
apl. Prof. Dr. Frank Werner
Fakultät für Mathematik
Institut für Mathematische Optimierung
https://math.uni-magdeburg.de/∼werner/

Lecture Script

(in extracts)

O P E R A T I O N S
R E S E A R C H

iMBA Magdeburg

Summer Term 2020

(Date: May 21, 2020)

1

Literature

1. Werner, F.; Sotskov, Y.N.: Mathematics of Economics
and Business, 1st Edition, Routledge, Abingdon (UK)
/ New York (USA), 2006, 536 p.
(FREE Download of the ebook e.g. under Amazon.de
Kindle Store, siehe
https://www.amazon.de/Mathematics-Economics-Business-English-Werner-

ebook/dp/B000Q7ZFKW/)

2. Hillier, F; Lieberman, G: Introduction to Operations
Research, 9th Edition, MacGraw Hill, New York (USA),
2010.

3. Taha, H.A.: Operations Research - An Introduction,
7th Edition, Prentice Hall, New York (USA), 2003.

4. for a refreshment of mathematical prelimi-
naries:

Werner, F.: A Refresher Course in Mathematics, Book-
boon Publishers, 2016, 284 S.

(FREE Download of the pdf file under:

https://bookboon.com/en/a-refresher-course-in-mathematics-
ebook)

2

Contents

1 Linear Programming 5
1.1 Introductory Example 5
1.2 Preliminaries 6
1.3 Properties of Linear Programming Problems 7
1.4 Standard Form of a Linear Programming

Problem 9
1.5 The Simplex Algorithm 13
1.6 The 2-Phase Simplex Algorithm 21

2 Discrete Optimization 27
2.1 Preliminaries 27
2.2 Branch and Bound Algorithms (B&B) . . . 28
2.3 Knapsack Problem 33

3 Metaheuristics 36
3.1 Local Search, Preliminaries 36
3.2 Simulated Annealing 37
3.3 Tabu Search 39
3.4 Genetic Algorithms 40

4 Dynamic Programming 42
4.1 Introductory Examples 42
4.2 Problem Formulation 44

3

4.3 Bellman Equations and Bellman’s Principle
of Optimality 46

4.4 Bellman Method 47
4.5 Examples and Applications 48

4

1 Linear Programming

1.1 Introductory Example

Example 1 A company produces a mixture consisting of three raw materials denoted as R1, R2

and R3. Raw materials R1 and R2 must be contained with a given minimum percentage, and
raw material R3 must not exceed a certain given maximum percentage. Moreover, the price of
each raw material per kilogram is known. The data are summarized in Table 1.

Table 1: Data for Example 1

Raw material Required percentage Price in EUR per kilogram
R1 at least 10 per cent 25
R2 at least 50 per cent 17
R3 at most 30 per cent 12

We wish to determine a feasible mixture with the lowest cost. Let xi, i ∈ {1, 2, 3}, be the
percentage of raw material Ri. Then we get the following constraints:

x1 + x2 + x3 = 100. (1)

Equation (1) states that the sum of the percentages of all raw materials equals 100 per cent.
Since the percentage of raw material R3 should not exceed 30 per cent, we obtain the constraint

x3 ≤ 30. (2)

The percentage of raw material R2 is at least 50 per cent, or what is the same, the sum of the
percentages of R1 and R3 is no more than 50 per cent:

x1 + x3 ≤ 50. (3)

Moreover, the percentage of R1 is at least 10 per cent, or what is the same, the sum of the
percentages of R2 and R3 should not exceed 90 per cent, i.e.

x2 + x3 ≤ 90. (4)

Moreover, all variables should be nonnegative:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. (5)

The cost of producing the resulting mixture should be minimized, i.e. the objective function is
as follows:

z = 25x1 + 17x2 + 12x3 −→ min! (6)

The notation z −→ min! indicates that the value of function z should become minimal for the
desired solution. So we have formulated a problem consisting of an objective function (6), four
constraints (three inequalities (2),(3) and (4) and one equation (1)) and the non-negativity
constraints (5) for all three variables.

5

1.2 Preliminaries

In general, a linear programming problem (abbreviated by LPP) consists of constraints (a sys-
tem of linear equations or linear inequalities), non-negativity constraints and a linear objective
function. The general form of such an LPP can be given as follows.

General form of an LPP:

z = c1x1 + c2x2 + · · · + cnxn −→
{

max!
min!

subject to (s.t.)

a11x1 + a12x2 + · · · + a1nxn {≤,=,≥} b1
a21x1 + a22x2 + · · · + a2nxn {≤,=,≥} b2
. .
am1x1 + am2x2 + · · · + amnxn {≤,=,≥} bm

xj ≥ 0 , j ∈ J ⊆ {1, 2, . . . , n}

Alternatively, we can give the following matrix representation of an LPP:

z = cTx −→
{

max!
min!

s.t.
Ax{≤,=,≥}b (7)

x ≥ 0.

Here matrix A is of order m × n. The vector c = (c1, c2, . . . , cn)T is denoted as vector of the
coefficients in the objective function, and the vector b = (b1, b2, . . . , bm)T is denoted as the
right-hand side vector.

Geometrical interpretation of an LPP with two variables x1 and x2

Assume that the constraints are given as inequalities. The constraints ai1x1 + ai2x2Ri bi, Ri ∈
{≤,≥}, i = 1, 2, . . .m, are half-planes which are bounded by the lines ai1x1 + ai2x2 = bi. Each
of these lines can also be written in the form

x1
s1

+
x2
s2

= 1,

where s1 = bi/ai1 and s2 = bi/ai2 are the intercepts of the line with the x1 - and x2- coordinate
axes.

6

For fixed z and c2 6= 0, the objective function z = c1x1 + c2x2 is a line of the form

x2 = −c1
c2
x1 +

z

c2
,

i.e. for different values of z we get parallel lines all with slope −c1/c2. The vector

c =

(
c1
c2

)
gives the direction in which the objective function increases most. Thus, when maximizing the
linear objective function z, we have to shift the line

x2 = −c1
c2
x1 +

z

c2

into the direction given by vector c, while when minimizing z, we have to shift this line into
the opposite direction given by vector −c.

An LPP of the form (7) with two variables can be graphically solved as follows:

(1) Determine the feasible region M (i.e. the set of feasible solutions) as the intersection of all
feasible half-planes with the first quadrant.

(2) Draw the objective function z = Z, where Z is constant and shift it either into the direction
given by vector c (in the case of z → max!) or into the direction given by vector −c (in the
case of z → min!) Apply this procedure as long as the line z = const has joint points with the
feasible region.

Definition 1 A feasible solution x = (x1, x2, . . . , xn)T , for which the objective function
has an optimum (i.e. maximum or minimum) value is called optimal solution.

1.3 Properties of Linear Programming Problems

Definition 2 A set M is called convex, if for any two vectors x1,x2 ∈ M , any convex
combination λx1 + (1− λ)x2 with 0 ≤ λ ≤ 1 also belongs to set M .

Definition 3 A vector (point) x ∈M is called an extreme point of the convex set M ,
if x cannot be written as a proper convex combination of two other vectors of M , i.e. x
cannot be written as λx1 + (1− λ)x2 with x1,x2 ∈M and 0 < λ < 1.

7

Thus, when considering a system of m inequalities with two nonnegative variables, the set
of solutions is described by the intersection of m half-planes with the nonnegative quadrant.

Theorem 1 The set M of feasible solutions of system (7) is either empty or
a convex set with at most a finite number of extreme points.

Theorem 2 If the set M of feasible solutions of system (7) is bounded, it
can be written as the set of all convex combinations of the extreme points
x1,x2, . . . ,xs of set M , i.e.:

M =
{

x ∈ Rn | x = λ1x
1 + λ2x

2 + · · ·+ λsx
s;

0 ≤ λi ≤ 1, i = 1, 2, . . . , s,
s∑

i=1

λi = 1
}

Let M be the feasible region and consider the maximization of objective function z = cTx.

There may occur the following three cases:

(a) We have M = ∅. In this case the constraints are inconsistent, i.e. there does not exist a
feasible solution of the LPP.

(b) M is a nonempty bounded subset of the n-space Rn.

(c) M is an unbounded subset of the n-space Rn, i.e. at least one variable may become ar-
bitrarily large, or if some variables are not necessarily nonnegative, at least one of them
may become arbitrarily small.

