
Proceedings of the 7th Asia Pacific Industrial Engineering and Management Systems Conference 2006
17-20 December 2006, Bangkok, Thailand

__
†: Corresponding Author

Sequencing and Tabu Search Heuristics for Hybrid Flow
Shops with Unrelated Parallel Machines and Setup Times

Jitti Jungwattanakit†, Manop Reodecha, Paveena Chaovalitwongse
Department of Industrial Engineering, Faculty of Engineering

Chulalongkorn University, Bangkok 10330 Thailand
+662-218-6855, Email: jitti.j@student.chula.ac.th.

Frank Werner

Faculty of Mathematics
Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg, Germany

Phone: +49-391-6712025, fax: +49-391-6711171, Email: frank.werner@mathematik.uni-magdeburg.de

Abstract. The goal of this paper is to investigate scheduling heuristics to seek the minimum of a positively
weighted convex sum of makespan and the number of tardy jobs in a static hybrid flow shop environment
where at least one production stage is made up of unrelated parallel machines. In addition, sequence - and
machine - dependent setup times are considered. The problem is a combinatorial optimization problem
which is too difficult to be solved optimally for large problem sizes, and hence heuristics are used to obtain
good solutions in a reasonable time. Some dispatching rules and flow shop makespan heuristics are
developed. Then this solution may be improved by fast polynomial heuristic improvement algorithms based
on shift moves and pairwise interchanges. In addition, metaheuristic proposed is a tabu search algorithm.
Three basic parameters (i.e., number of neighbors, neighborhood structure, and size of tabu list in each
iteration) of a tabu search algorithm are briefly discussed in this paper. The performance of the heuristics is
compared relative to each other on a set of test problems with up to 50 jobs and 20 stages.

Keywords: Hybrid flow shop scheduling; Unrelated parallel machines; Setup times; Constructive algorithms;
Improvement heuristics; Tabu Search algorithm.

1. INTRODUCTION

Industrial scheduling presents a complex decision-

making scenario. Operations managers are confronted with
the tough task to find an optimal solution from the large
number of possible combinations that should be considered.
This type of problem is also related to combinatorial
optimization and NP-hardness, and consequently the search
for efficient methods providing a good feasible solution
continues to be a challenge. Once efficient algorithm
methods are found, computational tools can be built that
will allow managers to make rapid decisions with
flexibility and efficiency.

This article has been concerned with heuristics to
provide good and quick feasible solutions. They obtain
solutions to large problems with limited computational
effort. The heuristics concerned in this paper can be
classified into two types; constructive (conventional) and
iterative (modern) heuristic algorithms.

In a constructive algorithm, single or several solutions

are generated, but the only best one is chosen as the final
solution. In this paper, several simple dispatching rules
and flow shop heuristics are adapted to find a solution for
the problem. Additionally, we investigate how to improve
the quality of the solution by using several fast polynomial
improvement algorithms.

The interest in iterative algorithms is due to the
difficulty of solving real large-size problems by using an
exact algorithm, while such metaheuristic algorithms can
treat large complex problems and for this reason, they have
got a considerable research attention over the last decades.
This study will limit to one of the popular iterative
algorithms known as a Tabu Search (TS) algorithm. It is
originally proposed by Glover (1986). The TS algorithm
is among the most cited and used metaheuristics for the
combinatorial problems (Blum and Roli 2003). It has been
successfully applied in a lot of different areas: scheduling,
transportation, telecommunications, layout and circuit
design, graphs, expert systems, and so on (see Glover and
Laguna 1993 for a survey).

1330

Jungwattanakit et al.

Hence, in this paper TS-based algorithms will be used
to solve the problem of scheduling a given set of n jobs at k
stages on m unrelated parallel machines. Such a problem
occurs in real world problems such as e.g. in the textile
industry.

A textile manufacturer supervises workers who make
products that contain fibers, such as clothing, tires, and
yarn. Whatever the industry, the task of a textile
manufacturer is the same: to convert raw products into
usable goods. Typically, a textile production unit can
hardly fit in any classical scheduling model. Instead, such
a production unit is characterized by a multi-stage
manufacturing process with multiple production units per
stage (i.e., parallel machines), which makes production
management quite complex. This combined model is
referred to as the hybrid flow shop (HFS) or flexible flow
shop (FFS) problem as shown in Figure 1. It can be noted
that this problem is also known as the flow shop problem
because the process follows a flow shop characteristic, but
there are some processing stages having parallel machines
to increase the overall capacities, to balance the capacities
of the stages, or either to eliminate or reduce the impact of
bottleneck stages on the overall shop floor capacities. Most
textile companies are ageing while the technology changes
rapidly. It is common to find newer or more modern
machines running side by side with older and less efficient
machines. Hence, these companies own machines of
different ages, which may perform the same operations as
the newer ones, but would generally require a longer
operating time for the same operation.

Figure 1: A general schematic of the hybrid flow shop.

Sequence-dependent setup times and costs incur when

machines often have to be reconfigured or cleaned between
jobs. This process is known as a changeover or setup. If the
length of the setup depends on the job just completed and
on the one about to be started, then the setup times are
sequence-dependent. For instance, in the weaving phase the
setup times are depending on the types of clothes being
processed in sequence. Another example is dying
operations which often require setups. Every time a new

color is used, the painting devices must be cleaned. The
cleanup time often depends on the color just used as well as
the color about to be used. Such a resection is called a
sequence-dependent setup time.

For the past three decades, the hybrid flow shop
scheduling problem has attracted many researchers.
Numerous research articles have been published on this
topic (see e.g. Wang 2005). There are two main reasons for
this, among many others. Firstly, a hybrid flow shop
environment is a category of machine scheduling problems
which is difficult to solve (Garey and Johnson 1979; Gupta
1971). Thus, it is unlikely that polynomial time algorithms
exist for the exact solution of the general problem.
Secondly, this type of machine scheduling problem can find
many real-world applications.

Although the hybrid flow shop problem has been
widely studied in the literature, most of the studies related
to hybrid flow shop problems concentrate on problems with
identical processors, see for instance, Gupta, Krüger, Lauff,
Werner and Sotskov (2002), Alisantoso, Khoo, and Jiang
(2003), Lin and Liao (2003), and Wang and Hunsucker
(2003). In this paper, however, the hybrid flow shop
problem with unrelated non-identical parallel machines and
sequence-dependent setup times is considered. This
complex problem, which is encountered by many industries,
is very difficult to solve.

Consequently, in this paper the hybrid flow shop with
unrelated parallel machines like the textile industry will be
solved by using some constructive and TS-based
algorithms. The rest of this paper is organized as follows:
The problem considered in this paper is described in
Section 2. Some heuristic algorithms are proposed in
Section 3. A TS algorithm is presented in Section 4.
Computational results and conclusions are shown in
Section 5 and Section 6, respectively.

2. STATEMENT OF THE PROBLEM

The hybrid flow shop system is defined by a set O =

{1,…, t,…, k} of k processing stages. At each stage t, t ∈ O,
there is a set Mt = {1,…, i,…, mt} of mt unrelated machines.
The set J = {1,…, j,…, n} of n independent jobs has to be
processed on machine of set M1,…, Mk. Each job j, j ∈ J,
has its release date rj ≥ 0 and a due date dj ≥ 0. It has its
fixed standard processing time for every stage t, t ∈ O.
Owing to the unrelated machines, the processing time pt

ij of
job j on machine i at stage t is equal to pst

j/ vt
ij, where pst

j is
the standard processing time of job j at stage t, and vt

ij is the
relative speed of job j which is processed by the machine i
at stage t.

There are processing restrictions of the jobs as
follows: (1) jobs are processed without preemptions on any

1331

Jungwattanakit et al.

machine; (2) every machine can process only one operation
at a time; (3) operations have to be realized sequentially,
without overlapping between the stages; (4) job splitting is
not permitted.

