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Abstract: We consider the following problem. A set of non-preemptable jobs has to be scheduled
on two identical parallel machines such that the makespan is minimized. Before processing, each
job must be loaded on a machine, which takes a given setup time. All these setups have to be
done by a single server which can handle at most one job at a time. For this problem, we
propose three mixed integer linear programming formulations. We compare our results with
known heuristics.

Keywords: Scheduling algorithms, parallel machines, single server.

1. INTRODUCTION

The problem considered can be described as follows. There
are n independent jobs and two identical parallel machines.
For each job Jj , j = 1, . . . , n, its processing time pj is
given. Before processing, a job must be loaded on the
machine Mq, q = 1, 2, where it is processed which requires
a setup time sj . During such a setup, the machine Mq

is also involved into this process for sj time units, i.e.,
no other job can be processed on this machine during
this setup. All setups have to be done by a single server
which can handle at most one job at a time. The goal
is to determine a feasible schedule which minimizes the
makespan. So, using the common notation, we consider
the problem P2, S1 || Cmax. This problem is strongly NP-
hard since the problem P2, S1 | sj = s | Cmax is strongly
NP-hard, see Hall et al. [2000]. Note also that the problem
P2 || Cmax is NP-hard in the ordinary sense.

The problem P2, S1 || Cmax was considered in Gan
et al. [2012], where some exact and heuristic solutions
were derived and tested. We propose three mixed in-
teger linear programming formulations for the problem
P2, S1 || Cmax, and we compare the performance of these
models with the heuristics proposed in Gan et al. [2012].
Additional information on server scheduling can be found
in Brucker et al. [2002] and Werner and Kravchenko [2010].

2. SETUP SEQUENCE MODEL

In the following model, the loading order of the jobs is
used as in Gan et al. [2012].

Let

xij =

{
1, if Jj is the ith job to be setup,
0, otherwise.

Then, for any feasible schedule, the equalities

n∑
j=1

xi,j = 1 (1)

and
n∑

i=1

xi,j = 1 (2)

must hold.

Let ssi be the loading time of the ith loading job and
ppi be the processing time of the ith loading job, i.e., the
equalities

ssi =

n∑
j=1

sjxi,j (3)

and

ppi =

n∑
j=1

pjxi,j . (4)

hold. Now for the first and the second loading jobs, we can
introduce the inequality

F1,2 ≥ ss1 + ss2, (5)

i.e., the part which forms the makespan. If the processing
part of the first loading job is large enough, then one can
introduce the inequality

L1,2 ≥ pp1 − ss2, (6)

and to denote the time interval when only one machine is
busy, one can introduce L2 with the inequalities

L2 ≥ L1,2 − pp2, (7)



and

L2 ≥ pp2 − L1,2. (8)

Let

xj =

{
1, if Jj is finished last among the jobs 1, . . . , j,
0, otherwise .

Now, to estimate the overlapping part for the first two
jobs, we introduce the inequalities

OF2 ≥ L1,2 −M(1− x2), (9)

and

OF2 ≥ pp2 −Mx2, (10)

where M = maxj{pj}. To know the earliest time when one
of the machines is available, we introduce the inequality

F2 ≥ F1,2 + OF2. (11)

In an analogous way, for j = 2, . . . , n − 1, we have the
following inequalities:

Fj,j+1 ≥ Fj + ssj+1, (12)

Lj,j+1 ≥ Lj − ssj+1, (13)

Lj+1 ≥ Lj,j+1 − ppj+1, (14)

Lj+1 ≥ ppj+1 − Lj,j+1, (15)

OFj+1 ≥ Lj,j+1 −M(1− xj+1), (16)

OFj+1 ≥ ppj+1 −Mxj+1, (17)

Fj+1 ≥ Fj,j+1 + OFj+1. (18)

Now, to minimize the makespan, one has to minimize

Fn + Ln. (19)

Then one can show that the following theorem holds.

Theorem 1. Any schedule s can be described as a feasible
solution of system (1) - (18). The equality

Cmax(s) = Fn + Ln

holds.

Now, to prove the equivalence between the scheduling
problem P2, S1||Cmax and the model (1) - (19), one has
to prove the following theorem.

Theorem 2. Any feasible solution of system (1) - (18)
can be described as a feasible schedule for the problem
P2, S1||Cmax. The equality

Fn + Ln = Cmax(s)

holds.

Thus, we will consider the model M0:

Minimize (19) subject to the constraints (1) - (18).

3. BLOCK MODELS

It is easy to see that any schedule for the problem P2, S1 ||
Cmax can be considered as a unit of blocks B1, . . . , Bz,
where z ≤ n. Each block Bk can be completely defined

sa pa
sa1 pa1 · · · sak pak

Fig. 1. One block, where Ja is the first level job and
{Ja1, . . . , Jak} are the second level jobs

by the first level job Ja and a set of second level jobs
{Ja1, . . . , Jak}, where inequality

pa ≥ sa1 + . . . + sak + pa1 + . . . + pak

holds, see Fig. 1. Thus, the model that we suggest is based
on the fact that any schedule can be decomposed into a
set of blocks.

The variable Bk,f,j is used for a block. We have Bk,f,j = 1
if job Jj is scheduled in level f in the k-th block, otherwise
Bk,f,j = 0. The index k = 1, . . . , n indicates the serial
number of the block. The index f ∈ {1, 2} indicates the
level, i.e., we have f = 1 if the level is the first one, and
f = 2 if the level is the second one. The index j = 1, . . . , n
indicates the job.

Each job belongs to some block, i.e., for any j = 1, . . . , n,
the equality

n∑
k=1

2∑
y=1

Bk,y,j = 1 (20)

holds. There is only one job of the first level for each block,
i.e., for each y = 1 and for any k = 1, . . . , n, the inequality

n∑
j=1

Bk,1,j ≤ 1 (21)

holds.

Since all blocks are given, we define the following data for
each block Bk, where k = 1, . . . , n:

- The loading part of the block Bk has the length
STk ≥ 0, formally inequality

STk ≥
n∑

j=1

sjBk,1,j (22)

holds.
- The objective part of the block Bk has the length

n∑
j=1

(sj + pj)Bk,2,j .

- The processing part of the block Bk has the length
PTk ≥ 0, formally the inequality

PTk ≥
n∑

j=1

pjBk,1,j −
n∑

j=1

(sj + pj)Bk,2,j (23)

holds.

Thus, each block is composed into three parts: loading,
objective, and processing.

We add the objective part to the objective function and
delete it from the block. After deleting the objective part
from each block, the schedule can be considered as a



set of modified jobs J ′k with the setup time STk and
the processing time PTk. The jobs J ′k, k = 1, . . . , n, are
scheduled in staggered order, i.e., job J ′1 is scheduled on the
first machine, job J ′2 is scheduled on the second machine,
job J ′3 is scheduled on the first machine, job J ′4 is scheduled
on the second machine, and so on.

Formally, if we denote by stj the starting time of each
modified job J ′j , then

st1 + ST1 ≤ st2, st2 + ST2 ≤ st3,

and so on, i.e., the inequality

stj + STj ≤ stj+1 (24)

holds for each j = 1, . . . , n− 1;

st1 + ST1 + PT1 ≤ st3, st2 + ST2 + PT2 ≤ st4,

and so on, i.e., the inequality

stj + STj + PTj ≤ stj+2 (25)

holds for each j = 1, . . . , n− 2.
We denote by F the total length of the modified schedule,
i.e., the inequality

F ≥ stn + STn + PTn (26)

holds,
and the inequality

F ≥ stn−1 + STn−1 + PTn−1 (27)

holds.
For each job Jj , the integer number ch[j] is introduced
with the following meaning. If Jj is the first level job for
some block Bx, then ch[j] denotes the maximal number
of second level jobs for the same block. Formally, one can
write

Bx,2,1 + . . . + Bx,2,n ≤ ch[1]Bx,1,1 + . . . + ch[n]Bx,1,n (28)

The objective function is

F +

n∑
x=1

n∑
j=1

(sj + pj)Bx,2,j . (29)

Since any schedule can be decomposed into a set of blocks,
the following theorem holds.

Theorem 3. Any schedule s can be described as a feasible
solution of system (20) - (27) and as a feasible solution of
system (20) - (28), respectively. In both cases, the equality

Cmax(s) = F +

n∑
x=1

n∑
j=1

(sj + pj)Bx,2,j

holds.

Now, to prove the equivalence between the scheduling
problem P2, S1||Cmax and the models (20) - (27) and (20)
- (28), respectively, one has to prove the following theorem.