In case (b), set M is called a convex polyhedron, and there always exists a solution of the
maximization problem. In case (c), there are again two possibilities:

(c1) The objective function z is bounded from above. Then an optimal solution of the maxi-
mization problem under consideration exists.

(c2) The objective function z is not bounded from above. Then there does not exist a (finite)
optimal solution for the maximization problem under consideration.

8

Theorem 3 If an LPP has a (finite) optimal solution, then there exists at
least one extreme point, where the objective function has an optimum value.

Theorem 4 Let P1, P2, . . . , Pr described by vectors x1,x2, . . . ,xr be optimal
extreme points. Then every convex combination

x0 = λ1x
1 + λ2x

2 + . . .+ λrx
r, λi ≥ 0, i = 1, 2, . . . , r,

r∑
i=1

λi = 1

is also an optimal solution.

1.4 Standard Form of a Linear Programming Problem

Let r(A) be the rank of matrix A, i.e., the maximum number of linearly independent column
(or equivalently, row) vectors of matrix A.

Definition 4 A system Ax = b of p = r(A) linear equations, where in each equation
one variable occurs only in this equation and it has the coefficient +1, is called system
of linear equations in canonical form. These eliminated variables are called the basic
variables (bv), while the remaining variables are called the nonbasic variables (nbv).

Hence the number of basic variables of a system of linear equations in canonical form is
equal to the rank of matrix A. As a consequence of Definition 4, if a system of linear equations
Ax = b is given in canonical form, the coefficient matrix A always contains an identity matrix.
If r(A) = p = n, the identity matrix I is of order n× n, i.e the system has the form

IxB = b,

where xB is the vector of the basic variables (note that columns may have been interchanged
in matrix A to get the identity matrix which means that the order of the variables in vector
xB is different from that in vector x). If r(A) = p < n, the order of the identity submatrix is
p× p. In the latter case, the system can be written as

IxB + ANxN = b,

where xB is the p-vector of the basic variables, xN is the (n−p)-vector of the nonbasic variables
and AN is the submatrix of A formed by the column vectors belonging to the nonbasic variables
(again column interchanges in matrix A may have been applied).

9

Definition 5 A solution x of a system of equations Ax = b in canonical form, where
each nonbasic variable has the value zero, is called a basic solution.

Definition 6 An LPP of the form

z = cTx −→ max!

s.t. Ax = b, x ≥ 0,

where A = (AN , I) and b ≥ 0, is called the standard form of an LPP.

According to Definition 6, matrix A can be partitioned into some matrix AN and an identity
submatrix I. Thus, the standard form of an LPP is characterized by the following properties:

- the LPP is a maximization problem;

- the constraints are given as a system of linear equations in canonical form with nonneg-
ative right-hand sides and

- all variables have to be nonnegative.

Any LPP can formally be transformed into the standard form by the following rules. We
consider the possible violations of the standard form according to Definition 6.

(a) Some variable xj is not necessarily nonnegative, i.e. xj may take arbitrary values. Then
variable xj is replaced by the difference of two nonnegative variables, i.e. we set:

xj = x∗j − x∗∗j with x∗j ≥ 0 and x∗∗j ≥ 0.

Then we get:
x∗j > x∗∗j ⇐⇒ xj > 0

x∗j = x∗∗j ⇐⇒ xj = 0

x∗j < x∗∗j ⇐⇒ xj < 0.

(b) The given objective function has to be minimized:

z = c1x1 + c2x2 + · · · + cnxn → min!

The determination of a minimum of function z is equivalent to the determination of a maximum
of function z̄ = −z:

z = c1x1 + c2x2 + · · ·+ cnxn → min! ⇐⇒ z̄ = −z = −c1x1 − c2x2 − · · · − cnxn → max!

10

(c) For some right-hand side, we have bi < 0:

ai1x1 + ai2x2 + · · · + ainxn = bi < 0.

In this case, we multiply this constraint by -1 and obtain:

−ai1x1 − ai2x2 − · · · − ainxn = −bi > 0.

(d) Let some constraints be inequalities:

ai1x1 + ai2x2 + · · · + ainxn ≤ bi

or
ak1x1 + ak2x2 + · · · + aknxn ≥ bk.

Then by introducing a slack variable ui and a surplus variable uk, respectively, we obtain an
equation:

ai1x1 + ai2x2 + · · · + ainxn + ui = bi with ui ≥ 0
or

ak1x1 + ak2x2 + · · · + aknxn − uk = bk with uk ≥ 0 .

(e) Let the given system of linear equations be not in canonical form, i.e. the constraints are
given e.g. as follows:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

· · ·

am1x1 + am2x2 + . . . + amnxn = bm

with bi ≥ 0, i = 1, 2, . . . ,m; xj ≥ 0, j = 1, 2, . . . , n.

In the above situation, there is no constraint that contains an eliminated variable with coefficient
+1 (provided that the column vectors of matrix A belonging to variables x1, x2, . . . , xn are
different from the unit vector). Then we introduce in each equation an artificial variable xAi

as basic variable and obtain:

a11x1 + a12x2 + · · · + a1nxn +xA1 = b1
a21x1 + a22x2 + · · · + a2nxn +xA2 = b2
. .
am1x1 + am2x2 + · · · + amnxn +xAm = bm

with bi ≥ 0, i = 1, 2, . . . ,m; xj ≥ 0, j = 1, 2, . . . , n, and xAi ≥ 0, i = 1, 2, . . . ,m.

11

Example 2 Given is the following LPP:

z = −x1 + 3x2 + x4 → min!

s.t. x1 − x2 + 3x3 − x4 ≥ 8
x2 − 5x3 + 2x4 ≤ −4

x3 + x4 ≤ 3
x2, x3, x4 ≥ 0.

First, we substitute variable x1 by the difference of two nonnegative variables x∗1 and x∗∗1 , i.e.
x1 = x∗1 − x∗∗1 with x∗1 ≥ 0, x∗∗2 ≥ 0. Further, we multiply the objective function z by -1 and
obtain:

z = −z = x∗1 − x∗∗1 − 3x2 − x4 → max!

s.t. x∗1 − x∗∗1 − x2 + 3x3 − x4 ≥ 8
x2 − 5x3 + 2x4 ≤ −4

x3 + x4 ≤ 3
x∗1, x

∗∗
1 , x2, x3, x4 ≥ 0.

Multiplying the second constraint by -1 and introducing the slack variable x7 in the third con-
straint as well as the surplus variables x5 and x6 in the first and second constraints, we obtain
all constraints as equations with nonnegative right-hand sides:

z = −z = x∗1 − x∗∗2 − 3x2 − x4 → max!

s.t. x∗1 − x∗∗1 − x2 + 3x3 − x4 − x5 = 8
− x2 + 5x3 − 2x4 − x6 = 4

x3 + x4 + x7 = 3
x∗1, x

∗∗
1 , x2, x3, x4, x5, x6, x7 ≥ 0.

Now we can choose variable x∗1 as eliminated variable in the first constraint and variable x7 as
the eliminated variable in the third constraint, but there is no variable that occurs only in the
second constraint having coefficient +1. Therefore, we introduce the artificial variable xA1 in
the second constraint and obtain:

z = −z = x∗1 − x∗∗2 − 3x2 − x4 → max!

s.t. − x∗∗1 − x2 + 3x3 − x4 − x5 + x∗1 = 8
− x2 + 5x3 − 2x4 − x6 + xA1 = 4

x3 + x4 + x7 = 3
x∗1, x

∗∗
1 , x2, x3, x4, x5, x6, x7, xA1 ≥ 0.

Notice that we have written the variables in such a way that the identity submatrix (column
vectors of variables x∗1, xA1, x7) occurs at the end. So in the standard form, the problem has now
n = 9 variables. A vector satisfying all constraints is only a feasible solution for the original
problem if the artificial variable xA1 has value zero (otherwise the original second constraint
would be violated).

12

1.5 The Simplex Algorithm

Basic idea:

Starting with some initial extreme point (represented by a basic feasible solution resulting
from the standard form of an LPP), we compute the value of the objective function and check
whether the latter can be improved upon by moving to an adjacent extreme point (by applying
the pivoting procedure). If so, we perform this move to the next extreme point and seek then
whether further improvement is possible by a subsequent move. When finally an extreme point
is attained that does not admit any further improvement, it will constitute an optimal solution.

In order to apply such an approach, a criterion to decide whether a move to an adjacent
extreme point improves the objective function value is required which we will derive in the
following. In the following, we assume that the rank of matrix A equals m : r(A) = m, i.e.,
in the canonical form there are m basic variables among the n variables, and the number of
nonbasic variables equals n′ = n−m. Consider a feasible canonical form with the basic variables
xBi and the nonbasic variables xNj:

xBi = b̂i −
n′∑
j=1

âijxNj , i = 1, 2, . . . ,m (n′ = n−m). (8)

Then the objective function z can be written as follows:

z = c1x1 + c2x2 + . . .+ cnxn

= cB1xB1 + cB2xB2 + . . .+ cBmxBm︸ ︷︷ ︸
(basic variables)

+ cN1xN1 + cN2xN2 + . . .+ cNn′xNn′︸ ︷︷ ︸
(nonbasic variables)

=
m∑
i=1

cBixBi +
n′∑
j=1

cNjxNj.

Using equations (8), we can replace the basic variables and write the objective function only
in dependence on the nonbasic variables. We obtain

z =
m∑
i=1

cBi

(
b̂i −

n′∑
j=1

âijxNj

)
+

n′∑
j=1

cNjxNj

=
m∑
i=1

cBib̂i −
n′∑
j=1

(
m∑
i=1

cBiâij − cNj

)
xNj.

We denote the latter row, where the objective function is written in terms of the current
nonbasic variables, as the objective row. Moreover, we define the following values:

z0 =
m∑
i=1

cBib̂i (value of the objective function of the basic solution); (9)

13

gj =
m∑
i=1

cBiâij − cNj (coefficient of variable xNj in the objective row). (10)

Concerning the calculation of value z0 according to formula (9), we remind that in a basic
solution, all nonbasic variables are equal to zero.

Then we get the following representation of the objective function in dependence on the
nonbasic variables xNj:

z = z0 − g1xN1 − g2xN2 − . . .− gn′xNn′ .

Here each coefficient gj gives the change in the objective function value if the nonbasic variable
xNj is included into the set of basic variables (replacing some other basic variable) and if its
value would increase by one unit. By means of the coefficients in the objective row we can give
the following optimality criterion.

Theorem 5 (Optimality or simplex criterion)
If we have gj ≥ 0, j = 1, 2, . . . , n′, for all coefficients of the nonbasic variables
in the objective row, the corresponding solution is optimal.

Corollary 1 If there exists a column l with gl < 0 in a basic feasible solution, the value of
the objective function can be increased by inserting the column vector belonging to the nonbasic
variable xNl into the set of basis vectors, i.e variable xNl becomes basic variable in the next
tableau.

Starting with an initial basic feasible solution, we apply the short tableau of the pivoting
procedure. An additional row contains the coefficients gj together with the objective function
value z0 (i.e. the objective row) calculated as given above:

nbv xN1 xN2 · · · xNl · · · xNn′

bv −1 cN1 cN2 · · · cNl · · · cNn′ 0 Q

xB1 cB1 â11 â12 · · · â1l · · · â1n′ b̂1
xB2 cB2 â21 â22 · · · â2l · · · â2n′ b̂2

...
...

...
...

...
...

...

xBk cBk âk1 âk2 · · · âkl · · · âkn′ b̂k
...

...
...

...
...

...
...

xBm cBm âm1 âm2 · · · âml · · · âmn′ b̂m
z g1 g2 · · · gl · · · gn′ z0

14

Determination of the pivot column l

Choose some column l, 1 ≤ l ≤ n′, such that gl < 0. Often, a column l is used with

gl = min{gj | gj < 0, j = 1, 2, . . . , n′}.

It is worth noting that the selection of the smallest negative coefficient gl does not guarantee
that the algorithm terminates after the smallest possible number of iterations. It only guaran-
tees that there is the biggest increase in the objective function value when going towards the
resulting next extreme point.

Determination of the pivot row k

We remind that after the pivoting step, feasibility of the basic solution must be maintained.
Therefore, we choose row k with 1 ≤ k ≤ m such that

b̂k
âkl

= min

{
b̂i
âil
| âil > 0, i = 1, 2, . . . ,m

}
.

To determine the above quotients, we added the last column Q in the tableau above, where we
enter the quotient in each row in which the corresponding element in the chosen pivot column
is positive.

If column l is chosen as pivot column, the corresponding variable xNl becomes basic vari-
able in the next step. We also say that xNl is the entering variable, and the column of the
initial matrix A belonging to variable xNl is entering the basis. Using row k as pivot row, the
corresponding variable xBk becomes nonbasic variable in the next step. In this case, we say
that xBk is the leaving variable, and the column vector of matrix A belonging to variable xNl

is leaving the basis. Element âkl is denoted as pivot or pivot element. It has been printed in
bold face in the tableau together with the leaving and the entering variable.

The following two theorems characterize situations when either an optimal solution does
not exist or when an existing optimal solution is not uniquely determined.

Theorem 6 If we have gl < 0 for a coefficient of a nonbasic variable in the
objective row and âil ≤ 0 for all coefficients in column l, then the LPP does
not have a (finite) optimal solution.

Theorem 7 If there exists a coefficient gl = 0 in the objective row of an
optimal solution such that âil > 0 for at least one coefficient in column l,
then there exists another optimal basic feasible solution, where xNl is a basic
variable.

15

——————————————————————————————————-

Simplex Algorithm

Step 1: Transform the LPP into the standard form, where the constraints are given in
canonical form as follows (we remind that it is assumed that no artificial variables are necessary
to transform the given problem into standard form):

ANxN + IxB = b, xN ≥ 0, xB ≥ 0, b ≥ 0.

The initial basic feasible solution is

x =

(
xN

xB

)
=

(
0
b

)
with the objective function value z0 = cTx. Establish the corresponding initial tableau.

Step 2: Consider the coefficients gj, j = 1, 2, . . . , n′, of the nonbasic variables xNj in the
objective row.
If gj ≥ 0 for j = 1, 2, . . . , n′, then the current basic feasible solution is optimal, STOP. Other-
wise, there is a coefficient gj < 0 in the objective row.

Step 3: Determine column l with

gl = min{gj | gj < 0, j = 1, 2, . . . , n′}
as pivot column.

Step 4: If ail ≤ 0 for i = 1, 2, . . . ,m, then STOP (in this case, there does not exist an
optimal solution for the problem). Otherwise, there is at least one element ail > 0.

Step 5: Determine the pivot row k such that

bk
akl

= min

{
bi
ail
| ail > 0, i = 1, 2, . . . ,m

}
.

Step 6: Exchange the basic variable xBk of row k with the nonbasic variable xNl of column
l and calculate the following values of the new tableau:

âkl =
1

akl
;

âkj =
akj
akl

; b̂k =
bk
akl

; j = 1, 2, . . . , n′, j 6= l;

âil = − ail
akl

; i = 1, 2, . . . ,m, i 6= k;

âij = aij −
ail
akl
· akj; b̂i = bi −

ail
akl
· bk;

i = 1, 2, . . . ,m, i 6= k; j = 1, 2, . . . , n′, j 6= l.

16

Moreover, we obtain for the values of the last row in the new tableau:

ĝl = − gl
akl

;

ĝj = gj −
gl
akl
· akj; j = 1, 2, . . . , n′, j 6= l;

ẑ0 = z0 −
gl
akl
· bk.

Consider the tableau obtained as new starting solution and go to step 2.

——————————————————————————-

Example 3 A firms intends to manufacture three types of products P1, P2 and P3 so that the
total production cost does not exceed 32,000 EUR. There are 420 working hours possible and
30 units of raw materials may be used. Additionally, the data presented in Table 2 are given.

Table 2: Data for Example 3

Product P1 P2 P3

Selling price (EUR/piece) 1,600 3,000 5,200
Production cost (EUR/piece) 1,000 2,000 4,000

Required raw material per piece 3 2 2
Working time in hours per piece 20 10 20

The objective is to determine the quantities of each product so that the profit is maximized.
Let xi be the number of produced pieces of Pi, i ∈ {1, 2, 3}. We can formulate the above problem
as an LPP as follows:

z = 6x1 + 10x2 + 12x3 → max!

s.t. x1 + 2x2 + 4x3 ≤ 32
3x1 + 2x2 + 2x3 ≤ 30
2x1 + x2 + 2x3 ≤ 42

x1, x2, x3 ≥ 0.

The objective function has been obtained by subtracting the production cost from the selling
price and dividing the resulting profit by 100 for each product. Moreover, the constraint on the
production cost has been divided by 1,000, and the constraint on the working time by 10.

Introducing now in the ith constraint the slack variable x3+i ≥ 0, we obtain the standard
form together with the following initial tableau:

nbv x1 x2 x3

bv −1 6 10 12 0 Q
x4 0 1 2 4 32 8
x5 0 3 2 2 30 15
x6 0 2 1 2 42 21

−6 −10 −12 0

17

Choosing x3 now as the entering variable (since it has the smallest negative coefficient in the
objective row), variable x4 becomes the leaving variable due to the quotient rule. We obtain:

nbv x1 x2 x4
bv −1 6 10 0 0 Q
x3 12 1

4
1
2

1
4

8 16

x5 0 5
2

1 −1
2

14 14

x6 0 3
2

0 −1
2

26 −
−3 −4 3 96

Choosing now x2 as entering variable, x5 becomes the leaving variable. We obtain the tableau:

nbv x1 x5 x4
bv −1 6 0 0 0 Q
x3 12 −1 −1

2
1
2

1

x2 10 5
2

1 −1
2

14

x6 0 3
2

0 −1
2

26

7 4 1 152

Since now all coefficients gj are positive, we get the following optimal solution from the latter
tableau:

x1 = 0, x2 = 14, x3 = 1, x4 = 0, x5 = 0, x6 = 26.

That means, the optimal solution is to produce no piece of product P1, 14 pieces of product P2

and one piece of product P3. Taking into a account that the coefficients of the objective function
were divided by 100, we get a total profit of 15,200 EUR.

Example 4 We consider the following LPP:

z = −2x1 − 2x2 → min!

s.t. x1 − x2 ≥ −1
−x1 + 2x2 ≤ 4
x1, x2 ≥ 0.

First, we transform the given problem into the standard form, i.e. we multiply the objective
function and the first constraint by -1 and introduce the slack variables x3 and x4. We obtain:

z = 2x1 + 2x2 → max!

s.t. − x1 + x2 + x3 = 1
−x1 + 2x2 + x4 = 4

x1, x2, x3, x4 ≥ 0.

18

Now we can establish the first tableau:

nbv x1 x2

bv −1 2 2 0 Q
x3 0 −1 1 1 1
x4 0 −1 2 4 2

−2 −2 0

Since there are only negative elements in the column of variable x1, only variable x2 can be the
entering variable. In this case, we get the quotients given in the last column of the latter tableau
and therefore, variable x3 is the leaving variable. We obtain the following tableau:

nbv x1 x3
bv −1 2 0 0 Q
x2 2 −1 1 1
x4 0 1 −2 2 2

−4 2 2

In the latter tableau, there is only one negative coefficient of a nonbasic variable in the objective
row, therefore, variable x1 becomes the entering variable. Since there is only one positive element
in the column belonging to x1, variable x4 becomes the leaving variable. We obtain the following
tableau:

nbv x4 x3
bv −1 0 0 0 Q
x2 2 1 −1 3
x1 2 1 −2 2

4 −6 10

Since there is only one negative coefficient of a nonbasic variable in the objective row, variable
x3 should be chosen as entering variable. However, there are only negative elements in the
column belonging to x3. It means that we cannot perform a further pivoting step and there does
not exist a finite solution of the maximization problem considered (i.e. the objective function
value can become arbitrarily large, see Theorem 9.5).

Example 5 Given is the following LPP:

z = x1 + x2 + x3 + x4 + x5 + x6 → min!

s.t. 2x1 + x2 + x3 ≥ 4, 000
x2 + 2x4 + x5 ≥ 5, 000

x3 + 2x5 + 3x6 ≥ 3, 000
x1, x2, x3, x4, x5, x6 ≥ 0.

To get the standard form, we notice that in each constraint there is one variable that occurs only
in one constraint (variable x1 occurs only in the first constraint, variable x4 only in the second
constraint and variable x6 only in the third constraint). Therefore, we divide the first constraint

19

by the coefficient two of variable x1, the second constraint by two and the third constraint by
three. Then, we introduce a surplus variable in each of the constraints, multiply the objective
function by -1 and obtain the standard form (again the variables are written in such a way that
the identity submatrix of the coefficient matrix occurs now at the end):

z = −z = −x1 − x2 − x3 − x4 − x5 − x6 → max!

s.t. 1
2
x2 + 1

2
x3 − x7 + x1 = 2, 000

1
2
x2 + 1

2
x5 − x8 + x4 = 2, 500

1
3
x3 + 2

3
x5 − x9 + x6 = 1, 000
x1, x2, x3, x4, x5, x6, x7, x8, x9 ≥ 0.

This yields the following initial tableau:

nbv x2 x3 x5 x7 x8 x9
bv −1 −1 −1 −1 0 0 0 0 Q
x1 −1 1

2
1
2

0 −1 0 0 2, 000 −
x4 −1 1

2
0 1

2
0 −1 0 2, 500 5, 000

x6 −1 0 1
3

2
3

0 0 −1 1, 000 1, 500

0 1
6
−1

6
1 1 1 −5, 500

Choosing now x5 as entering variable, we obtain the quotients given in the last column of the
above tableau and therefore, x6 is chosen as leaving variable. We obtain the following tableau:

nbv x2 x3 x6 x7 x8 x9
bv −1 −1 −1 −1 0 0 0 0 Q
x1 −1 1

2
1
2

0 −1 0 0 2, 000

x4 −1 1
2
−1

4
−3

4
0 −1 3

4
1, 750

x5 −1 0 1
2

3
2

0 0 −3
2

1, 500

0 1
4

1
4

1 1 3
4
−5, 250

Now all coefficients of the nonbasic variables in the objective row are nonnegative and from the
latter tableau we obtain the following optimal solution:

x1 = 2, 000, x2 = x3 = 0, x4 = 1, 750, x5 = 1, 500, x6 = 0

with the optimal objective function value zmax
0 = −5, 250, which corresponds to zmin

0 = 5, 250
(for the original minimization problem). Notice that the optimal solution is not uniquely de-
termined. In the last tableau, there is one coefficient in the objective row equal to zero. Taking
x2 as the entering variable, the quotient rule determines x4 as the leaving variable, and the
following basic feasible solution with the same objective function value is obtained:

x1 = 250, x2 = 3, 500, x3 = x4 = 0, x5 = 1, 500, x6 = 0.

20

1.6 The 2-Phase Simplex Algorithm

The introduction of artificial variables is necessary when at least one constraint is an equation
with no eliminated variable that has coefficient +1, e.g. the constraints may have the following
form:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
. .
am1x1 + am2x2 + · · · + amnxn = bm

xj ≥ 0, i = 1, 2, . . . , n; bi ≥ 0, i = 1, 2, . . . ,m.

As discussed in case (e) of generating the standard form, we introduce an artificial variable
xAi in each equation. Additionally we replace the original objective function z by an objective
function zI minimizing the sum of all artificial variables (or equivalently, maximizing the neg-
ative sum of all artificial variables) since it is our goal that all artificial variables will get value
zero to ensure feasibility for the original problem. This gives the following linear programming
problem to be considered in phase I:

zI = −xA1 − xA2 − · · · − xAm −→ max!

s.t. a11x1 + a12x2 + · · · + a1nxn +xA1 = b1
a21x1 + a22x2 + · · · + a2nxn +xA2 = b2

. .
am1x1 + am2x2 + · · · + amnxn +xAm = bm

(11)

xj ≥ 0, j = 1, 2, . . . , n and xAi ≥ 0, i = 1, 2, . . . ,m.

Assume that we have determined an optimal solution of the auxiliary problem (11) by the
simplex method, i.e. the procedure stops with gj ≥ 0 for all coefficients of the nonbasic variables
in the objective row (for the auxiliary objection function zI).
Then, at the end of phase I, the following cases are possible:

(1) zmax
I < 0 ⇐⇒ The initial problem does not have a feasible solution.

(2) We have zmax
I = 0 and one of the following cases:

(2a) All artificial variables are nonbasic variables. Then the basic solution obtained rep-
resents a feasible canonical form for the initial problem, and we can start with phase
II of the simplex algorithm described in Section 1.5.

(2b) Among the basic variables, there is still an artificial variable: xBk = xAl = 0 (degen-
eration case). Then we have again one of the two possibilities:

21

i) In the row belonging to the basic variable xAl = 0, all coefficients are also equal
to zero. In this case, the corresponding equation is superfluous and can be
omitted.

ii) In the row belonging to the basic variable xAl = 0, we have âkj 6= 0 for at least
one coefficient. Then we can choose âkj as pivot element and replace the artifi-
cial variable xAl by the nonbasic variable xNj.

Example 6 Given is the following LPP:

z = x1 − 2x2 → max!

s.t. x1 + x2 ≤ 4
2x1 − x2 ≥ 1
x1, x2 ≥ 0.

We transform the given problem into standard form by introducing a surplus variable (x3) in
the second constraint, a slack variable (x4) in the first constraint and an artificial variable (xA1)
in the second constraint. Now we replace the objective function z by the auxiliary function zI .
Thus, in phase I of the simplex method, we consider the following LPP:

zI = −xA1 → max!

s.t. x1 + x2 + x4 = 4
2x1 − x2 − x3 + xA1 = 1

x1, x2, x3, x4, xA1 ≥ 0.

We start with the following tableau:

nbv x1 x2 x3
bv −1 0 0 0 0 Q
x4 0 1 1 0 4 4

xA1 −1 2 −1 −1 1 1
2

−2 1 1 −1

Choosing x1 as entering variable gives the quotients presented in the last column of the tableau
above, and variable xA1 becomes the leaving variable. This leads to the following tableau:

nbv xA1 x2 x3
bv −1 −1 0 0 0 Q
x4 0 −1

2
3
2

1
2

7
2

x1 0 1
2
−1

2
−1

2
1
2
−

1 0 0 0

Now phase I is finished, we drop variable xA1 and the corresponding column, use the original
objective function and determine the coefficients gj of the objective row. This yields the following

22

tableau:
nbv x2 x3

bv −1 −2 0 0 Q
x4 0 3

2
1
2

7
2

7

x1 1 −1
2
−1

2
1
2
−

3
2
−1

2
1
2

Due to the negative coefficient in the objective row, we choose x3 as the entering variable in the
next step and variable x4 becomes the leaving variable. Then we obtain the following tableau:

nbv x2 x4
bv −1 −2 0 0 Q
x3 0 3 2 7
x1 1 1 1 4

3 1 4

Since all coefficients gj are nonnegative, the obtained solution is optimal: x1 = 4, x2 = 0. The
introduced surplus variable x3 is equal to seven while the introduced slack variable x4 is equal
to zero. The optimal objective function value is zmax

0 = 4.
Let us consider another LPP assuming that the objective function changes now to

z̃ = −x1 + 3x2 −→ min!

Can we easily decide whether the optimal solution for the former objective function is also
optimal for the new one? We replace only the coefficients c1 and c2 of the objective function in
the last tableau (again for the maximization version of the problem), recompute the coefficients
gj of the objective row and obtain the following tableau:

nbv x2 x4
bv −1 −3 0 0 Q
x3 0 3 2 7
x1 1 1 1 4

4 1 4

Since also in this case all coefficients gj in the objective row are nonnegative, the solution
x1 = 4, x2 = 0 is optimal for z̃ = −x1 + 3x2 −→ min with a function value z̃min

0 = −4.

Example 7 We consider the data given in Example 1 and apply the 2-phase simplex method.
Transforming the given problem into standard form we obtain:

z = −25x1 − 17x2 − 12x3 → max!

s.t. x1 + x2 + x3 + xA1 = 100
x3 + x4 = 30

x1 + x3 + x5 = 50
x2 + x3 + x6 = 90

x1, x2, x3, x4, x5, x6, xA1 ≥ 0.

23

Starting with phase I of the simplex method, we replace function z by the auxiliary objective
function

zI = −xA1 −→ max!,

and we obtain the following initial tableau:

nbv x1 x2 x3
bv −1 0 0 0 0 Q
xA1 −1 1 1 1 100 100
x4 0 0 0 1 30 −
x5 0 1 0 1 50 50
x6 0 0 1 1 90 −

−1 −1 −1 −100

Choosing x1 as the entering variable, we get the quotients given above and select x5 as the
leaving variable. This leads to the following tableau:

nbv x5 x2 x3
bv −1 0 0 0 0 Q

xA1 −1 −1 1 0 50 50
x4 0 0 0 1 30 −
x1 0 1 0 1 50 −
x6 0 0 1 1 90 90

1 −1 0 −50

Now x2 becomes the entering variable and the artificial variable xA1 is the leaving variable. We
get the following tableau, where the superfluous column belonging to xA1 is dropped:

nbv x5 x3
bv −1 0 0 0 Q
x2 −1 −1 0 50
x4 0 0 1 30
x1 0 1 1 50
x6 0 1 1 40

0 0 0

Now, phase I is finished, and we can consider the objective function

z = −25x1 − 17x2 − 12x3 −→ max!

We recompute the coefficients in the objective row and obtain the following tableau:

nbv x5 x3

bv −1 0 −12 0 Q
x2 −17 −1 0 50 −
x4 0 0 1 30 30
x1 −25 1 1 50 50
x6 0 1 1 40 40

−8 −13 −2, 100

24

We choose x3 as entering variable and based on the quotients given in the last column, x4 is
the leaving variable. After this pivoting step, we get the following tableau:

nbv x5 x4
bv −1 0 0 0 Q
x2 −17 −1 0 50 −
x3 −12 0 1 30 −
x1 −25 1 −1 20 20
x6 0 1 −1 10 10

−8 13 −1, 710

We choose x5 as entering variable and x6 as leaving variable which gives the following tableau:

nbv x6 x4
bv −1 0 0 0 Q
x2 −17 1 −1 60
x3 −12 0 1 30
x1 −25 −1 0 10
x5 0 1 −1 10

8 5 −1, 630

The last tableau gives the following optimal solution:

x1 = 10, x2 = 60, x3 = 30, x4 = 0, x5 = 10, x6 = 0

with the objective function value zmin
0 = 1, 630 for the minimization problem.

Example 8 Consider the following LPP:

z = x1 + 2x2 → max!

s.t. x1 − x2 ≥ 1
5x1 − 2x2 ≤ 3
x1, x2 ≥ 0.

Transforming the above problem into standard form, we obtain

z = x1 + 2x2 → max!

x1 − x2 − x3 + xA1 = 1
5x1 − 2x2 + x4 = 3

x1, x2, x3, x4, x5 ≥ 0.

This leads to the following starting tableau for phase I with the auxiliary objective function
zI = −xA1 → max!

nbv x1 x2 x3
bv −1 0 0 0 0 Q
xA1 −1 1 −1 −1 1 1
x4 0 5 −2 0 3 3

5

−1 1 1 −1

25

We choose now variable x1 as entering variable, which gives the leaving variable x4. This yields
the following tableau:

nbv x4 x2 x3
bv −1 0 0 0 0 Q
xA1 −1 −1

5
−3

5
−1 2

5

x1 0 1
5
−2

5
0 3

5

1
5

3
5

1 −2
5

So, we finish with case (1) described earlier, i.e. zmax
I < 0. Consequently, the above LPP does

not have a feasible solution. In fact, in the final tableau, variable xA1 is still positive (so the
original constraint x1 − x2 − x3 = 1 is violated).

26

2 Discrete Optimization

2.1 Preliminaries

Discrete Optimization Problem:

f(x)→ min! (max!)

x ∈ S

Special case: S finite

→ Often S is described by linear inequalities / equations.

Integer (Linear) Optimization Problem:

f (x) = cT · x→ min! (max!)

s.t.

A · x ≤ b

x ∈ Zn
+

Parameters A, b, c integer

Zn
+ - Set of integer, non-negative, n-dimensional vectors

Mixed Integer (Linear) Optimization Problem:

replace x ∈ Zn
+ by

x1, x2, . . . , xr ∈ Z+

xr+1, xr+2, . . . , xn ∈ R+

Binary Optimization Problem:

replace x ∈ Zn
+ by

x1, x2, . . . , xn ∈ {0, 1}
i.e., x ∈ {0, 1}n

27

Mixed Binary Optimization Problem:

replace x ∈ Zn
+ by

x1, x2, . . . , xr ∈ {0, 1}

xr+1, xr+2, . . . , xn ∈ R+

Combinatorial Optimization Problem (COP):

The set S is finite and non-empty.