Setup times considered in this problem are classified
into two types, namely a machine-dependent setup time and
a sequence-dependent setup time. A setup time of a job is
machine-dependent if it depends on the machine to which
the job is assigned. It is assumed to occur only when the
job is the first job assigned to the machine. cht

ij denotes the
length of the machine-dependent setup time, (or
changeover time), of job j if job j is the first job assigned to
machine i at stage t. A sequence-dependent setup time is
considered between successive jobs. A setup time of a job
on a machine is sequence-dependent if it depends on the
job just completed on that machine. st

lj denotes the time
needed to changeover from job l to job j at stage t, where
job l is processed directly before job j on the same machine.
All setup times are known and constant.

The scheduling problem has dual objectives, namely
minimizing the makespan and minimizing the number of
tardy jobs. Therefore, the objective function to be
minimized is

λCmax + (1 – λ)ηT (1)

where Cmax is the makespan, which is equivalent to the
completion time of the last job to leave the system, ηT is the
total number of tardy jobs in the schedule, and λ is the
weight (or relative importance) given to Cmax and ηT , (0 ≤
λ ≤ 1).

3. HEURISTIC ALGORITHMS

Heuristic algorithms have been developed to provide

good and quick solutions. They obtain solutions to large
problems with acceptable computational times, but they do
not generate optimality and it may be difficult to judge their
effectiveness. They can be divided into either constructive
or improvement algorithms. The former algorithms build
a feasible solution from scratch. The latter algorithms try
to improve a previously generated solution by normally
using some form of specific problem knowledge.
However, the time required for computation is usually
larger compared to the constructive algorithms.

3.1 Heuristic Construction of a Schedule

Since the hybrid flow shop scheduling problem is NP-

hard, algorithms for finding an optimal solution in
polynomial time are unlikely to exist. Thus, heuristic
methods are studied to find approximate solutions. Most
researchers develop existing heuristics for the classical

hybrid flow shop problem with identical machines by using
a particular sequencing rule for the first stage. They follow
the same scheme, see Santos, Hunsucker, and Deal (1996).

Firstly, a job sequence is determined according to a
particular sequencing rule, and we will briefly discuss the
modifications for the problem under consideration in the
next section. Secondly, jobs are assigned as soon as
possible to the machines at every stage using the job
sequence determined for the first stage. There are basically
two approaches for this subproblem. The first way is that
for the other stages, i.e. from stage two to stage k, jobs are
ordered according to their completion times at the previous
stage. This means that the FIFO (First in First out) rule is
used to find the job sequence for the next stage by means of
the job sequence of the previous stage. The second way is
to sequence the jobs for the other stages by using the same
job sequence as for the first stage, called the permutation
rule.

Assume now that a job sequence for the first stage has
already been determined. Then we have to solve the
problem of scheduling n jobs on unrelated parallel
machines with sequence- and machine-dependent setup
times using this given job sequence for the first stage. We
apply a greedy algorithm which constructs a schedule for
the n jobs at a particular stage provided that a certain job
sequence for this stage is known (remind that the job
sequence for this particular stage is derived either from the
FIFO rule or from the permutation rule), where the
objective is to minimize the flow time and the idle time of
the machines. The idea is to balance evenly the workload in
a heuristic way as much as possible.

3.2 Constructive Heuristics

In order to determine the job sequence for the first

stage by some heuristics, we remind that the processing and
setup times for every job are dependent on the machine and
the previous job, respectively. This means that they are not
fixed, until an assignment of jobs to machines for the
corresponding stage has been done. Thus, for applying an
algorithm for fixing the job sequence for stage one, an
algorithm for finding the representatives of the machine
speeds and the setup times is necessary.

The representatives of machine speed v′tij and setup
time s′tlj for stage t, t=1,…k, use the minimum, maximum
and average values of the data. Thus, the representative of
the operating time of job j at stage t is the sum of the
processing time pst

j/v′tij plus the representative of the setup
time s′tlj. Nine combinations of relative speeds and setup
times will be used in our algorithms. The job sequence for
the first stage is then fixed as the job sequence with the best
function value obtained by all combinations of the nine
different relative speeds and setup times.

1332

Jungwattanakit et al.

For determining the job sequence for the first stage,
we adapt and develop several basic dispatching rules and
constructive algorithms for the flow shop makespan
scheduling problem. Some of the dispatching rules are
related to tardiness-based criteria, whereas others are used
mainly for comparison purposes.

 The Shortest Processing Time (SPT) rule is a simple
dispatching rule, in which the jobs are sequenced in non-
decreasing order of the processing times, whereas the
Longest Processing Time (LPT) rule orders the jobs in non-
increasing order of their processing times. The Earliest
Release Date first (ERD) rule is equivalent to the well-
known first-in-first-out (FIFO) rule. The Earliest Due Date
first (EDD) rule schedules the jobs according to non-
decreasing due dates of the jobs. The Minimum Slack Time
first (MST) rule is a variation of the EDD rule. This rule
concerns the remaining slack of each job, defined as its due
date minus the processing time required to process it. The
Slack time per Processing time (S/P) is similar to the MST
rule, but its slack time is divided by the processing time
required as well (Pinedo and Chao 1999).

The hybrid SPT and EDD (HSE) rule is developed to
combine both SPT and EDD rules. Firstly, consider the
processing times of each job and determine the relative
processing time compared to the maximum processing time
required. Secondly, determine the relative due date
compared to the maximum due date. Next, calculate the
priority value of each job by using the weight (or relative
importance) given to Cmax and ηT for the relative processing
time and relative due date.

Palmer’s heuristic (1965) is a makespan heuristic
denoted by PAL in an effort to use Johnson’s rule by
proposing a slope order index to sequence the jobs on the
machines based on the processing times. The idea is to give
priority to jobs that have a tendency of progressing from
short times to long times as they move through the stages.
Campbell, Dudek, and Smith (1970) develop one of the
most significant heuristic methods for the makespan
problem known as CDS algorithm. Its strength lies in two
properties: (1) it uses Johnson’s rule in a heuristic fashion,
and (2) it generally creates several schedules from which a
“best” schedule can be chosen. In so doing, k – 1 sub-
problems are created and Johnson’s rule is applied to each
of the sub-problems. Thus, k – 1 sequences are generated.
Since Johnson’s algorithm is a two-stage algorithm, a k-
stage problem must be collapsed into a two-stage problem.

Gupta (1971) provides an algorithm denoted by GUP,
in a similar manner as algorithm PAL by using a different
slope index and scheduling the jobs according to the slope
order. Dannenbring (1977) develops a method, denoted by
DAN, by using Johnson’s algorithm as a foundation.
Furthermore, the CDS and PAL algorithms are also
exhibited. Dannenbring constructs only one two-stage

problem, but the processing times for the constructed jobs
reflect the behavior of PAL’s slope index. Its purpose is to
provide good and quick solutions.

Nawaz, Enscore and Ham (1983) develop the probably
best constructive heuristic method for the permutation flow
shop makespan problem, called the NEH algorithm. It is
based on the idea that a job with a high total operating time
on the machines should be placed first at an appropriate
relative order in the sequence. Thus, jobs are sorted in non-
increasing order of their total operating time requirements.
The final sequence is built in a constructive way, adding a
new job at each step and finding the best partial solution.
For example, the NEH algorithm inserts a third job into the
previous partial solution of two jobs which gives the best
objective function value under consideration. However,
the relative position of the two previous job sequence
remains fixed. The algorithm repeats the process for the
remaining jobs according to the initial ordering of the total
operating time requirements.

Again, to apply these algorithms to the hybrid flow
shop problem with unrelated parallel machines, the total
operating times for calculating the job sequence for the first
stage are calculated for the nine combinations of relative
speeds of machines and setup times.

3.3 Improvement Heuristics

Unlike constructive algorithms, improvement

heuristics start with an already built schedule and try to
improve it by some given procedures. Their use is
necessary since the constructive algorithms (especially
some algorithms that are adapted from pure makespan
heuristics and some dispatching rules such as the SPT, and
LPT rules) do not consider due dates. In this section, some
fast improvement heuristics will be investigated to improve
the overall function value by concerning mainly the due
date criterion.

The iterative algorithms described in the following
and in Section 4 are based on the shift move (SM) and the
pairwise interchange (PI) neighborhoods.

The SM neighborhood repositions a chosen job. This
means that an arbitrary job πr at position r is shifted to
position i, while leaving all other relative job orders
unchanged. If 1≤ r < i ≤ n, it is called a right shift and
yields π’= (π1,…, πr-1, πr+1, …, πi, πr,…, πn). If 1≤ i < r ≤
n, it is called a left shift and yields π’= (π1,… πr, πi,…,πr-1,
πr+1, …, πn). For instance, assume that randomly one
solution in the current generation is selected, say [8 9 4 3 1
7 6 5 2], and then randomly a couple of job positions for
performing the shift is selected, e.g. positions 2 and 7 (in
this case, it is a right shift). The new solution will be [8 4 3
1 7 6 9 5 2]. However, if positions 7 and 2 are randomly
selected (i.e. it is a left shift), the new solution will be [8 6

1333

Jungwattanakit et al.

9 4 3 1 7 5 2]. In the SM neighborhood, the current solution
has (n–1)2 neighbors.

The PI neighborhood exchanges a pair of arbitrary
jobs πr, and πi, where 1 ≤ i, r ≤ n and i ≠ r. Such an
operation swaps the jobs at positions r and i, which yields
π’= [π1,…, πr-1, πi, πr+1, …, πi-1,πr, πi+1,…, πn]. For example,
assume that the current solution is [8 9 4 3 1 7 6 5 2], and
then randomly the couple of job positions to be exchanged
is selected, e.g. positions 1 and 3. Thus, the new solution
will be [4 9 8 3 1 7 6 5 2]. In the PI neighborhood, the
current solution has n×(n-1)/2 neighbors.

In order to find a satisfactory solution of the due date
problem, we apply fast polynomial heuristics by applying
either the shift move (SM) algorithm as an improvement
mechanism based on the idea that we will consider the jobs
that are tardy and move them left and right or the pairwise
interchange (PI) algorithm, where tardy jobs are swapped
to different job positions left and right, either to randomly
determined two positions (denoted by the number “2”) or to
all other positions (denoted by the letter “A”). The best
schedule among the generated neighbors is then taken as
the result.

4. TABU SEARCH ALGORITHM

A TS algorithm is an iterative improvement approach

designed to avoid terminating prematurely at a local
optimum for combinatorial optimization problems. Similar
to a simulating annealing (SA) algorithm (see e.g.
Jungwattanakit, Reodecha, Chaovalitwongse, and Werner
2006a,b), the TS algorithm is based on the idea of
exploring the solution space of a problem by moving from
one region of the search space to another in order to look
for a better solution. However, to escape from a local
optimum, the SA algorithm accepts an inferior solution,
which may lead to better solutions later by using an
acceptance probability. In contrast, the TS algorithm allows
the search to move to the best solution among a set of
candidate moves as defined by the neighborhood structure,
although it can move to a neighbor with an inferior solution.
Nevertheless, subsequent iterations may cause the search to
move repeatedly back to the same local optimum. In order
to prevent cycling back to recently visited solutions, it
should be forbidden or declared tabu for a certain number
of iterations, called the size (or length) of the list. Its size
is a key controllable parameter of the TS algorithm. This
is accomplished by keeping the attributes of the forbidden
moves in a list, called the tabu list.

Additionally, an aspiration criterion is defined to deal
with the case in which a move leading to a new best
solution is tabu. If a current tabu move satisfies the
aspiration criterion, its tabu status is canceled and it

becomes an allowable move. The use of the aspiration
criterion allows TS to lift the restrictions and intensify the
search into a particular solution region.

4.1 Choice of an Initial Solution

A TS algorithm has been shown to be effective for

many combinatorial optimization problems (see Glover and
Laguna 1993), and it seems easy to apply such an approach
to scheduling problems. To improve the quality of the
solution finally obtained, we also investigated the influence
of the choice of an appropriate initial solution by using
particular constructive algorithms. We used as an initial
solution that obtained from the constructive algorithms SPT,
LPT, ERD, EDD, MST, S/P, HSE, PAL, CDS, GUP, DAN
and NEH, as well as the other fast improvement (SM, PI)
heuristics, respectively.

5. COMPUTATIONAL RESULTS

Firstly, the overall constructive algorithms and
different fast improvement heuristics are studied. The
constructive algorithms (denoted by letter “CA”) are the
simple dispatching rules such as the SPT, LPT, ERD, EDD,
MST, S/P, and HSE rules, and the flow shop makespan
heuristics adapted such as the PAL, CDS, GUP, DAN, and
NEH rules. Then, we applied the fast polynomial
improvement heuristics based on four cases stated above in
Section 3.3. They are denoted by 2-SM, A-SM, 2-PI,
and A-PI, respectively. We used problems with 10 jobs ×
5 stages, 30 jobs × 10 stages, and 50 jobs × 20 stages. For
all problem sizes, we tested instances with λ ∈ {0, 0.001,
0.005, 0.01 0.05, 0.1, 0.5, 1} in the objective function. Ten
different instances for each problem size have been run.

An experiment was conducted to test with data such as
the standard processing times, relative machine speeds,
setup times, release dates and due dates. The standard
processing times are generated uniformly from the interval
[10,100]. Due to the unrelated machine problem, the
relative speeds are distributed uniformly in the interval
[0.7,1.3]. The setup times, both sequence- and machine-
dependent setup times, are generated uniformly from the
interval [0,50], whereas the release dates are generated
uniformly from the interval between 0 and half of their
total standard processing time mean. The due date of a
job is set in a way that it is similar to the approach
presented by Rajendaran and Ziegler (2003) and is as
follows:

1334

Jungwattanakit et al.

dj = total of mean setup time of a job on all stages +

(n – 1)×(mean processing time of a job on one

machine)×U(0,1) +∑
=

k

t

t
jps

1

+ rj

(2)

The results for the constructive algorithms and
improvement heuristics are given in Table 1. We give the
average (absolute for λ = 0 resp. percentage for λ > 0)
deviation of a particular algorithm from the best solution in
these tests for three problem sizes n×k.

Table 1: Average overall performance of constructive and

improvement heuristics.

λ
Problem

size
CA 2-SM A-SM 2-PI A-PI

10×5
30×10
50×20

3.025a

7.050
9.567

1.525
3.933
5.717

1.192
3.008
4.575

1.650
4.267
5.550

1.200
2.050
2.192

0

Sum 19.642 11.175 8.775 11.467 5.442
10×5

30×10
50×20

78.540b

88.360
35.280

28.530
36.950
12.600

19.060
23.810
12.180

32.590
36.840
9.710

21.360
19.040
5.500

0.001

Sum 202.180 78.080 55.050 79.140 45.900
10×5

30×10
50×20

41.340
40.100
19.775

15.070
16.200
8.748

9.490
10.620
8.126

17.900
17.490
8.416

11.780
8.740
4.536

0.005

Sum 101.215 40.018 28.236 43.806 25.056
10×5

30×10
50×20

29.640
27.977
15.136

10.860
12.313
8.373

6.910
7.857
7.512

13.530
14.122
8.679

8.430
6.802
5.397

0.01

Sum 72.753 31.546 22.279 36.331 20.629
10×5

30×10
50×20

17.267
16.803
9.697

6.292
8.225
5.697

4.703
6.185
5.348

8.344
9.980
6.533

5.394
5.019
5.035

0.05

Sum 43.767 20.214 16.236 24.857 15.448
10×5

30×10
50×20

15.783
14.945
9.162

5.520
6.759
5.255

4.187
4.827
5.128

8.520
8.614
5.776

4.847
3.761
4.766

0.1

Sum 39.890 17.534 14.142 22.910 13.374
10×5

30×10
50×20

15.531
14.780
8.984

5.675
7.244
5.269

4.043
5.583
4.993

7.762
8.332
6.602

4.537
4.340
4.676

0.5

Sum 39.295 18.188 14.619 22.696 13.553
10×5

30×10
50×20

15.832
14.887
8.879

5.213
7.070
5.340

4.338
5.361
4.862

7.894
9.309
6.051

4.617
4.314
4.632

1.0

Sum 39.598 17.623 14.561 23.254 13.563
a average absolute deviation for λ = 0, b average percentage deviation for λ

From these results it is obvious that the improvement

heuristics can improve the quality of constructive

algorithms by about 60–70 percent. In addition, we have
found that for the problem size 10 jobs × 5 stages the all
shift moves are slightly better than the others, whereas the
all pairwise interchange -based improvement heuristics are
the best algorithm otherwise. However, in general the all
pairwise interchange algorithm should be selected as the
improvement algorithm. Consequently, in this paper we
use in the following only the all pairwise interchange-based
improvement heuristics. However, when comparing
between the 2-SM and 2-PI algorithms whose CPU time is
smaller than both the A-SM and A-PI algorithms, we have
found that the 2-SM algorithm certainly became better than
the 2-PI algorithm.

Table 2: Average performance of constructive (Group I)

algorithms.

λ
Problem

size
SPT LPT ERD EDD MST S/P HSE

10×5
30×10
50×20

3.000a

6.900
8.700

3.200
7.900
8.200

3.500
7.700
11.100

4.600
7.900

15.800

4.100
8.400

14.600

4.100
7.900

14.100

2.800
7.200
7.900

0

Sum 18.600 19.300 22.300 28.300 27.100 26.100 17.900
10×5

30×10
50×20

90.920b

89.090
31.830

94.290
104.510
34.420

87.880
94.730
42.570

102.460
90.250
49.770

91.560
100.510
45.600

90.930
91.170
43.960

90.910
87.730
30.970

0.001

Sum 211.840 233.220 225.180 242.480 237.670 226.060 209.610
10×5

30×10
50×20

45.290
42.140
18.812

44.130
45.420
18.338

44.710
43.800
23.140

58.240
43.640
28.685

52.180
46.770
26.281

52.520
41.540
25.233

45.250
41.360
18.798

0.005

Sum 106.242 107.888 111.650 130.565 125.231 119.293 105.408
10×5

30×10
50×20

33.300
30.633
14.895

30.430
30.954
14.199

31.040
30.780
17.734

41.170
31.752
21.330

36.990
33.282
19.445

37.630
28.880
18.625

33.270
29.870
14.996

0.01

Sum 78.828 75.583 79.554 94.252 89.717 85.135 78.136
10×5

30×10
50×20

22.154
20.477
10.406

16.778
17.413
9.721

17.176
19.306
11.872

21.889
21.227
12.748

20.413
21.110
11.476

19.662
16.986
10.838

21.591
19.431
10.425

0.05

Sum 53.037 43.912 48.354 55.864 52.999 47.486 51.447
10×5

30×10
50×20

21.084
18.691
10.029

15.177
15.309
9.384

15.656
17.482
11.335

19.457
19.453
11.772

18.163
19.007
10.554

17.181
15.058
9.935

20.257
17.658
10.053

0.1

Sum 49.804 39.870 44.473 50.682 47.724 42.174 47.968
10×5

30×10
50×20

21.203
18.759
9.985

14.852
15.021
9.394

15.456
17.524
11.181

18.446
19.528
11.244

17.310
18.653
10.068

16.114
14.916
9.446

20.073
17.669
10.011

0.5

Sum 49.947 39.267 44.161 49.218 46.031 40.476 47.753
10×5

30×10
50×20

21.473
18.793
9.892

15.061
15.018
9.308

15.696
17.551
11.073

18.567
19.567
11.087

17.426
18.630
9.918

16.214
14.923
9.296

21.473
18.793
9.892

1.0

Sum 50.158 39.387 44.320 49.221 45.974 40.433 50.158
a average absolute deviation for λ = 0, b average percentage deviation for λ

1335

Jungwattanakit et al.

Next, we present the constructive algorithms that are
separated into four main groups. The first heuristic group
includes the simple dispatching rules such as SPT, LPT,
ERD, EDD, MST, S/P, and HSE. The second heuristic
group includes the flow shop makespan heuristics adapted
such as PAL, CDS, GUP, DAN, and NEH. The third and
fourth heuristic groups are generated from the first two
groups of heuristics where the solutions are improved by
the selected polynomial improvement algorithm based on
all pairwise interchange-based improvement heuristics, and
they are denoted by the first letter “I” in front of the letters
describing the heuristics of the first two groups.

Table 3: Average performance of constructive (Group II)

algorithms.
λ Problem size PAL CDS GUP DAN NEH

10×5
30×10
50×20

2.700a

7.700
9.400

2.200
6.100
6.600

2.800
7.300
8.600

2.600
7.800
8.800

0.700
1.800
1.000

0

Sum 19.800 14.900 18.700 19.200 3.500
10×5
30×10
50×20

73.220b

101.410
37.030

61.630
77.990
27.000

77.800
94.510
34.620

70.370
98.410
35.200

10.470
29.980
10.320

0.001

Sum 211.660 166.620 206.930 203.980 50.770
10×5
30×10
50×20

38.870
44.290
20.046

31.010
34.330
15.791

41.540
42.650
18.867

36.150
43.740
18.902

6.250
11.500
4.411

0.005

Sum 103.206 81.131 103.057 98.792 22.161
10×5
30×10
50×20

28.570
29.870
15.440

22.230
23.506
12.655

30.560
29.744
14.646

25.780
29.561
14.514

4.710
6.887
3.160

0.01

Sum 73.880 58.391 74.950 69.855 14.757
10×5
30×10
50×20

18.069
16.766
10.355

12.421
13.394
8.400

19.019
17.207
9.898

15.633
15.928
9.457

2.399
2.386
0.765

0.05

Sum 45.190 34.215 46.124 41.018 5.550
10×5
30×10
50×20

17.073
14.637
9.877

11.196
11.722
8.016

17.585
15.071
9.523

14.471
13.784
8.985

2.097
1.470
0.479

0.1

Sum 41.587 30.934 42.179 37.240 4.046
10×5
30×10
50×20

17.373
14.368
9.754

11.176
11.768
7.933

17.221
14.794
9.489

14.448
13.488
8.866

2.700
0.869
0.436

0.5

Sum 41.495 30.877 41.504 36.802 4.005
10×5
30×10
50×20

17.674
14.367
9.651

11.400
11.785
7.837

17.418
14.780
9.399

14.701
13.477
8.766

2.885
0.964
0.428

1.0

Sum 41.692 31.022 41.597 36.944 4.277
a average absolute deviation for λ = 0, b average percentage deviation for λ

The results for the constructive and polynomial

improvement algorithms are given in Table 2 through Table

5. From these results it can be seen that the improvement
algorithms in the fourth heuristic group improved from
flow shop makespan heuristics from the second heuristic
group (i.e., PAL, CDS, GUP, DAN, and NEH) are better
than the dispatching rules in the first heuristic group (i.e.,
SPT, LPT, ERD, EDD, MST, S/P, and HSE) as well as the
third heuristic group improved from them.

Table 4: Average performance of improvement (Group III)

algorithms.
λ Problem size ISPT ILPT IERD IEDD IMST IS/P IHSE

10×5
30×10
50×20

1.400a

2.100
1.300

1.300
2.500
2.300

1.200
2.400
3.000

1.000
1.500
3.000

1.300
1.200
4.900

1.300
1.800
3.300

1.100
2.100
1.700

0

Sum 4.800 6.100 6.600 5.500 7.400 6.400 4.900
10×5

30×10
50×20

16.220b

20.310
6.730

24.020
18.910
5.150

12.550
18.970
7.690

13.710
13.200
5.010

18.940
15.710
4.040

18.870
13.910
6.960

23.880
19.090
2.990

0.001

Sum 43.260 48.080 39.210 31.920 38.690 39.740 45.960
10×5

30×10
50×20

10.000
9.690
3.924

13.410
8.150
5.228

8.170
8.610
5.514

8.650
7.530
6.051

11.990
7.520
3.554

11.740
6.610
5.631

14.840
10.300
3.922

0.005

Sum 23.614 26.788 22.294 22.231 23.064 23.981 29.062
10×5

30×10
50×20

8.890
6.373
4.699

9.450
9.709
6.427

7.030
5.676
5.749

6.640
6.753
6.264

7.690
4.762
6.890

9.540
4.076
6.583

9.080
9.096
5.198

0.01

Sum 19.962 25.586 18.455 19.657 19.342 20.199 23.374
10×5

30×10
50×20

5.476
4.820
4.778

5.281
6.313
5.247

4.900
2.768
5.438

6.629
6.397
7.221

5.643
5.431
6.010

5.620
4.893
6.711

7.194
6.431
5.028

0.05

Sum 15.074 16.841 13.106 20.247 17.084 17.224 18.653
10×5

30×10
50×20

4.546
3.255
5.169

5.404
4.743
4.241

4.787
1.718
5.024

6.318
5.523
6.681

5.721
4.957
5.831

4.877
5.033
5.788

5.763
4.619
5.173

0.1

Sum 12.970 14.388 11.529 18.522 16.509 15.698 15.555
10×5

30×10
50×20

4.969
3.929
5.453

4.932
5.283
4.244

5.195
2.404
5.090

5.707
6.727
6.215

6.287
5.135
5.900

4.629
6.897
4.725

5.414
4.730
5.406

0.5

Sum 14.351 14.459 12.689 18.649 17.322 16.251 15.550
10×5

30×10
50×20

5.018
4.155
5.346

5.073
4.838
4.147

5.268
2.421
5.107

5.741
6.843
6.079

5.935
5.932
5.731

4.840
6.940
4.523

5.018
4.155
5.346

1.0

Sum 14.519 14.058 12.796 18.663 17.598 16.303 14.519
a average absolute deviation for λ = 0, b average percentage deviation for λ

Among the simple dispatching rules (heuristic Group

I), the SPT, LPT, ERD, and HSE rules are good dispatching
rules. However, in general the HSE rule outperforms the
other dispatching rules for λ < 0.01, and the LPT rule is
better than the other rules otherwise. Among the adapted
flow shop makespan heuristics in heuristic Group II, the
NEH algorithm is clearly the best algorithm among all

1336

Jungwattanakit et al.

studied constructive heuristics (but in fact, this algorithm
takes the convex combination of both criteria into account
when selecting partial sequences). The CDS algorithm is
certainly the algorithm on the second rank (but it is
substantially worse than the NEH algorithm even if the
makespan portion in the objective function value is
dominant, i.e. for large λ values). These results are
similar to the conclusions of Jungwattanakit, Reodecha,
Chaovalitwongse, and Werner (2006c) whose experiments
compared the results for small problem sizes with the
optimal solutions.

Table 5: Average performance of improvement (Group IV)

algorithms.
λ Problem size IPAL ICDS IGUP IDAN INEH

10×5
30×10
50×20

1.400a

2.500
1.700

1.300
2.300
0.700

1.100
2.100
2.000

1.300
2.300
1.400

0.700
1.800
1.000

0

Sum 5.600 4.300 5.200 5.000 3.500
10×5
30×10
50×20

35.200b

17.750
8.750

23.980
18.110
2.640

35.630
21.450
3.260

22.840
21.140
2.460

10.470
29.980
10.320

0.001

Sum 61.700 44.730 60.340 46.440 50.770
10×5
30×10
50×20

13.980
9.650
5.453

14.060
6.050
3.306

15.260
9.020
3.734

12.970
10.200
3.703

6.250
11.500
4.411

0.005

Sum 29.083 23.416 28.014 26.873 22.161
10×5
30×10
50×20

8.460
7.585
6.183

9.810
4.935
4.934

10.130
8.988
3.431

9.770
6.782
5.251

4.710
6.887
3.160

0.01

Sum 22.228 19.679 22.549 21.803 14.757
10×5
30×10
50×20

6.322
5.865
5.486

4.229
4.227
3.139

5.675
5.282
5.538

5.365
5.419
5.064

2.399
2.386
0.765

0.05

Sum 17.673 11.595 16.495 15.848 5.550
10×5
30×10
50×20

5.749
4.193
5.336

3.752
2.241
3.126

4.154
3.848
5.394

4.996
3.537
4.955

2.097
1.470
0.479

0.1

Sum 15.278 9.119 13.396 13.488 4.046
10×5
30×10
50×20

4.327
4.936
5.163

2.790
2.812
3.450

4.147
4.611
5.125

3.346
3.745
4.906

2.700
0.869
0.436

0.5

Sum 14.426 9.052 13.883 11.997 4.005
10×5
30×10
50×20

4.527
4.910
5.044

3.195
2.405
3.808

4.378
4.666
5.046

3.531
3.543
4.976

2.885
0.964
0.428

1.0

Sum 14.481 9.408 14.090 12.050 4.277
a average absolute deviation for λ = 0, b average percentage deviation for λ

Thirdly, we studied the TS algorithm with a random

initial solution. The purpose of this study is to determine
the favorable TS parameters, i.e., number of neighbors,

neighborhood structure, and size of tabu list in each
iteration. Given the above three different problem sizes,
the following TS parameter values were used in this test.

Number of neighbors : 10 through 50, in step of 10
Neighborhood structures : PI and SM
Sizes of tabu list : 5, 10, 15, and 20
From the preliminary tests, we set the time limit equal

to one second for the problems with ten jobs, ten seconds
for the problems with 30 jobs, and 30 seconds for the
problems with 50 jobs. Again, for all tests we considered
instances with λ ∈ {0, 0.001, 0.005, 0.01 0.05, 0.1, 0.5, and
1}. Table 6 through Table 8 present the effect of the number
of neighbors, neighborhood structure, and size of tabu list
by using the average (absolute resp. relative) deviation
from the best value as the performance measure.

Table 6: The effect of the various numbers of neighbors on

the performance of the TS algorithm.
λ Problem size 10 20 30 40 50

10×5
30×10
50×20

0.029a

0.400

0.050

0.017

0.242

0.146

0.033

0.313

0.346

0.050

0.392

0.533

0.083

0.463

0.625
0

Sum 0.479 0.404 0.692 0.975 1.171
10×5
30×10
50×20

0.954b

7.912

0.981

0.989

5.236

0.945

0.943

4.940

2.040

1.477

5.640

3.409

3.281

6.250

4.250
0.001

Sum 9.847 7.170 7.923 10.526 13.781
10×5
30×10
50×20

1.136

6.057

1.875

0.648

3.942

1.663

0.618

3.611

2.623

0.799

4.134

3.493

1.282

4.195

4.099
0.005

Sum 9.068 6.253 6.852 8.426 9.576
10×5
30×10
50×20

0.781

5.264

2.171

0.419

3.653

1.807

0.474

3.549

2.783

0.730

3.931

3.744

1.099

4.390

4.161
0.01

Sum 8.216 5.879 6.806 8.405 9.650
10×5
30×10
50×20

0.535

4.585

2.410

0.176

3.727

1.734

0.166

3.632

2.793

0.191

3.777

3.338

0.332

4.119

3.905
0.05

Sum 7.530 5.637 6.591 7.306 8.356
10×5
30×10
50×20

0.381

4.067

2.174

0.119

3.542

1.491

0.158

3.458

2.313

0.154

3.773

2.925

0.344

3.714

3.555
0.1

Sum 6.622 5.152 5.929 6.851 7.613
10×5
30×10
50×20

0.331

3.705

2.008

0.164

2.962

1.304

0.108

3.168

2.098

0.228

3.182

2.860

0.282

3.569

3.510
0.5

Sum 6.044 4.430 5.374 6.269 7.360
10×5
30×10
50×20

0.358

3.523

2.129

0.127

2.805

1.415

0.152

2.877

2.321

0.218

3.169

2.861

0.327

3.299

3.551
1.0

Sum 6.011 4.347 5.351 6.249 7.177
a average absolute deviation for λ = 0, b average percentage deviation for λ

1337

Jungwattanakit et al.

