1. Introdnction

S : i
- P{MJ) is the cartesian product of the sets P{M1),...,
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On the quasi;convc?xity of a special job shop scheduling problem

Frank Werner

In this paper structural neighbowrhood gr aph 8 mtmduced for a palynomzally solvable special case of the job -shap prublem
Then it is shown that the chosen obgectwe F = C’m&x 18 quasi-convex on ﬁhe cansidered gmph

The structure of chscrete optimization problems has been
a topic of considerable research in the past few years.
The aim of structural investigations consists in deducing

suitable solution methods from. our knowledge about the

structure of the objective and the solution set, and sep-
arating subclasses of some problem types and develop-
ing special solution algorithms for these problems re-
spectively. In connection with the investigation of
planning and production processes sequencing and na-

“chine scheduling problems play an important role. Spsecial

permutation problems of the following form turn out to
be a fundamental subclass of discrete OptIDllZ&thIl pro-
blems which appear in this sphere:

min (Fp)|p = (pr, pa, ., pm) € P(MYy (0

or min{F(P)|P=(p1,p2 e, P EX S II P(Mf)} (2)

i=1

Thereby P(M) denotes the,set of -permutations of the
elements of the set M = {1,...,m}, p represents a permu-
tation with the assignments ¢-» pu(i= 1(1)m), ]

P{M»), whéere M! S M (j = 1{1)n), and the objective F
(cost function) is & unique mapping of the solution set
into the set R1.

For instance one-machine scheduling problems permu-
tation flow shop problems (machine scheduling problems

" where each job is to be processed in the same order on

the machines and we have to choose the same joborder on

-each machine) as well as flow shop problems with at most

3 machines can be rediiced to problem class {1). The job
order on thie machines is characterized by & permutation

p € P{M) of the indices of the jobs. The so-called job

shop problems balong to the type {2), where the machine

- order of the jobs is arbitrary but fixed.

The permutation p/ € P{M7%) of the job indices describes
the order of those jobs which have to be processed on
machine M.

In [10] the conception of the quasi-convexity of objectives

has been adequately trinsfered from the field of non-.

discrete optimization to permutation problems of type
{1) in order to obtain a bage for 8 uniform solution method-
ology for special classes of such permutation problems.
The considerations made in this paper could be extended

- -0 the case of more general discrete optimization problems.

In Section 2 the essential foundations on the quasi-
convexity in discrete optimization are briefly summarized.
Then in Section 3 the job shop problem is introduced in
detail as a machine scheduling problein of type {2). In

' Section 4 we present a special permutation graph for the
2-machine job shop problem [m/2/@, ni < 2/Cmax] and
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verify the quasi- convexu:y of the chosen ob]ect.we on
this graph

2. On the quasi-convexity in discrete optimizaﬁoii e

Let Gs(X) = (X, E) be a connected undirected gr&ph

where the vertex set X is the set of feasible solutions of the -

diserete optimization problem min {F(») |z € X, X,
finite} and the edge set E represents & special ne;gh-

bourhood structure. A sequence of vertices which are ..

connected by an edge of B in each case is denoted as

simple chain if the same vertex does not occur twme in the C

sequence.

Definition I: F is said to be quasi-convex on Gg(X), if -

from av, x?€ X with F(#?) < Fla!) follows that there

exists at least a simple chain K in Ge{X) éonnectirig wl

with z? with the property Flxy < Pz} for all € K.
Definition 2: A quasi-convex fundtion F is said to' be

strictly quasi-convex on Gs(X), if from a1, 2% € X with -
Fiar) < Flat) follows that there exists at least a snnple Co
chain K in @x(X) connecting ' with x2 w113]1 the property :

Flx) < F{z'} for all « € K with = S= 2.

In connection with the quasi-convex non- -discrete opti- .

mization the following theorems, the proofs of: Whlch are

contained in [10], hold.

Theorem I: 1T the objective F is strict,ly quasi-convex on - .

