlo=1&nlr=20&nls=count-f&sid=1QjN5dDZ-Zn9ODa51XELs7p%3a63&sot=anl&sdt=aut&sl=36&s=AU-ID%28%22Sotskov%2c+Yuri+N.%22+7003392480%29&relpos=35&relpos=15&searchTerm=AU-ID(\%22Sotskov,%20Yuri%20N.\%22%207003392480)�
http://www.scopus.com.scopeesprx.elsevier.com/record/display.url?eid=2-s2.0-0029752345&origin=resultslist&sort=plf-f&src=s&st1=Sotskov&st2=Y+N&nlo=1&nlr=20&nls=count-f&sid=1QjN5dDZ-Zn9ODa51XELs7p%3a63&sot=anl&sdt=aut&sl=36&s=AU-ID%28%22Sotskov%2c+Yuri+N.%22+7003392480%29&relpos=35&relpos=15&searchTerm=AU-ID(\%22Sotskov,%20Yuri%20N.\%22%207003392480)�
http://www.scopus.com.scopeesprx.elsevier.com/source/sourceInfo.url?sourceId=25457&origin=resultslist�
http://www.scopus.com.scopeesprx.elsevier.com/source/sourceInfo.url?sourceId=25457&origin=resultslist�

