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1 Introduct}ion

In this paper, we consider the problem of schedu-
ling n jobs on a set of m identical parallel machines
available for processing at time zero. The processing
of a job must be performed on one of the machines
without interruption. Before the processing of a job
can start, a setup must be performed for this job
by a server, which corresponds to a loading of this
job on the corresponding machine. Such a setup is
not possible during the processing of another job on
the corresponding machine. If a server has perfor-
med a setup on a machine, the processing of this job
can immediately start, but on the other hand, the
server is free to perform another setup on another
machine. It is assumed that travel times of a server
between the machines are equal to zero. In the ge-
neral case, a set of k servers is available to perform
these required loadings.

So far, parallel machine scheduling problems
with a single server have been considered. Classical
scheduling objectives in connection with this type
of problems have been considered by Hall, Potts &
Sriskandarajah [10]. In that paper, a study of algo-
rithmic and computational complexity is performed.
In dependence on the objective function, the num-
ber of machines, and the structure of the processing
and setup times, for the majority of these problems
there is either given an efficient algorithm, or it has
been proved that the corresponding problem is NP-
hard which implies that the existence of such an
efficient algorithm is rather unlikely. Some of the
efficient algorithms have been obtained by adapting
classical scheduling algorithms to the corresponding

problem with a single server.

A beam search heuristic for parallel machine
scheduling problems with a single server in such a
static environment described above has been sugge-
sted by Koulamas [12]. Koulamas & Smith [13] give
a look-ahead heuristic for the case of continuously
arriving jobs.

There exist some problems considered in the lite-
rature which are related to parallel machine schedu-
ling with a server. For instance, the machine interfe-
rence problem involves the determination of an op-
timal number of machines to be assigned to a single
operator such that the operator interference, which
occurs when several machines request simultaneous-
ly the service of the operator, is minimized (see for
instance Aronson {2]).

There also exist several studies of robots and au-
tomated guided vehicles in flexible manufacturing.
Wilhelm & Sarin [19] investigate some complexi-
ty issues of several robot-served systems in flexible
manufacturing. Theoretical results on scheduling a
robotic cell have been given for instance by Hall,
Kamoun & Sriskandarajah [7, 8] and Kamoun, Hall
& Sriskandarajah [11]. A more detailed discussion
of the literature on robots and automated guided
vehicles can be found for instance in [5, 17)].

Another related problem is, for example, the
problem of concurrent resource scheduling, where
the processing of some jobs require the simultaneous
use of more than one resource. Dobson & Kamarkar
[4] consider such a problem with the objective to mi-
nimize the total weighted completion time. Sahney
[16] deals with minimizing the total job flow time in
a problem with two identical paralle]l machines and
a single server, where each job is preallocated to a
machine and the server must attend the machine,
but a fixed switching time incurs when the server
moves between .the machines.
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In this paper, we generalize and extend some re-

sults from [10] by considering parallel machine pro-
blems with & servers, where k may be greater than
one. The rest of the paper is organized as follows.
The problem formulation and some required notati-
ons are given in Section 2. In Section 3 we consider
problems with a single server. First we treat the ca-
se of minimizing the makespan, and then we handle
the minimization of forced idle time, and the mini-
mization of total flow time. Finally, in Section 4 we
consider problems with more than one server. We
concentrate on results obtained by the authors, but
review also some other recent results.

2 Problem Formulation

Let N = {1,2,...,n} be the set of jobs which has
to be processed on m identical machines denoted by
M1, Ms,...,Mp,. For every job j € N, a processing
time p; and a setup or server time s; are given. The
processing may be done on exactly one of the iden-
tical machines, and it may only start after a setup
or loading of this job on the corresponding machi-
ne. Both, the setup and the processing, may not
be interrupted. Throughout the paper, we assume
that s; > 1 and p; > 0. Note that zero processing
times are not excluded, and a job with a zero pro-
cessing time can be interpreted as a job with such
a small processing time, which can be disregarded.
In dependence on the problem type considered, al-
so a nonnegative due date d; may be given for job
JEN.

To denote the problems considered in this paper,
we use a classification scheme based on that given
by Graham et al. [6], where a scheduling problem
is described in the form a | 8 | 7. In this scheme,
« gives the scheduling environment, 3 describes so-
me job characteristics, and + indicates the objective
function which has to be minimized. In addition to
parallel machine problems without consideration of
setups, parameter a includes a symbol of the form
Sk, which indicates that k servers are available. For
example, a; = Pm, S2 indicates that we have a pro-
blem with m parallel machines, where m is fixed,
and two servers. For parameter az, we also consi-
der the case of unit processing (p; = 1) and unit
setup (s; = 1) times. If the setup times are equal
but not necessarily unit, we write s; =s. If as = 0,
the processing and setup times are arbitrary.

In this paper, we consider the following objec-
tive functions in parameter a3. If ag = Cpqz, the
makespan or schedule length has to be minimized,
i.e. we minimize Cpaz = MaXj=1,2,....n{Cj}, Where
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C}; denotes the completion time of job j € N. Mo-
reover, Lmaz = maxX;=1,2,..,.n{Cj — d;} denotes the
minimization of the maximum lateness. In additi-
on, we consider the minimization of total flow time
(or the sum of the completion times }° C;) and the
minimization of the forced idle time. Following [12],
we define IT as the amount of time in list scheduling
when some machine is idle due to the unavailability
of the server for setting up a job when needed, i.e.
we disregard the idle time on a machine after all
of its processing is completed, but before the other
machine completes its processing.

A popular class of heuristics for parallel machi-
ne problems are list scheduling algorithms. They try
to balance the work load among parallel machines.
Such a list schedule is described by a permutation
7 = (m1,72,...,7n) of the jobs which gives the se-
quence in which the setups are performed by the
server. More precisely, when considering the i-th
job m;, we determine machine M; which becomes
free first, assign job ; to this machine and perform
the setup by a server as early as possible.

3 Problems with a Single Ser-
ver

In this section we give some complexity results, pre-
sent some polynomially solvable cases and analyze
several list scheduling heuristics for this problem.

3.1 Minimization of Makespan

In [10}, it has been shown that problem P,S1 |
Pj = 1| Crmae can be solved in constant time. On
the other hand, problem P2,51 | s; = 1 | Cpax
was proven to be binary NP-hard, and problem
P2,S1 | s; = s | Cmaz was proven to be unary
NP-hard. ‘

First we present a complexity result for problem
P,51| s; = 1| Cpnqz, where the number of machi-
nes is arbitrary.

Theorem 1 Problem P,S1|sj =1 | Cmqz is una-
ry NP-hard.

Some polynomially solvable cases of problem
P2,51 || Cinaz has been given in {1]. For instance, it
has been proved that problem P2,51|s; +p; =t
Cmaz (ie. each job has a constant sum of setup and
processing time) can be solved in O(nlogn) time.

Concerning a worst case analysis for list schedu-
ling heuristics, in [9] the following results have been
given:
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a) The LPT list scheduling heuristic for problem
P,S1 || Cmaz has a worst-case performance
ratio of 2 — 1/m.

b) An arbitrary list scheduling heuristic for pro-
blem P,S1 || Cmaz has a worst-case perfor-
mance ratio of 3 —2/m.

Clearly, the same is true for problem P, S1 | s; =
1| Craz, and we show that the above bounds are
tight even for the case of unit setup times. First, we
consider the LPT heuristic and show that the bound
2 — 1/m is tight for problem P,S1|s; = 1| Cpaz-

Consider the following instance of problem
P,S1| s; = 1 | Cmaz with mk — 1 jobs, where
k > m. There are m(m — 1) jobs with lengths

!

2 =P2=-~~=P:n(m—1)=k

and m(k — m) +m — 1 jobs with unit lengths

p"m(m.—-l)+1 =...=Pmp-1 =1

Then 7F = (1,2,...,mk — 1) is an LPT list sche-
dule (i.e. all jobs are scheduled in the order of non-
increasing lengths) with the objective function value

CL..=2mk—k-m?*+m-1

On the other hand, an optimal schedule with
Cha.. = mk — 1 is obtained when all jobs are
scheduled by the following list scheduling procedure
LISTA.