GelX), then each local opmmum is also a glob&l opt1-
mum,
Theorem 2: If the ob]ectlve Fis quam-convex on GE(X

then the set Go of optimal pomts forms a conheeted: sub- R

graph of Ge{X)

The aim consists in determining an edge seb such tha.t . 13‘
quasi-convex or even strictly quasi-convex on Ge{X) for -
special problem classes and thereby each vertex w€-X-
has & number of neighbour vertices in Gz{X) as small *
as possible. A descent algorithm can be stated for such . -
objectives which always yields s global optimum (cf. .

(21). - o

In [2] different permutation graphs are introduced, for the: =
permutation problem. {1). The vertex set consists of the - .

set of feasible solutions P{M) in each case. If we consider

the undirected graph @v{m) = {P{(M), Ev) of interchanges -

of neighbours, then two vertices are neighboi]rs, if the :
corresponding permutations differ jonly in two . neigh-

i.e.

By = {(p", 5%) € [P | 3 € {2,...,m} such that

N 1

where 2(j — 1, j) is a standard transposition, which differs

from the identical permutation only by the interchangé of ..
the positions j — 1 and j. In [10] it is shown that F.is - -

. bouring positions by the interchange of both elements,' 7:-;:
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- Furthermore, we denote the set —of all paths from vertex

already quasi-convex on Gv(m), if the Smith condition is
satisfied {of. [11]), i. e. If there .exists a 'sequencing rule
for the johs. Co :

In the following section a problem of the more generad
type {2) is described. '

s

3. The [m/n/G/Crax] jdh shop proklem,

- The job shop problem ean be formulated as follows: m

jobs di,..., 4w aré to be processed on » machines M, o,

Mn, The job A {3 = 1{1)m) consists of #, operations,

where. each operation corresponds to a processing of A
on a.machine. The processing order on the single machines
Is discribed for job 4; by its machine order TRF, —
(M in;)- In the following we only consider the case
that each job is to be processed at most once on each
machine (ni << #). t; > 0 denotes the processing time of
Aion M, £y = 0 meang that A is not to be processed on
M. Each machine can handle only one job simultane-
ously, and it is not allowed to interrupt the processing
of operations on a machine. We choose as objective ex-
clusively the maximum completion time of the single jobs

(. e. F = Cuex). If a job shop problem with » machines is

eonsidered, a schedule P can be described by representing
the job order on each machine by .a permutation of the
indices of those jobs, which have to be processed on the
corresponding maechine, i. e, ' .

‘ % - C
P=(php% ., pm € T POMI),MIC M ={1,..., m}.

i=1

M3 denotes the set of the indices of those jobe, which have

to be processed on machine M,

A [#/n)G[Cruax] problem can be described in a suitable

marnner by a disjunctive graph model {ef. for instance

[7]). In order to represent a schedule we introudee in the

following a_slightly simplified directed graph N(P) =
{V, U) with vertex valuations. The vertex set ¥ consists
of all operations (4, 7) (< € M, j € {1,...,n}), which repre-
sent a processing, as well as a fictitious initial operation
(0, 0) and & fictitions final operation (i, %), The are
set- U describes the machine order of the jobs as well as
the job order on the single machines. :

There exists an are from a vertex EHEV e M,
J€ {I,...,n}} to the vertex of the succeeding operation
{t. ) on the same machine as well as the vertex of the
succeding operation (¢, k) of the ‘corresponding job, if

" these operations. exist in each case. Moreover, we have an
edge from vertex {0; 0) to the sources as well as from all

sinks to the vertex (%, %). The vertex valuations are
given by the processing times of the single’ dperations,
where the processing times of both fictitious operations
{0,0) and (%, %) are equal to zero. ‘A schedule P is
said to be feasible, if N{P) has no cyeles.

Furthermore, we make the following definitions for a

directed graph N{P) = (V, U} without cycles. A path w.

is & sequence of vertices, which are connected by an aro
in each case, i,e. w= (v, Tountr)y EV {f = 1(1)),

cug = {wy, ¥a) € UGj=1()r—1).