From the full factorial experiment, we analyzed our
results by means of a multi-factor Analysis of Variance
technique using a 5% significant level. We have found
that for all TS parameters, there are significant differences.

For the number of neighbors, the 20 and 30 nontabu
neighbors are good parameters, but 20 nontabu neighbors
are better than the other. It is clear that pairwise
interchange (PI) moves are better than shift moves (SM) for
λ < 0.005, whereas for λ = 0.005 and the problem sizes 10
jobs × 5 stages as well as 50 jobs × 20 stages, there are not
statistically significantly differences in both neighborhood
structures, but they are statistically significant for the
problem size 30 jobs × 10 stages. For the problem size 50
jobs × 20 stages and λ ≥ 0.1, although the average main
effect of the PI moves is better than the other, it has been
found that there is a statistically significant interaction
between the neighborhood structure and the number of
neighbors, that is, for 20 nontabu SM neighbors become
better than PI moves. Hence, in general the SM should be
selected as the neighborhood structure for λ ≥ 0.005. For
the size of the tabu list, it is shown that a size of 10 and 15
works best, but the size 10 of the tabu list is recommended.

Table 7: The effect of the various neighborhood structures

on the performance of the TS algorithm.
λ Problem size PI SM

10×5
30×10
50×20

0.033a

0.337
0.163

0.052
0.387
0.517

0

Sum 0.533 0.955
10×5
30×10
50×20

0.911b

5.923
2.050

2.146
6.068
2.600

0.001

Sum 8.884 10.814
10×5
30×10
50×20

0.826
4.650
2.635

0.967
4.125
2.867

0.005

Sum 8.111 7.959
10×5
30×10
50×20

0.667
4.413
2.759

0.735
3.903
3.108

0.01

Sum 7.839 7.746
10×5
30×10
50×20

0.379
4.298
2.839

0.181
3.638
2.834

0.05

Sum 7.516 6.653
10×5
30×10
50×20

0.324
4.004
2.407

0.138
3.418
2.576

0.1

Sum 6.735 6.132

0.5

10×5
30×10

0.283
3.561

0.162
3.073

50×20 2.310 2.402
Sum 6.154 5.637
10×5
30×10
50×20

0.290
3.341
2.345

0.183
2.928
2.566

1.0

Sum 5.976 5.677
a average absolute deviation for λ = 0, b average percentage deviation for λ

Table 8: The effect of the various sizes of tabu list on the

performance of the TS algorithm.
λ Problem size 5 10 15 20

10×5
30×10
50×20

0.057a

0.380

0.380

0.030

0.367

0.347

0.040

0.347

0.287

0.043

0.353

0.347
0

Sum 0.817 0.743 0.673 0.743
10×5

30×10
50×20

2.254b

6.046

2.511

1.152

5.912

2.221

0.924

6.412

2.339

1.786

5.612

2.228
0.001

Sum 10.811 9.285 9.675 9.626
10×5

30×10
50×20

1.036

4.325

2.837

0.707

4.354

2.746

0.894

4.341

2.711

0.949

4.532

2.710
0.005

Sum 8.198 7.807 7.946 8.191
10×5

30×10
50×20

0.855

4.097

2.933

0.534

4.165

3.134

0.552

4.238

2.687

0.863

4.131

2.979
0.01

Sum 7.885 7.833 7.477 7.973
10×5

30×10
50×20

0.261

3.939

2.667

0.239

4.019

2.905

0.257

3.989

2.903

0.364

3.926

2.869
0.05

Sum 6.867 7.163 7.149 7.159
10×5

30×10
50×20

0.278

3.684

2.513

0.150

3.769

2.444

0.230

3.682

2.427

0.267

3.708

2.582
0.1

Sum 6.475 6.363 6.339 6.557
10×5

30×10
50×20

0.219

3.379

2.369

0.190

3.219

2.340

0.217

3.375

2.431

0.264

3.295

2.283
0.5

Sum 5.967 5.749 6.023 5.842
10×5

30×10
50×20

0.290

3.171

2.434

0.167

3.105

2.451

0.207

3.085

2.521

0.283

3.177

2.416
1.0

Sum 5.895 5.723 5.813 5.876
a average absolute deviation for λ = 0, b average percentage deviation for λ

Finally, we used the recommended TS parameters to

test the choice of an initial solution. The letters before TS
denote the heuristic rule as an initial solution for the TS
algorithm. For example, SPTTS means that the SPT rule is
used as an initial solution for the TS algorithm. From these
results in Table 9 through Table 12, we have found that
there are no statistically significant differences in the

1338

Jungwattanakit et al.

different initial solutions for the problem sizes 10 jobs × 5
stages and 30 jobs × 10 stages, but it became statistically
significantly different in the problem size 50 jobs × 20
stages especially for λ ≥ 0.05 we have found that
algorithms INEHTS and NEHTS are better than the others.
Consequently, in general algorithms INEHTS and NEHTS
are good choices for the TS algorithm with using a biased
initial solution.

Table 9: Comparison of the TS algorithm with different

initial solutions (Group I).

λ
Problem

size
SPTTS LPTTS ERDTS EDDTS MSTTS S/PTS HSETS

10×5
30×10
50×20

0.020a

0.220

0.060

0.000

0.220

0.060

0.020
0.260
0.100

0.000

0.240

0.060

0.020

0.260

0.040

0.000
0.240
0.060

0.040
0.220
0.020

0

Sum 0.300 0.280 0.380 0.300 0.320 0.300 0.280
10×5

30×10
50×20

0.014b

3.674

0.667

0.090

4.649

0.938

0.071
4.377
1.415

0.589

4.152

0.937

0.023

4.544

0.634

0.064
4.928
0.614

1.027
3.954
0.512

0.001

Sum 4.355 5.677 5.863 5.678 5.201 5.606 5.493
10×5

30×10
50×20

0.306

2.892

1.363

0.984

3.177

1.223

0.912
2.847
1.491

0.280

3.034

1.285

1.067

3.484

0.838

0.770
2.735
1.044

0.421
3.107
0.992

0.005

Sum 4.561 5.384 5.250 4.599 5.389 4.549 4.520
10×5

30×10
50×20

0.598

3.063

1.068

0.551

3.562

0.851

0.356
2.373
1.180

0.206

3.003

1.451

0.377

3.189

0.690

0.373
2.577
0.944

0.323
3.237
1.113

0.01

Sum 4.729 4.964 3.909 4.660 4.256 3.894 4.673
10×5

30×10
50×20

0.039

3.252

1.064

0.033

3.513

0.959

0.029
2.357
1.146

0.049

3.499

1.031

0.059

2.677

0.764

0.026
3.117
1.040

0.095
3.388
1.206

0.05

Sum 4.355 4.505 3.532 4.579 3.500 4.183 4.689
10×5

30×10
50×20

0.039

2.698

0.947

0.057

2.633

1.183

0.009
1.947
1.166

0.021

2.440

1.470

0.030

2.231

0.956

0.008
2.477
0.991

0.020
2.769
1.262

0.1

Sum 3.685 3.872 3.122 3.931 3.218 3.476 4.052
10×5

30×10
50×20

0.061

2.307

0.938

0.015

2.396

1.047

0.055
1.872
1.228

0.039

2.421

1.336

0.031

2.152

1.027

0.019
2.471
0.936

0.107
2.180
1.041

0.5

Sum 3.306 3.458 3.155 3.796 3.210 3.426 3.327
10×5

30×10
50×20

0.096

2.264

0.878

0.059

2.517

0.981

0.054
1.808
1.107

0.067

2.342

1.300

0.011

2.560

0.931

0.048
1.925
0.986

0.096
2.266
0.878

1.0

Sum 3.237 3.557 2.969 3.709 3.502 2.960 3.239
a average absolute deviation for λ = 0, b average percentage deviation for λ

