Publisher:
Author:
Book title:

Bookboon.com
Frank Werner
A Refresher Course in Mathematics

This is a self-test of 30 multiple choice questions related to the above book. For any question, there exists exactly one correct answer of the five variants offered. One can find the correct answers and the number of obtainable points under the link
http://www.math.uni-magdeburg.de/~werner/mct-answers.pdf

It is recommended to complete the test within no more than $\mathbf{1 0 0}$ minutes.

MULTIPLE CHOICE QUESTIONS

Question 1: Given are the intervals $I_{1}=[2,5], I_{2}=[1,3], I_{3}=(4,7)$. Which is the interval $I=\left(I_{1} \backslash I_{2}\right) \cup I_{3}$?

Answer 1: $I=[3,7]$.
Answer 2: $I=[2,7]$.
Answer 3: $I=(3,7)$.
Answer 4: $I=[2,3] \cup(4,7)$.
Answer 5: $I=[1,2] \cup(4,7)$.

Question 2: What is the result of simplifying the term

$$
T=3\left[(a-b)(a+b)+b^{2}\right]^{2}+\left[(a-b)^{2}+2 a b\right]^{2} ?
$$

Answer 1: $T=(a+b)^{4}$.
Answer 2: $T=4 a^{4}+2 a^{2} b^{2}+b^{4}$.
Answer 3: $T=a^{2}\left(a^{2}+1\right)+b^{2}\left(b^{2}+1\right)$.
Answer 4: $T=2\left(2 a^{2}+a^{2} b^{2}+b^{4}\right)$.
Answer 5: $T=a^{4}+b^{4}$.

Question 3: Which of the simplifications of the term $T=\frac{a}{a^{2}-2 a b+b^{2}}-\frac{a}{a^{2}-b^{2}}+\frac{1}{a+b}$ is correct?

Answer 1: $T=\frac{a+b}{(a-b)^{2}}$.
Answer 2: $T=\frac{1}{a+b}$.
Answer 3: $T=\frac{(a+b)^{2}}{(a-b)^{2}}$.
Answer 4: $T=\frac{a^{2}+b^{2}}{(a-b)^{2}(a+b)}$.
Answer 5: $T=\frac{a+b}{a^{2}-b^{2}}$.

Question 4: Which real numbers are solutions of the equation $2 \lg (x-1)=\lg (x+5)$?

Answer 1: There is no real solution of the equation.
Answer 2: The only real solution is $x=4$.
Answer 3: The equation has exactly the two solutions $x_{1}=4$ and $x_{2}=-1$.
Answer 4: The only real solution is $x=-1$.
Answer 5: The equation has more than two real solutions.

Question 5: Which real numbers are solutions of the equation $\left(\frac{4}{5}\right)^{x-7}=\left(\frac{25}{16}\right)^{x+3}$?

Answer 1: There exists only one real solution $x=\frac{1}{3}$.
Answer 2: There exists only one real solution $x=-10$.
Answer 3: There exist exactly two real solutions.
Answer 4: There exist more than two real solutions.
Answer 5: There exists no real solution.

Question 6: Which of the following equalities is not correct?

Answer 1: $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$.
Answer 2: $e^{x+y}=e^{x} \cdot e^{y}$.
Answer 3: $\log _{2} x^{y}=y \log _{2} x$.
Answer 4: $\ln (u+v)=\ln u+\ln v$.
Answer 5: $(\sqrt{x}-\sqrt{y})^{2}=x+y-2 \sqrt{x y}$.

Question 7: Which real numbers satisfy the equation $3+2 e^{-2 x}-5 e^{-x}=0$?
Answer 1: The only solutions of the equation are $x_{1}=0$ and $x_{2}=-\ln \frac{3}{2}=\ln \frac{2}{3}$.
Answer 2: The only solution of the equation is $x=0$.
Answer 3: There exists a real double solution $x_{1}=x_{2}=0$.
Answer 4: The equation has no real solution.
Answer 5: The equation has the two solutions $x_{1}=0$ and $x_{2}=1$.

Question 8: It is known that a car consumes 6.2 l gas per 100 km . Which of the following equalities is not correct if x denotes how many km the car can go if the tank holds 40 l ?

Answer 1: 6.2: $40=100: x$.
Answer 2: 6.2: $x=100: 40$.
Answer 3: $6.2 \cdot x=100 \cdot 40$.
Answer 4: $6.2: 100=40: x$.
Answer 5: $x=\frac{4,000}{6.2}$.