Example 9 (Investment planning) An enterprise may realize 5 projects with the following
expenditures (in Mill. EUR) for the next three years.

Project year 1 year 2 year 3 profit
1 5 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30

Available budgets 25 25 25

Which projects should be realized in order to maximize the profit?

2.2 Branch and Bound Algorithms (B&B)

• Exact procedure

• Method of implicit enumeration: Exclude successively subsets of S which cannot contain
an optimal solution.

• Basic idea for minimization problems:

– Branching: Partition the set of solutions at least into two (disjoint) subsets.

– Bounding: Determine for each subset S(i) a lower bound LB(i)

– Let UB be a known upper bound and LB(i) ≥ UB for S(i), then S(i) does not need to
be considered further.

28

First we consider a binary optimization problem:

f(x)→ min!

s.t.

x ∈ S ⊆ {0, 1}n

Remark: In the case of a complete enumeration for n = 50, we would already obtain

| {0, 1}50 |= 250 ≈ 1015

possible combinations.

States of variables

Variable uj describes the state of xj as follows:

State of xj Value of xj Value of uj
fixed “settled” 1 1
fixed “locked” 0 0

free 0 ∨1 -1

• Vector u ∈ U := {−1, 0, 1}n is identified with node u in the branching tree. Node u
restricts the set of solutions as follows:

S(u) = {x ∈ S | xj = uj, xj fixed}, j ∈ {1, . . . , n}

• To node u, there corresponds the following optimization problem:

f(x)→ min!

s.t.

x ∈ S(u)

 P (u)

Let f ∗(u) := min{f(x) | x ∈ S(u)}.

29

Introduction of bound functions

Definition 7 A function LB : U → R ∪ {∞} is called a lower bound function, if

(a) LB(u) ≤ min{f(x) | x ∈ S(u)} = f ∗(u)

(b) S(u) = {x} ⇒ LB(u) = f(x)

(c) S(u) ⊆ S(v) ⇒ LB(u) ≥ LB(v)

Definition 8 UB ∈ R is called an upper bound on the optimal objective function value,
if UB ≥ min{f(x) | x ∈ S}.

x̄ represents the best solution found so far.

At the beginning of a B&B procedure, we set UB := f(x̄), if x̄ a heuristic solution, or we set
UB :=∞.

Generation of the branching tree

active node: a node, which has not been investigated yet

At the beginning, the branching tree contains only the root u = (−1,−1, . . . ,−1)T as active
node.

Investigation of an active node u

• Case 1: LB(u) ≥ UB

Node u is removed from the branching tree, since according to Definition 5 (a)

min{f(x) | x ∈ S(u)} ≥ LB(u) ≥ UB

holds.

→ Problem can be excluded.

• Case 2a: LB(u) < UB with uj ∈ {0, 1} for j = 1, 2, . . . , n

solution x = u is uniquely determined

30

If x ∈ S ⇒ due to

f(x) = LB(u) < UB = f(x̄),

we have found a new best solution. Set x̄ := x and UB := f(x̄). (Node u is no longer
active.)

→ Problem can be excluded.

• Case 2b: LB(u) < UB with uj = −1 for (at least) one j ∈ {1, 2, . . . , n}
Generate the successor nodes wi of node u by fixing one (or several) free variables. (Node
u is no longer active, but the successors wi of u are active.)

→ Problem is branched.

Search strategies - Selection of the next active node to be selected for investigation

(a) FIFO strategy (first in, first out)

Newly generated nodes are added to the end of the queue and the node at the beginning
of the queue is investigated next.

→ Breadth first search

(b) LIFO strategy (last in, first out)

Newly generated nodes are added to the end of the queue and the node at the end of the
queue is investigated first.

→ Depth first search

(c) LLB strategy (least lower bound)

The node with the smallest LB(u) is investigated next.
(If LB(u) ≥ UB, then stop.)

The LIFO strategy delivers often quickly feasible solutions. During the course of the search, it
is often recommendable to switch to the FIFO or LLB strategy.

On the bound function LB(u)

One or several constraints of P (u) are “relaxed” or removed.

⇒ One obtains an easier problem P ∗(u) with S∗(u) ⊇ S(u).

31

P ∗(u) → Relaxation of P (u)

Set LB(u) := f(x∗(u)), where x∗(u) is an optimal solution of P ∗(u).

Binary problem: For the free variables, replace xi ∈ {0, 1} by 0 ≤ xi ≤ 1.

(LP relaxation)

B&B algorithm for binary optimization problems (minimization)

Step 1:

• If a feasible solution x ∈ S is known, set

x := x and UB := f(x),

otherwise set
UB :=∞.

• Set u0 := (−1,−1, . . . ,−1)T and Ua := {u0} (u0 is the root).

Step 2:

• If Ua = ∅, go to Step 4.

Otherwise, select by means of a search strategy a node u ∈ Ua, remove u from Ua and
calculate LB(u).

Step 3:

• If LB(u) ≥ UB, go to Step 4 in the case of the LLB strategy.

Otherwise, eliminate u from the branching tree.

• If LB(u) < UB and all variables are fixed, set in the case of x ∈ S:

x := x and UB := f(x).

• If LB(u) < UB and at least one variable is free, generate by fixing one (or several) free
variables the successors of node u. Add the successors of u to Ua and to the branching
tree.

• Go to Step 2.

Schritt 4: (Stop)

• If UB <∞, then x is an optimal solution with f(x) = UB. Otherwise, the problem has
no feasible solution.

32

This procedure can be generalized to mixed binary problems of the form

f(x,y)→ min!

s.t. (
x

y

)
∈ S

x ∈ Rn, y ∈ {0, 1}k.

If all binary variables are fixed, we have an LPP in the variables x1, x2, . . . , xn.

Modifications for integer programming problems

Use as relaxation the resulting LPP, where xi ∈ Z+ is replaced by xi ≥ 0 (LP Relaxation).

The optimal solution (OS) gives a lower bound LB(u) for node u (we have S∗(u) ⊇ S(u)).

Algorithm by Dakin: (branching strategy)

If in the OS of the LPP at least one variable x∗i is not integer, generate two successor nodes vk

und vl by adding the following constraints:

xi ≤ [x∗i] in S(vk) and

xi ≥ [x∗i] + 1 in S(vl)

2.3 Knapsack Problem

Problem: A climber can use n items 1, 2, . . . , n, where

ci - value of item i

ai - volume of item i

V - volume of the knapsack

Goal: Determine a knapsack filling with maximal total value such that the volume V is not
exceeded.

⇒ Introduce binary variables xi as follows:

xi =

{
1, if item i is put into the knapsack

0, otherwise

33

for i = 1, 2, . . . , n
⇒ mathematical model:

n∑
i=1

cixi → max!

s.t.
n∑

i=1

aixi ≤ V

x1, x2, . . . , xn ∈ {0, 1}

 =: S

(K)

Problem (K) is a binary optimization problem with only one constraint.

Greedy Algorithm (heuristic algorithm)

Step 1:

Number the n items according to non-increasing weights ci
ai

and set fG := 0.

Step 2:

For j = 1, 2, . . . , n do:

If aj > V , set k := j, xGj := 0 and go to Step 3, otherwise set

xGj := 1, fG := fG + cj and V := V − aj.

Step 3:

For j = k + 1, k + 2, . . . , n do:

If aj > V , set xGj := 1, fG := fG + cj and V := V − aj.

k - critical index

Some remarks on the B&B algorithm for the knapsack problem

1. See also B&B algorithm for binary optimization problems, but: maximization problem.

2. Determine by means of the greedy algorithm a feasible solution xG and set x̄ := xG and
LB = fG.

34

3. For calculating upper bounds UB(u), use the LP relaxation, i.e., replace the free variables
xj ∈ {0, 1} by 0 ≤ xj ≤ 1.

4. Possibly, the dimension of the initial problem can be reduced.

Theorem 8 Let fLP be the optimal objective function value of the LP relax-
ation and fG the objective function value obtained by the greedy algorithm
for the knapsack problem (K) and k be the critical index.

Then there exists an optimal solution x∗ of problem (K) with the following
properties:

• If for j ∈ {1, 2, . . . , k − 1}

fLP − fG ≤ cj −
aj ck
ak

,

then x∗j = 1.

• If for j ∈ {k + 1, k + 2, . . . , n}

fLP − fG <
aj ck
ak
− cj ,

then x∗j = 0.