Theorem 4. Any feasible solution of system (20) - (27) and
any feasible solution of system (20) - (28), respectively,

can be described as a feasible schedule for the problem
P2, S1||Cmax. In both cases, the equality

F +

n∑
x=1

n∑
j=1

(sj + pj)Bx,2,j = Cmax(s)

holds.

Thus, we consider three models in the following.

Model M0: Minimize (19) subject to the constraints (1) -
(18),

model M1: Minimize (29) subject to the constraints (20) -
(28), and

model M2: Minimize (29) subject to the constraints (20) -
(27).

To evaluate the results obtained, we use the known lower
bound

LB = max{LB1, LB2, LB3},
where

LB1 =
1

2

(∑
i∈J

(si + pi) + min
i∈J
{si}

)
,

LB2 =
∑
i∈J

si + min
i∈J
{pi},

LB3 = max
i∈J
{si + pi}

(see Gan et al. [2012]).

Next, we compare the models M0, M1 and M2 with the
model and heuristics developed in Gan et al. [2012].

4. COMPUTATIONAL RESULTS

The performance of the models M0, M1 and M2 was tested
on the data generated in the same way as it is described
in Abdekhodaee and Wirth [2002] and Gan et al. [2012].

For the instances with n ∈ {8, 20, 50, 100}, we have chosen
the same time limits of (300/8)n seconds as in Gan et al.
[2012]. For the instances with n ∈ {200, 250}, we have
chosen a run time limit of 3600 seconds.

Two independent experiments were made.

In the first experiment, we compared the performance of
the models M0 and M1 with the performance of the model
proposed in Gan et al. [2012], which we denote as MP. For
n ∈ {8, 10, 14, 16, 18, 20}, 10 instances were generated for
each

L ∈ {0.1, 0.5, 0.8, 1, 1.5, 1.8, 2.0}
with

pj
d
= U(0, 100) and sj

d
= U(0, 100L).

In the second experiment, we compared the performances
of the models M1 and M2 with the model MP and with
the heuristics proposed in Gan et al. [2012]. For n ∈
{8, . . . , 20}, the data sets were generated for server load
values ranging between 0.1 and 2 with increments of 0.1,
i.e., for each

L = {0.1, 0.2, . . . , 2}
the value sj is uniformly distributed in (0, 100L). For each
value L, 10 instances were randomly generated with

pj
d
= U(0, 100),



Table 1. The time limit is 300 seconds

1 2 3 4 5 6 7 8 9

n L mdl
min ave max min ave max

time time time Cmax
LB

Cmax
LB

Cmax
LB

8

0.1
M0 0.1 30.1 145.7 1 1 1
M1 0.1 28.4 111.8 1 1 1
MP 0.1 79.8 300.0 1 1 1

0.5
M0 0.3 1.3 3.3 1 1 1
M1 0.4 8.7 24.1 1 1 1
MP 2.2 30.0 109.3 1 1 1

0.8
M0 0.1 0.5 0.9 1 1 1
M1 0.1 1.6 2.8 1 1 1
MP 0.1 3.8 9.0 1 1 1

1
M0 0.1 0.4 1.1 1 1 1
M1 0.0 1.2 3.7 1 1 1
MP 0.2 17.2 135.6 1 1 1

1.5
M0 0.0 0.7 2.3 1 1 1
M1 0.0 0.7 2.5 1 1 1
MP 0.0 2.3 10.3 1 1 1

1.8
M0 0.0 0.3 0.8 1 1 1
M1 0.0 0.7 1.6 1 1 1
MP 0.1 1.7 5.6 1 1 1

2.0
M0 0.0 0.1 0.3 1 1 1
M1 0.0 0.1 1.0 1 1 1
MP 0.1 0.2 1.5 1 1 1

i.e., pj is uniformly distributed in (0, 100). For n ∈
{50, 100, 200, 250}, 5 instances were generated for each

L ∈ {0.1, 0.5, 0.8, 1, 1.5, 1.8, 2.0}
with

pj
d
= U(0, 100) and sj

d
= U(0, 100L).

The test instances have been solved using CPLEX 10.1
with 2GB of memory available for working storage, run-
ning on a personal computer Intel(R) Core(TM)i5-2430M
CPU @2.4GHz.

The results of the first experiment are presented in Ta-
bles 1– 6.