The vertices belonging to the path form the range T(w)
of the path w. The weigth ¥(w) of the path w is given by
the sum, of the valuations of the vertices which comprise
the path, i.e.

Hwy= - 3 77

{4, ) & P(w) :
n € V to vertex v € V in N{P) by WrP(ug, ). . '
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-p! and p? as follows:

WA{P) .: = WP'({O, 0}, (3, ék)) is the set of a.ll -pa,ths' in
NPy rolP)  =max —  {{w)— ty} is called the . -

. w €W, D), (4, ) Lo
head’ of operation {%,§) in. N(P). Moreover, 2 P) =
. omax  {H{w) — {3} is denoted as: fail of operation
WEWP(L D), (iou)) - : o

(4, 7y in A{P). The completion time (P} of job Adie My :

for a_f_easible_schedulp P is obtained by
CdPy= max  {ry(P)+ s,

J with {¢ At o . o
Then the cost of P is given by the m&ximunifﬁomple_tion. ;
time of & job which corresponds to the weight of & eritical
path in N{P), i, e. o R R

F(P) = Crnx( P) = max {CUP)y = 20o( P) = ?‘**(P) .
. . PE M . o

Now we consider the foliowing emmple for illustration; g

Let m =3, n= 3, TRF = LM, Ma, M), TRF%\?

(M, My), TRYs = (My, Moy Ma) and - o

T= (15 o ; s
| 729 | s

If wechoosen schedule P —= {pt, p2, p*) with P =1{1,3 2,

»* = (2, 3,1) and p* = {1, 3), then N(P) looks as follows:-

(1) {1,3) L(2)

Obviously, N(P) has no cyecles and, therefore, ‘P is &
foasible schedule with Cmex{P) = 19, : o
By using Johnson’s algorithm - for the. [im/2/F]Crmaex} -
flow shop problem there was given an O{m log m) algo-:
rithm for solving the [m/2/6, n; < 2/C e problem by =
Jackson (cf. [5]). Let .4 be the set of the indices of the jobs -
which have to be processed first on M, and then on- M, . -

B is the set of the indices of those jobs which have'to be ‘ . N
processed first on Mz and then on My, and C and D, __,/‘E '

respectively, are the sets of all indices of the jobs‘_Wh:iéh‘:
have to be processed only on M and M, respectively, 1. e.

Mt=AUBUC snd M2 =4 U BUD. We denote by -~ -1+

P4 € P{A) the optimal permutation of the elements of the

set 4 obtained by Johnson’s algorithm and by p? € P(B). .- - o

the optimal permutation of the elemonts of the set, B

obtained in an analogous manner. p¢ € P(C) and p? € Py

are arbitrary permutations of the elements of the sets 0.
and D, respectively. Then P = (p1, p2) € - DMV P{Me... -
is an optimal solution of the [m/2/G, n: < 2/Cmas) problem, "
where the mentioned partial permutations are joined in

Pt = (p4, p° p?) € P(M) : A S ¢
and o : ER R -

P = (p%, pP, pd) € P(I2). _ o -
Minor extensionis of the [m/2/G, ny < 2{Cwax] alréady lead

to NP-hard problems. Indeed, the [m/3/@, < 2/Cuix]
problem and, in the case that a joh has to be processed ¢n :

& maching more than onee, also the [m/2/; n; < 3/Cmaz]
problem belong to the class NP-hard. S
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© O P) = (W P’). Therefore Cmax(P) = Cuaxl

. oA < o - (.-,_2) -

4, On the quasi-convexity of the [m/2/G, ni = 2/Cmax]
problem

‘Let us consider the 2-machine job shop problem. Let 4,

B, C and D be the sets introduced in Section 3. In the
following we. present some types of interchanges of

" neighbouring elements in permutation p! of the feasible

schedule P = {p!, p%), which do not lead to a greater cost

{independent of 7). To this end we denote the feasible

initial schedule always by P and that feasible schedule
which is obtained if the mentioned interchange has been
carried out by P'. Furthermore, Polgp?, 1) denotes the
position of the element ¢ € M in p7 {fj = 1, 2), In the follow
ing proofs the vertex valuations are a.lways omitted in the
representation of the graphs N(P).