Question 9: What can be said about the set L of real numbers satisfying the inequality $-4>2 x-2 x^{2}$?

Answer 1: $L=(-\infty,-1) \cup(2, \infty)$.
Answer 2: $L=(-1,2)$.
Answer 3: $L=\mathbb{R}$.
Answer 4: $L=(-\infty,-1] \cup[2, \infty)$.
Answer 5: $L=\emptyset$.

Question 10: What can be said about the (minimal) number of cases to be considered and the set L of real numbers satisfying the inequality $\frac{6}{2 x+4} \leq|x|$?

Answer 1: We have to consider only one case and $L=[1, \infty)$.
Answer 2: We have to consider two cases and $L=(1, \infty)$.
Answer 3: We have to consider three cases and $L=(-\infty,-2) \cup[1, \infty)$.
Answer 4: We have to consider four cases and $L=\emptyset$.
Answer 5: We have to consider four cases and $L=(-\infty,-2)$.

Question 11: Which of the following equalities is not correct?
Answer 1: $\cos \alpha=\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\alpha}{2}$.
Answer 2: $\tan 2 \alpha=\frac{1}{\tan \alpha-\cot \alpha}$.
Answer 3: $\sin 2 \alpha=\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}$.
Answer 4: $\cos ^{2} \alpha=\frac{\cot ^{2} \alpha}{1+\cot ^{2} \alpha}$.
Answer 5: $\sin (\alpha+t)=\sin \alpha \cos t+\cos \alpha \sin t$.

Question 12: Which angles in the interval $\left[0,360^{\circ}\right]$ are a solution of the equation $2 \sin x+\cos x=2$ (angles rounded to two decimal places)?

Answer 1: There are exactly the three solutions $x_{1}=36.87^{\circ}, x_{2}=90^{\circ}, x_{3}=143.13^{\circ}$.
Answer 2: There is exactly one solution $x=90^{\circ}$.
Answer 3: There are exactly two solutions $x_{1}=90^{\circ}$ and $x_{2}=143.13^{\circ}$.
Answer 4: There are exactly two solutions $x_{1}=36.87^{\circ}$ and $x_{2}=90^{\circ}$.
Answer 5: There are the three solutions $x_{1}=36.87^{\circ}, x_{2}=90^{\circ}, x_{3}=143.13^{\circ}$, but there exist further solutions.

Question 13: What can be said about the curve of second order $4 x^{2}+y^{2}-8 x+4 y=8$?

Answer 1: It is a circle with the radius $r=4$.
Answer 2: It is an ellipse with the half axes $a=2$ and $b=4$.
Answer 3: It is an ellipse with the half axes $a=4$ and $b=16$.
Answer 4: It is a hyperbola with the half axes $a=2$ and $b=4$.
Answer 5: It is a hyperbola with the half axes $a=4$ and $b=16$.

Question 14: Given is a sequence with the terms $a_{1}=1, a_{2}=1, a_{3}=2, a_{4}=3, a_{5}=5, a_{6}=8$. What are the terms a_{7} and a_{8} ?

Answer 1: $a_{7}=11, a_{8}=15$.
Answer 2: $a_{7}=12, a_{8}=17$.
Answer 3: $a_{7}=12, a_{8}=18$.
Answer 4: $a_{7}=13, a_{8}=19$.
Answer 5: $a_{7}=13, a_{8}=21$.

Question 15: A company starts with the production of 10,000 trucks in 2011. If the production increases every year by 10%, what is the production in 2020 and what will be the first year so that in total at least 80,000 trucks are produced?

Answer 1: The production in 2020 is 20,000 trucks and in 2017 , the total production exceeds 80,000 for the first time.

Answer 2: The production in 2020 is 21,435 trucks and in 2017 , the total production exceeds 80,000 for the first time.

Answer 3: The production in 2020 is 23,579 trucks and in 2017 , the total production exceeds 80,000 for the first time.

Answer 4: The production in 2020 is 25,937 trucks and in 2016 , the total production exceeds 80,000 for the first time.
Answer 5: The production in 2020 is 28,531 trucks and in 2015 , the total production exceeds 80,000 for the first time.