The models M0 and M1 worked very fast for n = 8, see
Table 1. We were able to find optimal solutions for all
generated instances twice faster than in the case of using
the model MP. For most instances, the use of the model
M0 appears to be the fastest variant.

The model M0 was the best for n = 10, see Table 2.
However, all the models were able to find optimal solutions
for all generated instances within the time limit of 375
seconds.

Starting with n = 14, the model MP was compara-
ble with the models M1 and M0, see Table 3 and Fig-
ure 2. Here, the time limit was 525 seconds. For L ∈
{0.1, 0.5, 0.8, 1.5, 1.8, 2.0}, the models M0 and M1 were
preferable to the model MP but for L = 1, the model
MP appeared to be the best one in terms of average time.

For n = 16, the model M0 was the best for most instances.
The models M1 and MP were comparable in terms of
average time, see Table 4. Here, the time limit was 600
seconds.

For n = 18, the model M0 turned out to be the best with
respect to the quality of the obtained solutions, see Table 5
and Figure 3. However, it is difficult to say which model

Table 2. The time limit is 375 seconds

1 2 3 4 5 6 7 8 9

n L mdl
min ave max min ave max

time time time Cmax
LB

Cmax
LB

Cmax
LB

10

0.1
M0 0.5 362.3 375.1 1 1 1
M1 248.0 362.3 375.1 1 1 1
MP 49.5 337.6 375.0 1 1 1

0.5
M0 0.5 18.1 77.1 1 1 1
M1 8.8 342.5 375.0 1 1 1
MP 4.0 156.2 375.0 1 1 1

0.8
M0 1.4 15.4 41.8 1 1 1
M1 9.8 101.0 318.1 1 1 1
MP 8.5 131.1 375.0 1 1 1

1.0
M0 0.0 6.0 21.2 1 1 1
M1 0.0 31.0 176.7 1 1 1
MP 0.2 56.0 274.0 1 1 1

1.5
M0 0.0 7.2 27.1 1 1 1
M1 0.0 36.9 107.0 1 1 1
MP 0.1 93.2 375.0 1 1 1

1.8
M0 0.0 20.7 146.8 1 1 1
M1 0.0 31.5 219.9 1 1 1
MP 0.1 28.0 189.5 1 1 1

2.0
M0 0.0 7.5 37.5 1 1 1
M1 0.0 15.4 82.5 1 1 1
MP 0.1 7.3 34.6 1 1 1

-

6
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Fig. 2. Values max Cmax
LB

for n = 14. • refers to the model M0, ◦
refers to the model M1, and ∗ refers to the model MP.

turned out to be the fastest one. Here, the time limit was
675 seconds.

-
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Fig. 3. Values max Cmax
LB

for n = 18. • refers to the model M0, ◦
refers to the model M1, and ∗ refers to the model MP.