6. CONCLUSIONS

In this paper, some constructive algorithms have first

been investigated for minimizing a convex combination of

makespan and the number of tardy jobs for the hybrid flow
shop problem with unrelated parallel machines and setup
times, which is often occurring in the real world problems.
All algorithms are based on the list scheduling principle by
developing job sequences for the first stage and assigning
and sequencing the remaining stages by both the
permutation and FIFO approaches.

Table 10: Comparison of the TS algorithm with different

initial solutions (Group II).
λ Problem size PALTS CDSTS GUPTS DANTS NEHTS

10×5
30×10
50×20

0.000
0.260
0.120

0.000
0.340
0.020

0.020
0.220
0.060

0.020
0.280
0.040

0.000
0.180
0.000

0

Sum 0.380 0.360 0.300 0.340 0.180
10×5
30×10
50×20

0.163
4.142
0.648

0.100
3.715
0.544

1.041
4.193
0.761

1.528
4.993
0.470

0.166
3.413
0.343

0.001

Sum 4.953 4.359 5.995 6.991 3.922
10×5
30×10
50×20

0.615
2.776
1.395

1.179
2.967
0.876

0.602
3.014
0.985

0.649
3.069
1.238

1.076
3.353
0.540

0.005

Sum 4.786 5.022 4.601 4.956 4.969
10×5
30×10
50×20

0.420
3.490
0.970

0.779
2.851
1.371

0.394
3.538
1.107

0.398
3.108
1.384

0.664
3.068
0.539

0.01

Sum 4.880 5.001 5.039 4.890 4.271
10×5
30×10
50×20

0.039
3.036
1.083

0.029
3.030
1.421

0.022
3.032
1.303

0.058
3.255
1.356

0.042
2.128
0.491

0.05

Sum 4.158 4.480 4.357 4.670 2.661
10×5
30×10
50×20

0.017
2.515
0.822

0.025
2.295
1.182

0.014
2.161
1.064

0.033
1.978
1.327

0.030
1.839
0.415

0.1

Sum 3.354 3.502 3.239 3.338 2.285
10×5
30×10
50×20

0.006
2.549
0.904

0.039
2.426
1.306

0.015
1.801
0.798

0.049
2.341
1.132

0.039
1.407
0.327

0.5

Sum 3.458 3.771 2.615 3.522 1.773
10×5
30×10
50×20

0.042
2.787
1.172

0.069
2.468
1.356

0.029
2.243
1.041

0.075
2.449
1.289

0.047
1.741
0.362

1.0

Sum 4.000 3.893 3.313 3.813 2.150
a average absolute deviation for λ = 0, b average percentage deviation for λ

The constructive algorithms are compared to the best

solutions. It is shown that in particular, for the simple
dispatching rules the SPT, LPT, ERD, and HSE rules are
good algorithms whereas for the flow shop makespan
heuristics, the NEH algorithm is most superior to the other
constructive algorithms. When we have applied the
polynomial improvement algorithm, we have found that the

1339

Jungwattanakit et al.

all-pairwise interchange algorithm is a good improvement
algorithm. Next, we used TS-based algorithms as
improving algorithms. Before we studied the influence of
the initial solution on the performance of the TS algorithm,
we tested the TS parameters, i.e., number of neighbors,
neighborhood structure, and size of tabu list. We have
found that a constant number of 20 neighbors works best.
The neighborhood structures should be based on shift
moves for λ ≥ 0.05 and on pairwise interchanges of jobs
otherwise. The size of tabu list should be selected as 10.
For the recommended TS parameters, we investigated the
selection of a starting solution by using several constructive
and improvement algorithms. The variants INEHTS and
NEHTS can both be recommended in general.

Table 11: Comparison of the TS algorithm with different

initial solutions (Group III).

λ
Problem

size
ISPTT

S
ILPTT

S
IERDT

S
IEDDT

S
IMSTT

S
IS/PTS

IHSET
S

10×5
30×10
50×20

0.000a

0.280

0.100

0.000

0.220

0.120

0.000

0.220

0.080

0.020

0.260

0.000

0.000

0.240

0.000

0.000
0.240
0.040

0.000
0.220
0.000

0

Sum 0.380 0.340 0.300 0.280 0.240 0.280 0.220
10×5

30×10
50×20

0.531b

4.107

0.847

0.575

3.829

1.014

0.044

4.898

0.797

0.544

3.386

1.174

0.525

2.985

0.555

0.526
3.963
0.805

0.043
3.743
0.358

0.001

Sum 5.485 5.418 5.739 5.104 4.065 5.294 4.144
10×5

30×10
50×20

0.573

2.906

0.932

1.279

3.068

1.745

1.044

3.140

2.025

0.589

2.514

2.273

0.272

2.904

0.803

0.413
3.509
1.730

0.795
3.137
1.122

0.005

Sum 4.411 6.092 6.209 5.376 3.979 5.652 5.054
10×5

30×10
50×20

0.468

3.824

1.241

0.481

3.346

1.775

0.477

2.963

1.635

0.485

2.936

1.437

0.405

3.065

1.266

0.344
2.968
1.132

0.312
3.497
1.470

0.01

Sum 5.533 5.602 5.075 4.858 4.736 4.444 5.279
10×5

30×10
50×20

0.076

3.094

1.027

0.052

2.692

1.146

0.057

2.743

1.700

0.052

3.343

1.494

0.065

2.860

1.056

0.041
2.697
1.316

0.039
2.588
1.152

0.05

Sum 4.196 3.891 4.500 4.889 3.981 4.054 3.779
10×5

30×10
50×20

0.010

2.569

0.946

0.035

2.628

1.304

0.031

2.107

1.302

0.046

2.528

1.222

0.039

2.259

1.052

0.055
2.166
1.071

0.010
2.661
1.229

0.1

Sum 3.524 3.966 3.440 3.796 3.350 3.292 3.899
10×5

30×10
50×20

0.027

2.179

0.927

0.035

2.256

1.249

0.061

2.004

1.172

0.043

2.276

1.326

0.043

2.127

1.214

0.031
2.321
1.185

0.004
2.188
1.061

0.5

Sum 3.133 3.540 3.237 3.645 3.384 3.537 3.253
10×5

30×10
50×20

0.037

2.366

0.972

0.065

2.433

1.226

0.066

2.082

1.172

0.035

2.177

1.192

0.075

1.960

1.208

0.035
2.116
1.060

0.048
2.203
0.972

1.0

Sum 3.375 3.724 3.320 3.404 3.243 3.211 3.223
a average absolute deviation for λ = 0, b average percentage deviation for λ

Further research can be done to use other improving
algorithms such as genetic or ant colony algorithms. The
choice of good parameters for them should be tested. The
influence of the starting solution should be investigated.
Moreover, hybrid algorithms should be developed by using
a tabu search algorithm as a local search algorithm within a
genetic algorithm or the other algorithms.