Procedure LISTA

1. i:=1;

While i < m Do

Begin
2.  schedule m — 1 jobs with the length k;
schedule k — m jobs with the length 1;
4. i=1+1

End;
5. schedule m — 1 jobs with the length 1.

b

Therefore, we have
CE .. /Ch e = (2mk —k —m? +m —1)/(mk - 1)

which tends to 2 — 1/m for k — oo.

Now consider an arbitrary heuristic and show
that the bound 3 — 2/m is tight for problem P, S1 |
sj = 1 | Cmaz. We consider an instance with
(k—m+1)m+(m—2)m+1 jobs, namely (k—m+1)m
jobs numbered as 1, ..., (k —m + 1)m with length 1,
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(m—2)m jobs numbered as (k=m+1)m+1,...,(k—
m + 1)m + (m — 2)m with length k, where k > m,
and one job (k—m+1)m+ (m—2)m+1 with length
mk - 1.

An optimal schedule with C}, ., = mk — 1 is ob-
tained when all jobs are scheduled by the following
list scheduling procedure LISTB.

Procedure LISTB

=

1:=1;

2.  schedule the job with length mk — 1;
While i < m Do

Begin

3. schedule m — 2 jobs with the length k;
4. schedule k —m + 1 jobs with the length 1;
5. 1:=1+1

End.

If we schedule the jobs in an arbitrary way, we
can schedule at first all unit time jobs, then all jobs
with the length k and then the jobs with the length
mk — 1. As a result, we obtain a schedule with the
makespan value Cpoz = 3km — 2k — 1 —m? + m.
So, we get

Crmaz/Clhaz = (3km — 2k — 1 —m? + m)/(mk — 1)

which tends to 3 — 2/m for k — co.

The above tightness proofs of both bounds given
in a) and b) show that from the point of a worst ca-
se analysis the problem with unit setup times is not
easier than the problem with arbitrary setup times
in the case of LPT and arbitrary list scheduling.

3.2 Minimization of Forced Idle Ti-
me

Next we deal with the IT criterion, where IT is

the forced idle time. First of all we show that,
unlike problem P2,51 | s; = 1 | Crmaz, problem
P2,81 | s; = 1| IT can be solved in O(nlogn)
time. For this purpose we divide the set of all jobs
into two subsets A = {i | s; = 1,p; = 0}.and
B = {i | sj = 1,p; # 0} and arrange all jobs from
B in non-decreasing order of their p;-values. Then
we use the following algorithm P2,S51|s; = 1| IT,
where Ty and T% describe the profile of the current
partial schedule, i.e. T; denotes the completion ti-
me of the job scheduled last on machine j in the
current partial schedule.

Algorithm P2,S1|s; =1|IT
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1. Ty :=0; Tp:=1;

determine set A and the ordered set B;

While AUB # 0 Do~

Begin

determine machine u with T\, = min{T1,T>2};

3. If(|Ty~T2|=1and B#0)or A=0 Then
schedule the next job from set B on machine u
Else schedule an arbitrary job from set A
on machine u;

4. actualize T, and remove the scheduled job
from the corresponding set
End.

X}

Theorem 2 The above algorithm determines an
optimal schedule for problem P2,S1|s; =1|IT.

The next result shows that problem P2,51 | s; =
s | IT is unary N P-hard like the corresponding pro-
blem P2,51 | s; = s | Cnaz. This results strengt-
hens a result by Koulamas [12], who proved unary
NP-hardness only for the case of arbitrary setup ti-
mes.

Theorem 3 Problem P2,51|s; = s | IT is unary
NP-hard.

Now we consider some polynomially solvable cases
of problem P2,5S1|s; = s | IT. First we consider
the case when all processing times are larger than
the constant setup time (p; > s).