Theorem 3: The following interchanges of two elements 4
and & in p* of a feasible schedule P = {1, p?) with Po
{pt, &) =.Po[pt, ?) + 1 do not-lead to a greater cost:

1. interchange of ¢, kwith ¢ € A, k € 4 and
Po(p2, k) < Po(p?, 4)

2. interchange of %, k Wlth t€ B, k€ Band
Po(pe, k) < Pol(p?, 1);

3. interchange of 4, k with <€ B, ked and
Po(p?, 1) < Polp®, k);

4. interchange of 4, kwith1€ C, k€ C;

5. interchange of 7, £k with i€ C, k€ 4;

6. interchange of 5, k withi€ B, k€ C.

Proof: Clearly, by an interchange of type 1 up to 6 in P

a feasible schedule P’ is génerated in each case. We con-
sider N(P) and N{F’) in each cage. Let M* = M ~ {7, k}
for the further considerations.

1.

(N (&) (k.ﬁ { m

w2 G Ko 6D

From 7ie{P) = ri2{P) (4) follows immediately Ci(P)
= Ci(P) = max {OfF’), Ce(P")}. By considering (4),
rea(P) 2= 1e(P) and rua(P) -+ o = 7a(d”) 4 to we obtain
ru(PYy = r(P’) (1€ M* j€{1,2}) and, consequently,
P} holds.

i (k) {x1 G

We have Cu(F) =."7‘k1(P) T Tf]:(P-]') + i1 = Ci(P)
= nflax‘{Ce(P’), Ok(P')}: . (5)
By using (B) ru(P) = ru(P") {I € M¥*, j€ {1,2} is ob-
. tained, and, consequently, C: (P) = Cy(P"). Therefore
Cmax(P) = Omax( ) holds.
3 o : . :
G (k) | () (i

N

(i) ey (i2) (%2)
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From ri(P) = ria( P follows 1mmed1ately C’E(P) > C";;(P’).= BT
: ey

By rm(P) + e = (P + ta s B Ay
we have Ci(P) > rufP) + tu = Ci{P’). Thus Ci(P)

= max {0 ), Cu(P")).

By consideration of (6) and (7) we obtain m(P)'ﬁ ri{ P?) ' P
(e M* j€{1,2)) and, consequently; G P, )>O.;(P’)',,-- :

Therefore Cmux(P) = C'max{ F’) holds.

L] LR *es

- We ha.ve max {Ci(P), C'k(P)} = C’k(P) == O;(P )

msx {€:{P"), Cu(P")}." - (8

By considering (8) we , obtain ryy(P) == ?';j-(P’)- qeM* . ..
C1(P’). Therefore - -

j € {1, 2}) and, consequently, O’:(P)
Craxd P) = C‘mx(}?’ ) holds,
5. .

(1) (k1) - T (k) _'(i'.ﬂ

(u 2)

We have Cu{P) == ra(P) + tie > max {m(P’) '+ lu, :

ria{ P’) -} te} = max {C4(F’), C{F’)}. By consideration R

of 7a{P) + fa = ra{d”) 4 tu and O P) = Cul(P’)

ri(PY = rif{P7) (1€ M*, j € {1,2}) is obtained, and, con- -
sequently, C/{(P) = C{P). Therefore Cuax{ P = GWEX(P!)'
" holds. SR

6. | o
O ) 0 )

iy ' 2

We have Ox(P) = ria(P) + t = m('P’) -+t :-_Oi(Pr)":
- max {0:(P), Cu(P)}. : S (9)

By considering of {9) we obtain 7,(P) = ri{ P") | € M*, *
7 € {1, 2}) and, consequently, ;'(P) = O P).