Remark: Theorem 1 reduces problem (K) to a core problem.

35

3 Metaheuristics

3.1 Local Search, Preliminaries

Introduce a neighborhood structure as follows:

N : S → 2S

x ∈ S ⇒ N(x) ⊆ 2S

S - Set of feasible solutions

N(x) - Set of neighbors of a feasible solution x ∈ S

Algorithm ITERATIVE IMPROVEMENT

1. determine an initial solution x ∈ S;

REPEAT

2. determine the best solution x′ ∈ N(x);

3. IF f(x′) < f(x) THEN x := x′;

UNTIL f(x′) ≥ f(x) for all x′ ∈ N(x).

x′ - local minimal point w.r.t. neighborhood N

→ The algorithm works with “largest improvement” (best-fit).

Modification:

Use “first improvement” (first-fit), i.e., search the neighborhood in a systematic way and accept
a neighbor with a better objective function value than the current starting solution immediately
for the next iteration.

(Stop, if a complete cycle with all neighbors has been checked without getting a better objective
function value.)

| N(x) | very large ⇒ Generate the neighbors randomly.

⇒ Replace row 2 in algorithm “Iterative Improvement” by

2∗: Determine a solution x′ ∈ N(x)

36

Stop, if

• a settled time limit is elapsed or

• a settled number of feasible solutions has been generated or

• a settled number of solutions after the last objective function value improvement has been
generated without improving the objective function value further.

We consider

f(x)→ min! (max!)

s.t.

x ∈ S ⊆ {0, 1}n

Neighborhood Nk(x):

Nk(x) = {x′ ∈ S |
n∑

i=1

| xi − x′i |≤ k}

(x′ ∈ Nk(x′) ⇔ x′is feasible and differs in at most k components from x)

⇒ | N1(x) | ≤ n

| N2(x) | ≤ n+

(
n

2

)
= n+

n(n− 1)

2
=
n(n+ 1)

2

For the systematic generation of neighbors, change component 1,2,. . . etc.

3.2 Simulated Annealing

randomized procedure, since

• x′ ∈ N(x) is randomly selected

37

• in the i-th iteration, x′ is accepted with probability

min

{
1, exp

(
− f(x′)− f(x)

ti

)}
as new starting solution ({ti} is a sequence of positive control parameters known as the
temperature).

Algorithm SIMULATED ANNEALING

1. i := 0; choose t0;

2. determine an initial solution x ∈ S;

3. best := f(x);

4. x∗ := x;

REPEAT

5. generate randomly a solution x′ ∈ N(x);

6. IF rand[0, 1] < min
{

1, exp
(
−f(x′)−f(x)

ti

)}
THEN x := x′;

7. IF f(x′) < best THEN

BEGIN x∗ := x′; best := f(x′) END;

8. ti+1 := g(ti);

9. i := i+ 1;

UNTIL stopping criterion is satisfied.

Modification:

Threshold Accepting (deterministic variant of Simulated Annealing)

• accept x′ ∈ N(x) if
f(x′)− f(x) ≤ ti

ti – Threshold in the i-th iteration

38

3.3 Tabu Search

Goal: Avoidance of ‘short cycles’

⇒ use attributes to characterize the solutions attended recently and forbid the returnal to such
solutions for a specified number of iterations

Notations:

Cand(x) – contains all neighbors x′ ∈ N(x), to which a transition (‘move’) is allowed

TL – tabu list

t – length of the tabu list

Algorithm TABU SEARCH

1. determine an initial solution x ∈ S;

2. best := f(x);

3. x∗ := x;

4. TL := ∅;
REPEAT

5. determine Cand(x) = { x′ ∈ N(x) | the move from x to x′ is not tabu };
6. select a solution x ∈ Cand(x);

7. update TL (such that maximal t attributes are contained in TL);

8. x := x;

9. IF f(x) < best THEN

BEGIN x∗ := x; best := f(x) END;

UNTIL stopping criterion is satisfied.

39

3.4 Genetic Algorithms

• Use of Darwin’s evolution theory (survival of the fittest)

• Genetic algorithms work with a population of individuals (chromosomes), which are
characterized by their fitness

• Generation of offspring by genetic operators (crossover, mutation)

Fitness and Encoding of an Individual

e.g. fitness(ch)=f(x) for f → max!

fitness(ch)= 1
f(x)

for f → min! and f(x) > 0,

where ch denotes the encoding of solution x ∈ S

x = (0, 1, 1, 1, 0, 1, 0, 1)T ∈ {0, 1}8

ch: 0 1 1 1 0 1 0 1

Genetic Operators for Generating Offspring

Mutation:

“Mutate” the genes of an individual.

parent chromosome 0 1 1 1 0 1 0 1

(3,5)-Inversion 0 1 0 1 1 1 0 1

2-Mutation 0 0 1 1 0 1 0 1

(1,4,7)-Mutation 1 1 1 0 0 1 1 1

Crossover:

Combine the genetic structures of two individuals and generate two offspring.

40

1-Point-Crossover e.g. (4,8)-Crossover

P1 1 0 1 0 0 1 0 1 O1 1 0 1 1 0 0 1 1
→

P2 0 1 1 1 0 0 1 1 O2 0 1 1 0 0 1 0 1

2-Point-Crossover e.g. (3,5)-Crossover

P1 1 0 1 0 0 1 0 1 O1 1 0 1 1 0 1 0 1
→

P2 0 1 1 1 0 0 1 1 O2 0 1 1 0 0 0 1 1

Algorithm GEN-ALG

1. set the parameters population size POPSIZE, maximal number of generations

MAXGEN , probability PCO for the application of a crossover and

probability PMU for the application of a mutation;

2. generate the initial population POP0 with POPSIZE individuals (chromosomes);

3. determine the fitness of all individuals;

4. k := 0;

WHILE k < MAXGEN DO

BEGIN

5. h := 0;

WHILE h < POPSIZE DO

BEGIN

6. select two parents from POPk (e.g. randomly proportional to their fitness values

or according to roulette wheel selection);

7. apply with probability PCO a crossover to the selected parents;

8. apply with probability PMU a mutation to each of the individuals;

9. h := h+ 2;

END;

10. k := k + 1;

11. select from the generated offspring (and possibly also from the parents)

POPSIZE individuals of the k-th generation POPk

(e.g. proportional to their fitness values);

END

41

4 Dynamic Programming

→ Problems are considered, which can be partitioned into particular stages so that the overall
optimization can be replaced by a ‘stepwise optimization’ over the stages.

→ Dynamic programming is often applied to an optimal control of economic processes, where
the stages correspond to time periods.

4.1 Introductory Examples

(a) Inventory Problem

Problem Formulation:

• A good is stored during a finite planning horizon consisting of n periods.

• In each period, a delivery to the inventory is possible at the beginning.

• There is a demand in each period, which has to be satisfied after a potential delivery.

Notations:

uj ≥ 0 - the amount delivered at the beginning of period j

rj ≥ 0 - demand in period j

xj - stock immediately before the delivery in period j (j = 1, 2, . . . , n)

Optimization problem:

n∑
j=1

[
Kδ(uj) + hxj+1

]
→ min!

s.t.

xj+1 = xj + uj − rj, j = 1, 2, . . . , n

x1 = xn+1 = 0

xj ≥ 0, j = 2, 3, . . . , n

uj ≥ 0, j = 1, 2, . . . , n

(12)

42

Remark:

x1 = xn+1 = 0 and (12)

⇒ Replace in the objective function hxj+1 by hxj such that each term in the sum has the form
gj(xj, uj).

xj = xj+1 − uj + rj ≥ 0 ⇒ uj ≤ xj+1 + rj

The constraints can be formulated as follows:

x1 = xn+1 = 0

xj = xj+1 − uj + rj, j = 1, 2, . . . , n

xj ≥ 0, j = 1, 2, . . . , n

0 ≤ uj ≤ xj+1 + rj, j = 1, 2, . . . , n

(b) Knapsack Problem

uj :=
{ 1, if item j is put into the knapsack

0, otherwise

Optimization problem:

n∑
j=1

cjuj → max!

s.t.

n∑
j=1

ajuj ≤ V

u1, u2, . . . , un∈ {0, 1}

→ Here the states are no time periods. The decisions which of the items 1, 2, . . . , n are put
into the knapsack is interpreted as decisions in n successive stages.

xj - remaining volume of the knapsack for the items j, j + 1, . . . , n

43

⇒ x1 = V and xj+1 = xj − ajuj for all j = 1, 2, . . . , n

Reformulated optimization problem:

n∑
j=1

cjuj → max!

u.d.N.

xj+1 = xj − ajuj, j = 1, 2, . . . , n

x1 = V

0 ≤ xj+1 ≤ V, j = 1, 2, . . . , n

uj ∈ {0, 1}, if xj ≥ aj, j = 1, 2, . . . , n

uj = 0, if xj < aj, j = 1, 2, . . . , n

4.2 Problem Formulation

Dynamic programming problems consider a finite planning horizon, which is partitioned into
n periods or stages.