Proposition 1 Problem P2,5S1 | s; = s,p; > s |
IT can be solved in O(nlogn) time by the SPT
(shortest processing time) rule.

Now consider the case with constant setup times
and p; < s for all 4.

Proposition 2 Problem P2,51 | s; = s,p; < s |
IT can be solved in O(n) time.

3.3 Minimization of Total Flow Ti-
me

In [10], it has been shown that problems P2,S1 |
s; = 1| 3. C; and problem P,S1 | p; = 1| 3C;
can be solved in O(nlogn) time. Moreover, pro-
blem P,S1 | p; = 1,s; = 1| 3 C; can be sol-
ved in constant time. On the other hand, problem
P2,51|s; = s | Y Cj is unary NP-hard.

The following results settles the open complexi-
ty status of the problem with an arbitrary number
of machines and unit setup times [3].

Theorem 4 Problem P,S1|s; =1|3 C; is una-
ry NP-hard.
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4 Problems with More Than
One Server

In [10], it has been shown that problem P2,S1 |
sj = 1| Cmqz is binary NP-hard. It is not hard to
prove the corresponding result for any fixed number
of machines and servers.

Theorem 5 Problem Pm,Sk | s; = 1| Cpeg is
binary NP-hard.

Next, we will show that problem Pm, S(m—1) |
55 = 1 | Cnaz can be solved optimally for any fi-
xed number of machines in pseudopolynomial time.
This result generalizes a result given in [14] for pro-
blem P2,51|s; =1]|Cnaz-

It is known that problem Pm || Cy.. can be
solved optimally by a well-known pseudopolynomi-
al algorithm (see for instance [18]) even for the case
when all machines are available at different times.
In the following, we denote this algorithm by PP.
Further, we will apply algorithm PP to some parti-
al schedule o and some set N’ C N of jobs which
means that, beginning from a partial schedule o, we
treat the problem as a parallel machine problem wi-
thout servers and schedule all jobs from the set N’
in such a way that it minimizes the makespan value.

A lower bound for the optimal objective functi-
on value of problem Pm,S(m —1) | s; = 1| Cra=
problem is given by Cmaz > max{n, Crnaz}, where
Cmaz is the optimal makespan value for the problem
Pm || Crnez when one machine is available at time
1, all other machines are available at time 0, and the
problem includes n jobs with modified processing ti-
mes p; = p; + 1, where p; is the processing time of
job j € N in problem Pm,S(m—1)|s; = 1| Craz-

We denote a job j € N as feasible for some parti-
al schedule o if after adding job j by list scheduling
to this partial schedule o, in the resulting schedule
not all m machines finish their work at the same
time.

Before the first step of the algorithm all jobs are
unscheduled and the partial schedule oy can be des-
cribed by the initial situation, where the first m —1
machines are available at time 0 and the last one
is available at time 1. There are n steps of the al-
gorithm. In each step i, some new job is scheduled
and the obtained partial schedule o; is considered as
a partial schedule for the parallel machine problem
without servers but with modified processing times
P = p; + 1 of all jobs.
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Algorithm 1

Step i, i=1,...,n:

a) Choose the shortest feasible job (i.e. the job
with the smallest modified processing time), such
that after adding this job to the partial schedule
oi—1 by the list scheduling strategy, and applying al-
gorithm PP to the resulting partial schedule ¢; and
all unscheduled jobs with modified processing times
Pj = p;j + 1, the makespan of the obtained schedule
does not exceed the value Cpor = max{n, C’ma,}.

In the case when such a choice is impossible, take
any job.

b) Generate a new schedule o; from o;_; by ap-
plying list scheduling to the selected job, and delete
this job from further consideration.

The time complexity of Algorithm 1 is
Om3(X L, p)™ ). In order to know the Cpos
value, we need to apply algorithm PP which takes
O(n(3 o, Pi)™ 1) time. In part a) of step i, we
have to consider at most n jobs and to apply algo-
rithm PP to each of the schedules obtained, which
takes O(n(X_1., p})™!) time. Therefore, part a) of
step i needs O(n?(3_-, pi)™ !) time. Since Algo-
rithm 1 consists of n steps, the overall complexity
is O(n®(T1, p™).