Omax( )> Omax(P holds .

In sn analogous manner some types of mteroha.nges of' E
neighbouring elements in permutation p2 of the feasible
P} can be presented WhIch do not_

schedule P = (p,
lead to a greater cost.

M'heorem 4: The following 1nterchanges of two’ elements ¢
(#, p*) ‘with

and & in p® of a feasible schedule P =
Po{p?, k) = Po(p?, 7) + 1 do not'lead to a-greater cost:

1. interchange of 7, k with ¢ € 4, k € 4 and
Po(p', k) < Polp!,7);

2. interchange of ¢, k with¢ € B, b € B and
Po(p', k) < Po(p*, 7);

3. interchange of 4, k with 1 € 4, % E B and

~ Polp, 3) < Polp, k);

4. interchange of z, kwith:€, ke D; -

B. interchange of 4, k with <€ D, k € B‘

6. interchange of 4, k with ¢ € 4, k € D.

The ptoof of this theorem is completely s1m11ar to that of

Theorem 3 and, hence, is omitted.

“In the following theorem we cousider two cases, where
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two elements are simultaneously interchanged in p* and p?
which are neighbours in both permutations.

Theorem 5: The following interchanges of two elements 7
and kin 9 and p* of a feasible schedule P = {pt, p?) with
Po(pi, k) = Po(p’, 'e) +1 §= 1 2) do not lead to a
greater cost

1. mtercha,nge of ¢, k with 7€ 4, k € A and min {fz, $ie}
= min {fes, da};

2, 1nterchange of ¢, & with 2 € B, k€ B and min {rf.r.:z, i}

. <= min {fw, tal

Proof: Clearly, by an interchange of type 1 or2in P a
feasible sehedule P” is generated in each case,

1. First of all, from min {fx, 12} << min {fee, i1}
follows immediately min {—#;1 — fig — tre, —t11 — i1

—tpe} < min {-—tgz — &1 — iz, —tp1 — fxz —25a) and,

congequently, max {fiz + 2 - fes, b1 + I + tz}

= max {te1 -+ b1 -+ s, B+ fea - fis).

Let us consider. N{P) and N ().

{, 1) (k1)

(k1) (i

A

(h2)

(ki2) (,2)

(i)
From ru(P) = rn(P’) sand (10) we obbtain 7;:1(P) + max
{Ei -+ bia + fen, o1+ fe1 + tr2} 2ra(P) -k max {Gm £t +
4+ fue, trx | fra 4 fis} and, accordingly, max {U;(P), On(P)} =
. O};(P = ?EZ(P) 4+ txa. >T¢2(P )—f— tig = Oi(P = max {C;(Pl)
- GE(P’ (11)

By conmder&tion of {11) and ru{P) -} e == va(P’) + #a

we have ri(P) = ry(P) 1€ M \ {7, &}, § € {1, 2)) and,

consequently, C{P) = O} P, Therfore Cuux{P) = Omax

(/) holds.

2. The proof is similar to that of part 1 and, hence, is
omitted.

Now we introduce a graph Gx{(X) = (X, F) such that the

object.we F = Cmax of & [m2[G, n, < 2/ Cmax] problem with

given sets 4, B, (' and D (1 e. with given machine orders
of the single 3obs) is quasi-convex on Gx{X) independent
of 7. Thereby X denotes the set of all feasible schedules
P —= (91, p%) € P{M1) x P{M?) {in order to guarantee that
N{(P) bas no cycles, there may not-exist an 5 € 4 and a
k € Bwith Po(p, 7) > Po{p', k) and Polp?, 1) < Polp2, k).
£ is the set of all edges between vettices, where the cor-
responding schedules P = {52, $2) and'P = (p', p) differ
only by a special lntemh&nge of two neighbouring elements

in a permutation or, in the case of a special structure of P,

by the simultaneous interchange of two elements in both
permutations, if the elements belong either to the set 4 or
to the set B and if they are neighbours in both permuta-
tions of the schedule. Let p4, p4 € P{4), p®, $% € P{B),
p¢ € P(0), pPe P(D) and Polp!, pi)=1ij = 1,2),
then P and P are connected by an edge in Gs(X) if