State variable xj:

→ describes the state of the system at the beginning of period j (and at the end of period j−1,
respectively)

→ x1 := xa - given initial state of the system

Decision variable uj:

→ In period 1 the decision u1 is made, which transforms die system into the state x2, i.e.,

x2 = f1(x1, u1),

where, from the decision u1, the cost g1(x1, u1) results.

44

in general:

xj+1 = fj(xj, uj) resultant state

gj(xj, uj) stage cost

Xj+1 6= ∅ State region, which contains possible states at the end of period j,

where X1 = {x1}

Uj(xj) 6= ∅ Control region, which contains possible decisions in period j

(depends on state xj at the beginning of period j)

Optimization problem:

n∑
j=1

gj(xj, uj) → min!

u.d.N.

xj+1 = fj(xj, uj), j = 1, 2, . . . , n

x1 = xa,

xj+1 ∈ Xj+1, j = 1, 2, . . . , n

uj ∈ Uj(xj), j = 1, 2, . . . , n

(13)

Remark: In general, the time complexity increases exponentially with the dimension of the state
and decision variables

Definition 9 A sequence of decisions (u1, u2, . . . , un) is called policy or control. The
sequence of decisions (x1, x2, . . . , xn, xn+1) corresponding to a given policy (u1, u2, . . . , un)
according to

x1 = xa and xj+1 = fj(xj, uj) for all j = 1, 2, . . . , n

is called the corresponding state sequence. A policy or state sequence satisfying the
constraints (13) is called feasible.

45

4.3 Bellman Equations and Bellman’s Principle of Optimality

Given are gj, fj, Xj+1 and Uj for all j = 1, 2, . . . , n.

⇒ Optimization problem depends on x1, i.e., P1(x1).

analogously: Pj(xj) - problem for the periods j, j + 1, . . . , n with the initial state xj

Theorem 9 (Bellman’s Principle of Optimality)

Let (u∗1, . . . , u
∗
j , . . . , u

∗
n) be an optimal policy for the problem P1(x1) and x∗j be

the state at the beginning of period j, then (u∗j , . . . , u
∗
n) is an optimal policy

for the problem Pj(x
∗
j), i.e.:

The decisions in the periods j, . . . , n of the n-period problem P1(x1) are (for
a given state x∗j) independent of the decisions in the periods 1, . . . , j − 1.

Bellman Equations:

1. Let v∗j (xj) be the minimal cost for the problem Pj(xj). For j = 1, 2, . . . , n, the relation-
ships

v∗j (xj) = gj(xj, u
∗
j) + v∗j+1(x

∗
j+1)

= min
uj∈Uj(xj)

{
gj(xj, uj) + v∗j+1[fj(xj, uj)]

}
xj ∈ Xj

(14)

are called the Bellman equations (BE), where

v∗n+1(xn+1) = 0

for xn+1 ∈ Xn+1.

⇒ Function v∗j can be determined provided that v∗j+1 is known.

2. BE can also be determined for the following cases:

46

(a)
n∑

i=1

gj(xj, uj) → max!

⇒ Replace in (14) min! by max!

(b)
n∏

i=1

gj(xj, uj) → min!

⇒ BE:

v∗j (xj) = min
uj∈Uj(xj)

{
gj(xj, uj) · v∗j+1

[
fj(xj, uj)

]}
where v∗n+1(xn+1) := 1 and

gj(xj, uj) > 0 for all xj ∈ Xj, uj ∈ Uj(xj), j = 1, 2, . . . , n

(c) max
1≤j≤n

{
gj(xj, uj)

}
→ min!

⇒ BE:

v∗j (xj) = min
uj∈Uj(xj)

{
max

{
gj(xj, uj); v

∗
j+1

[
fj(xj, uj)

]}}
where v∗n+1(xn+1) = 0

4.4 Bellman Method

⇒ successive evaluation of (14) for j = n, n− 1, . . . , 1 to determine v∗j (xj)

Algorithm DO

Phase 1: Backward Calculation

(a) Set v∗n+1(xn+1) := 0 for all xn+1 ∈ Xn+1.

(b) For j = n, n− 1, . . . , 1 do:

For all xj ∈ Xj, determine z∗j (xj) as the minimum point of function

wj(xj, uj) := gj(xj, uj) + v∗j+1

[
fj(xj, uj)

]
on Uj(xj), i.e.,

wj(xj, z
∗
j (xj)) = min

uj∈Uj(xj)
wj(xj, uj) = v∗j (xj) for xj ∈ Xj

47

Phase 2: Forward Calculation

(a) Set x∗1 := xa.

(b) For j = 1, 2, . . . , n do:

u∗j := z∗j (xj), x
∗
j+1 := fj(x

∗
j , u
∗
j)

⇒ (u∗1, u
∗
2, . . . , u

∗
n) optimal policy

⇒ (x∗1, x
∗
2, . . . , x

∗
n+1) optimal state sequence for problem P1(x

∗
1 = xa)

Summary: DP (Dynamic Programming)

Phase 1: Decomposition

Phase 2: Backward calculation

Phase 3: Forward calculation

Remark: If all equations
xj+1 = fj(xj, uj), j = 1, 2, . . . , n

can be uniquely solved for xj, one can also execute first a forward calculation and then a
backward calculation (e.g. for the inventory problem from 4.1.).

4.5 Examples and Applications

(a) Knapsack Problem

Assumption: V, aj, cj - integer

gj(xj, uj) = cjuj, j = 1, 2, . . . , n

fj(xj, uj) = xj − ajuj, j = 1, 2, . . . , n

Xj+1 = {0, 1, . . . , V }

Uj(xj) =

{
{0, 1} for xj ≥ aj

0 for xj < aj
, j = 1, 2, . . . , n

48

BE:
v∗j (xj) = max

uj∈Uj(xj)

{
cjuj + v∗j+1(xj − ajuj)

}
, 1 ≤ j ≤ n

Backward Calculation:

v∗n(xn) =

{
cn, if xn ≥ an

0, otherwise

z∗n(xn) =

{
1, if xn ≥ an

0, otherwise

For j = n− 1, n− 2, . . . , 1:

v∗j (xj) =

{
max

{
v∗j+1(xj); cj + v∗j+1(xj − aj)

}
, if xj ≥ aj

v∗j+1(xj), otherwise

z∗j (xj) =

{
1, if v∗j (xj) > v∗j+1(xj)

0, otherwise

⇒ v∗1(V) - maximal value of the knapsack filling

Forward Calculation:

x∗1 := V

u∗j := z∗j (x∗j), j = 1, 2, . . . , n

x∗j+1 := x∗j − aju∗j , j = 1, 2, . . . , n

(b) Determination of a Shortest (Longest) Path in a Graph

Goal: Determine a shortest path from vertex (city) x1 to vertex (city) xn+1.

Let:

Xj = {x1j , x2j , . . . , xkj} - set of all vertices of stage j, 2 ≤ j ≤ n

X1 = {x1}, Xn+1 = {xn+1}

Uj(xj) = {xj+1 ∈ Xj+1 | ∃ a vertex from xj to xj+1}, j = 1, 2, . . . , n

49

v∗j (xj) - length of a shortest path from vertex xj ∈ Xj to vertex xn+1

gj(xj, uj) = cxj ,uj

fj+1(xj, uj) = uj = xj+1

z∗j (xj) = uj = xj+1 if xj+1 is the next vertex after vertex xj on a shortest path
from vertex xj to vertex xn+1

BE:
v∗n(xn) = cxn,xn+1 for xn ∈ Xn

For j = n− 1, n− 2, . . . , 1:

v∗j (xj) = min
{
cxj ,xj+1

+ v∗j+1(xj+1) | xj+1 ∈ Xj+1 such that the arc(xj, xj+1) exists
}

50