Table 12: Comparison of the TS algorithm with different

initial solutions (Group IV).
λ Problem size IPALTS ICDSTS IGUPTS IDANTS INEHTS

10×5
30×10
50×20

0.000a

0.220

0.140

0.020

0.300

0.040

0.000

0.260

0.060

0.020

0.200

0.040

0.000

0.160

0.000
0

Sum 0.360 0.360 0.320 0.260 0.160
10×5
30×10
50×20

1.024b

4.915

1.087

1.056

4.934

0.380

0.544

4.743

0.369

0.100

4.804

0.758

0.534

3.421

0.350
0.001

Sum 7.026 6.370 5.656 5.662 4.305
10×5
30×10
50×20

0.832

3.182

2.089

1.103

3.329

0.676

0.527

2.910

0.778

0.732

3.278

1.441

0.721

3.461

0.543
0.005

Sum 6.103 5.108 4.215 5.451 4.725
10×5
30×10
50×20

0.628

3.274

1.782

0.387

3.109

1.124

0.286

3.316

0.942

0.603

3.597

1.557

0.706

2.994

0.539
0.01

Sum 5.684 4.620 4.544 5.757 4.239
10×5
30×10
50×20

0.059

3.512

1.531

0.054

3.238

0.891

0.070

2.731

1.189

0.022

2.439

1.302

0.029

2.233

0.491
0.05

Sum 5.101 4.183 3.990 3.763 2.753
10×5
30×10
50×20

0.009

2.682

1.266

0.021

2.356

1.036

0.012

2.620

0.782

0.010

1.914

1.284

0.012

1.832

0.416
0.1

Sum 3.957 3.413 3.414 3.208 2.260
10×5
30×10
50×20

0.019

1.999

1.495

0.041

2.288

0.876

0.044

2.121

1.056

0.044

2.049

0.937

0.039

1.456

0.314
0.5

Sum 3.514 3.205 3.221 3.030 1.809
10×5
30×10
50×20

0.016

2.654

1.328

0.024

2.181

1.033

0.047

2.179

1.020

0.011

2.053

1.358

0.035

1.747

0.362
1.0

Sum 3.998 3.237 3.246 3.422 2.143
a average absolute deviation for λ = 0, b average percentage deviation for λ

ACKNOWLEDGMENT

This work was supported by Department of Industrial

Engineering, Chulalongkorn University.
The fourth author has been supported by INTAS

(project 03-51-5501).

1340

Jungwattanakit et al.

REFERENCES

Alisantoso, D., Khoo, L.P., and Jiang, P.Y. (2003) An

immune algorithm approach to the scheduling of a flexible
PCB flow shop, The International Journal of Advanced
Manufacturing Technology, 22(11), 819-827.

Blum, C., and Roli, A. (2003) Metaheuristics in
combinatorial optimization: Overview and conceptual
comparison, ACM Computing Surveys, 35(3), 268–308.

Campbell, H.G., Dudek, R.A., and Smith, M.L. (1970)
A Heuristic algorithm for the n-Job m-Machine sequencing
problem, Management Science, 16(10), 630–637.

Dannenbring, D.G. (1977) An evaluation of flow shop
sequencing heuristics, Management Science, 23(11),1174-
1182.

Garey, M.R., and Johnson, D.S. (1979) Computers
and Intractability: A Guide to the Theory of NP-
Completeness, CA: Freeman, San Francisco.

Glover, F., and Laguna, M. (1993) Tabu search. In
C.R.Reeves (ed), Modern Heuristic Techniques for
Combinatorial Problems (UK: Blackwell Scientific
Publications), Oxford, chapter 3, 70-150.

Glover, F. (1986) Future paths for integer
programming and links to artificial intelligence, Computers
and Operations Research, 13(5), 533–549.

Gupta, J.N.D (1971) A functional heuristic algorithm
for the flow-shop scheduling problem, Operations
Research Quarterly, 22(1), pp. 39-47.

Gupta, J.N.D., Krüger, K., Lauff, V., Werner, F., and
Sotskov, Y.N. (2002) Heuristics for hybrid flow shops with
controllable processing times and assignable due dates,
Computers & Operations Research, 29(10), 1417-1439.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse,
P., and Werner, F. (2006a) Solving the hybrid flowshop
scheduling problem with unrelated parallel machines and
sequence-dependent setup times by simulated annealing
algorithm, Proceedings of the 1st International Conference
& 7th AUN/SEED-Net Fieldwise Seminar on
Manufacturing and Material Process, Kuala Lumpur,
Malaysia, 640–645.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse,
P., and Werner, F. (2006b) Constructive and simulated
annealing heuristics for hybrid flow shops with unrelated
parallel machines, Proceedings of the 3rd OR-CRN
Operations Research conference 2006, Bangkok, Thailand,
110–121.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse,
P., and Werner, F. (2006c) Sequencing heuristics for
flexible flow shop scheduling problems with unrelated
parallel machines and setup time, Proceedings of the 2006
IE Network National Conference. Bangkok, Thailand. (to
appear)

Lin, Hung-Tso., and Liao, Ching-Jong (2003) A case
study in a two-stage hybrid flow shop with setup time and
dedicated machines, International Journal of Production
Economics, 86(2), 133-143.

Nawaz, M., Enscore, Jr. E., Ham, I. (1983) A heuristic
algorithm for the m-machine, n-job flowshop sequencing
problem, Omega International Journal of Management
Science, 11(1), 91–95.

Palmer, D.S. (1965) sequencing jobs through a multi-
stage process in the minimum total time--a quick method of
obtaining a near optimum, Operations Research Quarterly,
16(1),101–107.

Pinedo, M., and Chao, X. (1999) Operations
scheduling with applications in manufacturing and services,
Irwin/McGraw-Hill, New York.

Rajendran, C., and Ziegler, H. (2003) Scheduling to
minimize the sum of weighted flowtime and weighted
tardiness of jobs in a flowshop with sequence-dependent
setup times, European Journal of Operational Research,
149(3), 513–522.

Wang, W. (2005) Flexible Flow Shop Scheduling:
Optimum, heuristics, and artificial intelligence solution,
Expert Systems, 22(2), 78 – 85.

Wang, W., and Hunsucker, J.L. (2003) An evaluation
of the CDS heuristic in flow shops with multiple processors,
Journal of the Chinese Institute of Industrial Engineers, 20
(3), 295-304.

AUTHOR BIOGRAPHIES

Jitti Jungwattanakit is a Ph.D. student in Industrial
Engineering Department, Chulalongkorn University,
Thailand. His main research areas are Scheduling,
Operations Research, and Simulation. His email address
is <jitti.j@student.chula.ac.th>.

Manop Reodecha is an Assistant Professor in Industrial
Engineering Department, Chulalongkorn University,
Thailand. He received a Ph.D. in Industrial Engineering
from North Carolina State University. His main research
areas are Logistics and Supply Chain Management,
Production and Operations Management, and Information
Systems. His email address is <manop@eng.chula.ac.th>.

Paveena Chaovalitwongse is an Assistant Professor in
Industrial Engineering Department, Chulalongkorn
University, Thailand. She received a Ph.D. degree from
University of Florida. Her main research areas are
Operations Research, Supply Chain and Logistics
Management, and Production Planning and Control. Her
email address is <paveena.c@chula.ac.th>.

1341

Jungwattanakit et al.

Frank Werner is an Extraordinary Professor at the Faculty
of Mathematics of the Otto-von-Guericke-University,
Germany. He received a Ph.D. degree from the TU
Magdeburg. His main research areas are Scheduling,

Stability investigations, Graph coloring problems,
Logistics, and Supply Chains. His email address is
<frank.werner@mathematik.uni-magdeburg.de>.

1342