-1y there exists an ¢ € {2, 3,...,m} such that ! = 2(i — 1, i) x

P, P% = p,wherea)i = min {I | p} | € ML A4, p} € 4},
or b) max {Po(p!, k)} = |41%, ¢ = max {{ | p}, € B,
ked T

| - PiEO)
pti= (P4, p€, p®), p® = (P%, p?, p4), ¢ = min

Allpiy pr €4, Po(p?, pl) > Po(p?, phi};

ord) pt= (p4, pC pE), p? = (p¥, p?, p4), P}, PLEC;

or c)
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10y -
. Proof: Let P = (P4, p

" @={X)). The result is aschedule P_

2, pt = (p4, p¢, pB) and there existe an ¢ E {2, 3,
that P2 = 2(1 —1,4) . p2, B = p!, :
where a} ¢ = min {I|p}, € M2 B, pJGB},
or b) max {Po(ga‘fl )} ='|B|, 1 = max {l i p, 16 A

: kE

pt e D}; . ’

(pB P2, p4), 4= min {{ EP; " jﬂ, EB
Pa(zﬁ Piy) > PO(Pl p;)}, '
7 = (pF, p?, p4), p ;71! P; £D;

or .c)
of d)

3. pl = (p4, p¢, pB), % =
€ {2, 3,...,m} such that B! ='=z('i——i, iyepl, pr=
7). e S
‘where a) pil—pf IGA, pi—ijA
or b)pil—pjleBpi—p*‘EB

C e

© Then the followmg assertion can be formulated

Theorem 6. The ob]ectwe P = Cnax of the 2-machine ]ob
shop problem [m/2/@, ni < 2/Cmax] is qu&ﬁn-eonvex on’
Ge(X) = (X, B). T
7%) be an arbitrary fea,sfble schedule g
of the [m/2/G,n; < 2/Omax] problem. Now we show. that

,m_} su'ch'. i

{p%, p?, p4) and there exiét‘ 'b,j 2 3 .
2(j —_1_, i o

el

there exists a simple chain in ¢'2(X) from P to the optimal . - i

solition P according to {3) on  which the cost is mono-
tonously nonincreasing. First of all, there are interchang-

ed elements in 1. Thereby was arrange the elements of = o

the set 4 on the first |4| positions by successive inter- -

_changesof neighbouring elementsin each case {the element

of A which is most on the left in ! is shifted to position 1

and so on; interchanges of type 3 and 5, respectively, of - .~

Theorem 3; edges of type 1a in G=(X})). Then the elements .
of the set B are put on the last | B| positions {the element -

of B which is most on the right is moved to the last
position and so on; interchanges of type 6 of Theorem 3; * .
edges of type 1b in @z{X)). Similarly, starting from p we .

arrange the elements of the set B on the first | B| posi

tions {interchanges of type 3 and b5, respectively, of
Theorem 4; edges of type 2a in @»{X)) as well as -the

olements of the set 4 on the last |4] positions {inter- . * "

changes of type 6 of Theorem 4; edges of type 2b in

{pt, p) with pr= -
(B4, 9, p®) € P(M?) and p* = (P57, pP, p4) € PIM?) (1), -
where P4, pac P(4), p%, p*e P(B),
prC P(D).

Tf p4 <=4, let I be the number of pa.lrs {7, k) Whe're'in“‘.. .

pEPC) and. .