Theorem 6 Algorithm 1 constructs an optimal
schedule for problem Pm,S(m —1)|s; =1| Crmaz.

Algorithm 1 can be applied to problem P,S |
sj = 1| Cpqez with an arbitrary number of machi-
nes and servers. However, the schedule obtained
is not necessarily optimal. Consider the followi-

ng instance of problem P3,51 | s; = 1 | Crez.
There are nine jobs with p; = po = p3 = 1,
Pa =ps =ps =pr = 2,pg = 3,pg =4 An

optimal schedule with C,,.z = 10 can be obtained
by applying a list scheduling algorithm to the list
7 = (4,5,6,9,1,2,8,7,3). Algorithm 1 schedules
the jobs in the order =’ = (4,5,6,7,8,9,1,2,3). No-
tice that there is one time unit of idle time before
the setup for job 3 begins on the corresponding ma-
chine. So the obtained Cy,,, value is 11.

The existence of a pseudopolynomial algorithm
for problem Pm, Sk |s; = 1| Cpez with k <m —2
remains open. However, the following result shows
that for the L, criterion, the problem with a fixed
number of machines and servers cannot be solved in
pseudopolynomial time unless P=NP.

Theorem 7 Problem Pm,Sk | s; = 1 | Lygz is
unary NP-hard for any fized number of machines
m and servers k withk <m .
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We already know that problem P,S1|s; =1 |
Crmaz is unary N P-hard. From this result we im-
mediately obtain

Theorem 8 Problem P, Sk | s;j =1| Cpaz ts una-
ry NP-hard.

If the number of machines is fixed, we get the
following result.

Theorem 9 Problem Pm,Sk || Crpas is unary
N P-hard for each k < m.

Now turn to the problem with unit processing
times. In [10], it has been shown that problem
P,S1 | p; = 1| Cpes can be solved optimally in
polynomial time. If the number of servers can be
greater than one, then the problem becomes more
complicated.

Theorem 10 Problem P,Sk | pi = 1| Chaz is
binary NP-hard for each fited k > 1.

Next, we perform a worst case analysis for
two list scheduling algorithms for problem P, Sk ||
Cinaz, i.e. the problem includes an arbitrary num-
ber of identical parallel machines and k servers, whe-
re for each job an arbitrary setup and processing
times are given and the makespan has to be mini-
mized.

We consider the case k£ > 2, and we first give
the following worst-case performance bound for the
LPT heuristic.

Theorem 11 For an LPT schedule, the following
estimation holds:

C;E;Ez'/c:naz S 2+ (k“ 1)/k - k/m,

where CLET denotes the makespan value of an LPT

schedule and Cy, . denotes an optimal makespan va-
lue.

Now we show that the above bound is tight.
Consider the following instance of problem P, Sk ||
Cmaz With (m — k)m + k(k ~ 1) + 1 jobs supposing
that k is a divisor of m. There are given m(m — k)
Jobs with s; = 0 and p; = 1, k(k — 1) jobs with
sj =m/k and p; = 0, and one job with s; = m and
p; = 0. By the LPT heuristic we can schedule all
jobs with p; = 1 first, then all jobs with sj =m/k
and finally the job with s; = m. So the total length
of the resulting schedule is m —k+ (k- 1)m/k+m
whereas an optimal schedule has the length m, and
the latter one is obtained by scheduling the job with
s; = m first, and then k times we do the following:
schedule k — 1 jobs with s; = m/k and (m — k)m/k
jobs with p; = 1.

We now analyze an arbitrary list of jobs.
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Theorem 12 For an arbitrary list of jobs, the List
Scheduling heuristic has a worst-case performance
ratio of

- (k+1)/m,

az/ maox —

where CLS_ denotes the makespan value of an ar-
bitrary list schedule and C,,. denotes an optimal
makespan value.
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