Table 3. The time limit is 525 seconds

1 2 3 4 5 6 7 8 9

n L mdl
min ave max min ave max

time time time Cmax
LB

Cmax
LB

Cmax
LB

14

0.1
M0 27.2 432.6 525.0 1.00 1.00 1.00
M1 246.8 477.6 525.1 1.00 1.00 1.00
MP 385.7 511.1 525.0 1.00 1.01 1.05

0.5
M0 12.0 288.9 525.0 1.00 1.00 1.00
M1 525.0 525.0 525.1 1.00 1.00 1.01
MP 35.9 476.1 525.0 1.00 1.01 1.03

0.8
M0 7.8 404.7 525.0 1.00 1.02 1.04
M1 525.0 525.0 525.0 1.00 1.02 1.04
MP 345.8 493.1 525.0 1.00 1.02 1.04

1.0
M0 0.2 472.5 525.0 1.00 1.02 1.04
M1 0.1 472.5 525.1 1.00 1.02 1.04
MP 0.5 439.2 525.0 1.00 1.02 1.04

1.5
M0 0.6 338.6 525.0 1.00 1.02 1.07
M1 0.1 315.2 525.0 1.00 1.02 1.07
MP 1.4 313.0 525.0 1.00 1.02 1.08

1.8
M0 0.0 210.2 525.0 1.00 1.00 1.01
M1 0.1 210.2 525.0 1.00 1.00 1.01
MP 0.4 211.2 525.0 1.00 1.00 1.01

2.0
M0 0.1 210.2 525.0 1.00 1.00 1.01
M1 0.0 241.7 525.0 1.00 1.00 1.01
MP 0.7 265.9 525.0 1.00 1.00 1.01

Table 4. The time limit is 600 seconds

1 2 3 4 5 6 7 8 9

n L mdl
min ave max min ave max

time time time Cmax
LB

Cmax
LB

Cmax
LB

16

0.1
M0 2.3 407.0 600.1 1.00 1.00 1.00
M1 381.1 578.2 600.3 1.00 1.00 1.00
MP 42.1 539.1 600.0 1.00 1.00 1.02

0.5
M0 70.7 496.4 600.0 1.00 1.00 1.00
M1 600.0 600.0 600.2 1.00 1.00 1.00
MP 286.1 568.5 600.0 1.00 1.01 1.05

0.8
M0 256.3 543.3 600.1 1.00 1.02 1.06
M1 600.0 600.0 600.0 1.00 1.02 1.06
MP 419.0 581.9 600.0 1.00 1.03 1.06

1.0
M0 600.0 600.0 600.0 1.00 1.02 1.04
M1 600.0 600.0 600.0 1.00 1.02 1.04
MP 47.3 544.7 600.0 1.00 1.02 1.04

1.5
M0 0.2 284.0 600.0 1.00 1.00 1.02
M1 0.1 300.3 600.0 1.00 1.00 1.02
MP 0.8 308.4 600.0 1.00 1.00 1.02

1.8
M0 0.1 300.1 600.0 1.00 1.01 1.08
M1 0.1 300.4 600.0 1.00 1.01 1.08
MP 1.1 256.4 600.0 1.00 1.01 1.09

2.0
M0 0.0 240.1 600.0 1.00 1.00 1.02
M1 0.0 302.4 600.0 1.00 1.00 1.02
MP 0.4 301.1 600.0 1.00 1.00 1.01

For n = 20, the models M0 and M1 were preferable in
terms of the quality of the obtained solutions, see Table 6
and Figure 4. Here, the time limit was 750 seconds.

In the second experiment, the models M1 and M2 were
compared with the results of Gan et al. [2012]. In Figure
5, we show the variations of the value Cmax

LB in dependence
on the number of jobs.

The model M1 was used for n ∈ {8, 20, 50}, and the model
M2 was used for n ∈ {100, 200, 250}.
For n = 8, we were able to find optimal solutions for all
generated instances within 50 seconds. Note that in the
first experiment, the maximal time used by the model M1
is 111.8 seconds, see Table 1. However, such a time was met

Table 5. The time limit is 675 seconds

1 2 3 4 5 6 7 8 9

n L mdl
min ave max min ave max

time time time Cmax
LB

Cmax
LB

Cmax
LB

18

0.1
M0 25.1 326.5 675.0 1.00 1.00 1.00
M1 675.0 675.0 675.1 1.00 1.00 1.00
MP 6.3 477.1 675.0 1.00 1.02 1.06

0.5
M0 114.9 583.5 675.0 1.00 1.01 1.04
M1 675.0 675.0 675.1 1.00 1.00 1.02
MP 152.2 622.7 675.0 1.00 1.02 1.05

0.8
M0 675.0 675.0 675.1 1.00 1.02 1.05
M1 675.0 675.0 675.1 1.00 1.02 1.05
MP 675.0 675.0 675.0 1.00 1.02 1.05

1.0
M0 675.0 675.0 675.1 1.00 1.01 1.03
M1 12.2 542.7 675.0 1.00 1.01 1.04
MP 11.7 517.0 675.0 1.00 1.01 1.04

1.5
M0 0.5 413.2 675.1 1.00 1.02 1.05
M1 1.2 406.0 675.0 1.00 1.02 1.06
MP 3.1 346.3 675.0 1.00 1.02 1.06

1.8
M0 0.2 508.2 675.0 1.00 1.01 1.02
M1 0.2 540.1 675.0 1.00 1.01 1.03
MP 2.9 475.1 675.0 1.00 1.01 1.02

2.0
M0 0.4 204.3 675.0 1.00 1.00 1.01
M1 0.1 276.8 675.1 1.00 1.00 1.01
MP 1.3 205.8 675.0 1.00 1.00 1.02

-
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for n = 20. • refers to the model M0, ◦
refers to the model M1, and ∗ refers to the model MP.
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Fig. 5. Variations of Cmax
LB

. The thick lines refer to the models
M1 and M2, the dotted lines refer to the results of Gan et al.,
where, however, for n ∈ {50, 100} only the quotient ”Worst
makespan/Best makespan” is given.

only for one instance. In Gan et al. [2012], for the same
instances with n = 8, optimal solutions for all generated
instances were found only within 300 seconds.