$4 the elements %, k& € .4 are in reversed order ds in-F4.  ~ . '

Then 4 can be transformed into $4 by I successive inter-
changes of neighbouring elements in' each case {inter-
changes of type 1 of Theorem 3; edges of type le in
@x{X)). Analogously, #8 can be- tr&nsfoxmed into $8 by
successive interchanges of neighbouring elements in
each case {interchanges of type 2 of Theorem 4; edges of

type 2¢ in @z{X)). The resulting schedule P has the form: -

P = {1, ?) Withpl {p4, 9, p% p=) € P(UY) &ndﬁz
(92, p2, p4) € P(M?). {12) _
Now we carry out simultaneous mtercha.nges of two -

elements in the first and second permutatlons which aré"

nelghbours in both permutations in each case, If $4 = p4,
where p4 is that partial permutation which is contained in -
the optlmal solution according to {(3), let I"be the number
of pairs {i; k) where in p4 the elements 3, k € 4 are in"*
reversed order as in $4, Then $4 can be transformed into
'pA by I suceessive mterchanges of neighbouring ‘elements

in each case {interchanges.of type 1 of Theorem § since '-

p4 was obtained by the algorithm of Joknson; edges of

type 3a in Ga(X)). Analogously, $F can be transformed RS

into p® hy successive interchanges of neighbouring
elementsin each case (1nterchanges of type 2of Theorem b;
edges of. type 3bin GE(X '
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Finally, the elements of the set. € as well as D are put in
the sequence according to {3) {interchanges of type 4 of
Theorem 3 and 4, respectively; edges of type 1d and 2d,
respectively, in Gz(X)). Now the optimal solution P =
{p, p?) is obtained and, consequently, the simple chain
required. Let P! and P2 be two arbitrary feasible sched-
ules - of the [m/2/@, n: < 2/Cmax] problem with F{P2)
< F{P1).. By the preceding considerations, there exist
. simple chains K; and K, respectively, from P! and Pz,
respectively, to the optimal solution P in Gx{X) with
monotonously nonincressing costs. Starting from P!,
let P be the first vertex on K; which also belogs to K
{possibly only P’ = P). Then the chain K = [P, P,
P2}, which passes from P! to P on K and from 2 to P2
on K3, is a simple chain with F{P) < F{P!)forall P € K.
Therefore F is quasi-convex on Gg(K).

In the definition of G(X) we took into consideration that
there always exists an optimal solution of type (12) for
any processing time matrix. In order to guarantee a
number of neighbour vertices as small as possible, £ was
chosen suéh that in the proof of Theorem 6 the partial
chain to the firast solution of type (12) is a unique one {cf.
edges of type 1a—10 as well as 2a—2a). The edge set
could also be defined such that another sequence is
chosen for the interchanges of neighbours which have to
be. carried out {for instance if we begin with interchanges
of neighbours in $2) or that the partial chain leads to
another solution of type {12) {for instance starting from
{11} p4 can be transformed info §4 by interchanges of
type 1 of Theorem 4 and then $# into 2 by interchanges
of type 2 of Theorem 3). Nevertheless, such modifi-

cations do not lead to a structurally different neighbour-.

hood definition,
5. Concluding remarks

By the transmission of the concept of a quasi-convex

. funetion from the field of non-diserete optimization to
permutation problems a base is given for a clasgsification
of permutation functions with regard to their solution
behaviour. In this paper the considerations on the quasi-
convexity of objectives were extended from permutation

. problems, where the cost is determined by a permmutation
of the elements of theset M = {1,...,m}, to more general
discrete problems. ' '

1) |A| denotes the cardinality of the set A,

. ) s
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For a special machine scheduling problem & structural ~ .
graph was introduced with such a neighbourhood structure - - -
that the chosen objective is quasi-convex on the consider=
ed graph. The object of further investigations is the de-'

termination of such neighbourhood structures that the

objective possesses the property of quasi-convexity om .
the corresponding structural graph for further special -

problem classes of the considered type. Morsover, such

investigations are a good base for determining suitable
neighbourhood structures in order to- deduce iterative -
approximation methods for those problem classes of the . ..
considered type where the quasi-convexity is not obtained -
“on the corresponding graph, :
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