Examination in
‘Mathematical Methods in Business and Economics’
(13 February 2013)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator
- **either** two individually prepared one-sided sheets of paper (write ‘2’ on cover sheet) or textbook ‘Mathematics of Economics and Business (write ‘B’ on cover sheet)

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

<table>
<thead>
<tr>
<th>problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td>5</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>50</td>
</tr>
</tbody>
</table>
Problems:

1. (a) How many years does it take to double a principal if interest of 3 % p.a. is credited and compounding takes place twice per year?

(b) Paul has 10,000 EUR available and needs 15,000 EUR after five years. The bank offers an interest rate of 4 % p.a. for the first installment of 10,000 EUR compounded annually and additional periodic payments at the end of each half year for which interest of 3 % p.a. is credited compounded semiannually. What is the necessary periodic payment at the end of each period so that the initial installment and the periodic payments result in 15,000 EUR after five years.

2. Given are the polynomials

\[P_3(x) = x^3 - 13x - 12 \quad \text{and} \quad P_5(x) = x^5 - 5x^4 - 10x^3 + 1. \]

(a) Write function \(f = P_5 / P_3 \) as the sum of a polynomial and a proper rational function.

(b) Determine all zeroes of function \(P_3 \).

(c) Determine

\[\lim_{x \to 1} \frac{2 \ln x}{\sqrt{3x^2 - 2} - 1}. \]

3. Given is the function \(f : D_f \to \mathbb{R} \) with

\[y = f(x) = \lg(15 - 2x - x^2) - 1, \]

where \(\lg \) denotes the logarithm to base 10.

(a) Determine the domain \(D_f \) and all zeroes.

(b) Determine all local extreme points of function \(f \).

(c) Determine the interval(s), where function \(f \) is strictly increasing.

(d) Determine the interval(s), where function \(f \) is concave.
4. (a) Find
\[\int \frac{2}{x(3 - 2 \ln x)} \, dx . \]

(b) Evaluate
\[\int_{0}^{1} \ln(1 + \sqrt{x}) \, dx . \]

5. Determine \(X \) from the matrix equation
\[X + X \cdot U = 2 \cdot (W + X) . \]

Calculate \(X \) when
\[U = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 2 & 3 \\ 4 & 3 & 1 \end{pmatrix} \quad \text{and} \quad W = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 1 & -2 \\ 1 & -1 & 0 \end{pmatrix} . \]

6. Given is the following system of linear equations:
\[
\begin{align*}
 x - y + 4z &= -2 \\
 3x - y + 10z &= 0 \\
 -2x + uy - 4z &= v
\end{align*}
\]

(a) For which values \(u, v \in \mathbb{R} \) does the given system have no solution, infinitely many solutions and a unique solution, respectively?

(b) Consider the case \(u = -2 \) and \(v = -8 \). Determine the general solution and the particular solution satisfying
\[x + y + z = 8 . \]