Table 6. The time limit is 750 seconds

1 2 3 4 5 6 7 8 9

n L mdl
min ave max min ave max

time time time Cmax
LB

Cmax
LB

Cmax
LB

20

0.1
M0 44.9 627.6 750.0 1.00 1.00 1.01
M1 750.0 750.0 750.2 1.00 1.00 1.00
MP 668.5 735.0 750.0 1.00 1.01 1.03

0.5
M0 750.0 750.0 750.0 1.00 1.00 1.01
M1 750.0 750.0 750.1 1.00 1.00 1.01
MP 750.0 750.0 750.0 1.00 1.01 1.06

0.8
M0 750.0 750.0 750.2 1.01 1.01 1.03
M1 750.0 750.0 750.2 1.01 1.01 1.04
MP 750.0 750.0 750.0 1.01 1.02 1.05

1.0
M0 234.2 698.4 750.0 1.00 1.02 1.04
M1 242.7 699.3 750.0 1.00 1.02 1.04
MP 27.9 677.8 750.0 1.00 1.02 1.04

1.5
M0 0.4 501.9 750.0 1.00 1.01 1.03
M1 0.64 528.8 750.0 1.00 1.01 1.03
MP 4.4 601.0 750.0 1.00 1.01 1.04

1.8
M0 0.7 380.5 750.0 1.00 1.01 1.03
M1 0.1 377.9 750.0 1.00 1.01 1.03
MP 7.4 411.8 750.0 1.00 1.01 1.03

2.0
M0 0.2 449.5 750.0 1.00 1.00 1.01
M1 0.2 556.9 750.0 1.00 1.00 1.01
MP 3.2 315.1 750.0 1.00 1.00 1.01

For n = 20, we used a time limit of 750 seconds.

- For M1, the maximal value for the relation Cmax

LB was

1.05, and the average value for the relation Cmax

LB was
1.01

- while in Gan et al. [2012], the maximal value for the
relation Cmax

LB was 1.08 and the average value for the

relation Cmax

LB was 1.01.

For n = 50, we used a time limit of 1875 seconds.

- For M1, the maximal value for the relation Cmax

LB was

1.05, and the average value for the relation Cmax

LB was
1.01

- while in Gan et al. [2012], the best makespan was
compared not with LB but with the worst makespan
among the heuristics developed. The relation ”Worst
makespan/Best makespan” was ranging from 1.02 to
1.09.

Table 7. The average and the maximal gaps for
n = 200

Load 0.1 0.5 0.8 1.0 1.5 1.8 2.0

ave Cmax
LB

1.01 1.04 1.07 1.09 1.01 1.00 1.00

max Cmax
LB

1.01 1.08 1.10 1.12 1.02 1.01 1.01

For n = 100, we used a time limit of 3750 seconds.

- For M2, the maximal value for the relation Cmax

LB was

1.08, and the average value for the relation Cmax

LB was
1.02

- while in Gan et al. [2012], the relation ”Worst
makespan/Best makespan” was ranging from 1.01 to
1.07.

For n = 200 and for n = 250, we used a time limit of 3600
seconds.

Table 8. The average and the maximal gaps for
n = 250

Load 0.1 0.5 0.8 1.0 1.5 1.8 2.0

ave Cmax
LB

1.02 1.07 1.10 1.10 1.02 1.00 1.00

max Cmax
LB

1.03 1.09 1.11 1.12 1.04 1.00 1.01

- For M2, the maximal values and the average values of
Cmax/LB for each load value are presented in Tables
7 and 8,

- while in Gan et al. [2012], tests have been made only
for n ≤ 100.

5. CONCLUSION

We developed three mixed integer linear programming
formulations for the problem of scheduling a set of jobs
on two parallel machines with a single server. Three
models were tested and the performance was compared
with that of the heuristics developed in Gan et al. [2012].
The computational results show that the new models
outperform all heuristics proposed in Gan et al. [2012] for
most types of instances.
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