Question 16: What can be said about function $f: D_{f} \rightarrow R_{f}$ with $f(x)=\sin x-\frac{1}{2} \sin 2 x$?
Answer 1: Function f has only the zeroes $x_{k}=2 k \pi, k \in \mathbb{Z}$, is odd and periodic with a period of π.
Answer 2: Function f has only the zeroes $x_{k}=k \pi, k \in \mathbb{Z}$, is odd and periodic with a period of 2π.
Answer 3: Function f has only the zeroes $x_{k}=2 k \pi, k \in \mathbb{Z}$, is even and periodic with a period of 2π.

Answer 4: Function f has only the zeroes $x_{k}=k \pi, k \in \mathbb{Z}$, is even and periodic with a period of π.
Answer 5: Function f has only the zeroes $x_{k}=2 k \pi, k \in \mathbb{Z}$, is neither even nor odd and also not periodic.

Question 17: Given are the functions $f:[0,1] \rightarrow R_{f}$ with $f(x)=5 x-1$ and $g:[-1,1] \rightarrow R_{g}$ with $g(x)=\sqrt{1-x^{2}}$. What can be said about the compositions $f \circ g$ and $g \circ f$?

Answer 1: Both compositions $f \circ g$ and $g \circ f$ do not exist.
Answer 2: The composition $(f \circ g)(x)=5 \sqrt{1-x^{2}}-1$ exists, while the composition $g \circ f$ does not exist.
Answer 3: The composition $f \circ g$ does not exist, but the composition $(g \circ f)(x)=\sqrt{1-(5 x-1)^{2}}$ exists.

Answer 4: The composition $f \circ g$ does not exist, but the composition $(g \circ f)(x)=2-4 x$ exists.
Answer 5: Both compositions $f \circ g$ and $g \circ f$ exist.

Question 18: Given is the function $f: D_{f} \rightarrow R_{f}$ with $f(x)=\sqrt{x+1}-2$. What is the domain D_{f}, the inverse function f^{-1} of function f and the domain $D_{f^{-1}}$ of the inverse function?

Answer 1: $D_{f}=[-1, \infty), \quad f^{-1}(x)=(x+2)^{2}-1, \quad D_{f^{-1}}=[-2, \infty)$.
Answer 2: $D_{f}=[0, \infty), \quad f^{-1}(x)=(x+2)^{2}-1, \quad D_{f^{-1}}=\mathbb{R}$.
Answer 3: $D_{f}=[-1, \infty), \quad f^{-1}(x)=(x+1)^{2}-2, \quad D_{f^{-1}}=\mathbb{R}$.
Answer 4: $D_{f}=[-1, \infty), \quad f^{-1}(x)=\sqrt{x+2}-1, \quad D_{f^{-1}}=\mathbb{R}$.
Answer 5: $D_{f}=[0, \infty), \quad f^{-1}(x)=(x+1)^{2}-2, \quad D_{f^{-1}}=\mathbb{R}$.

Question 19: What can be said about function $f: D_{f} \rightarrow R_{f}$ with $f(x)=\frac{\cos \frac{x}{3}}{\left(e^{x}-\sqrt{e}\right)(x+2)}$?
Answer 1: Function f has the zeroes $x=\frac{\pi}{2} \pm k \pi, k \in \mathbb{Z}$, and the only pole at $x=-2$.
Answer 2: Function f has the zeroes $x=\frac{3}{2} \pi \pm k \pi, k \in \mathbb{Z}$, and the only two poles at $x_{1}=\frac{1}{2}$ and $x_{2}=-2$.
Answer 3: Function f has the zeroes $x=\frac{3}{2} \pi \pm 3 k \pi, k \in \mathbb{Z}$, and the only two poles at $x_{1}=\frac{1}{2}$ and $x_{2}=-2$.
Answer 4: Function f has the zeroes $x=\frac{\pi}{2} \pm 3 k \pi, k \in \mathbb{Z}$, and the only two poles at $x_{1}=1$ and $x_{2}=-2$.
Answer 5: Function f has the zeroes $x=\frac{3}{2} \pi \pm 3 k \pi, k \in \mathbb{Z}$, and the only two poles at $x_{1}=1$ and $x_{2}=-2$.

Question 20: Given is the function $f: D_{f} \rightarrow R_{f}$ with $f(x)=\frac{2 x-50}{\sqrt{x}-5}$ and let $L=\lim _{x \rightarrow 25} f(x)$.
What can be said about continuity / discontinuity of the function at the point $x=25$ and the limit L ?

Answer 1: Function f is continuous at $x=25$ and $L=0$.
Answer 2: Function f is discontinuous at $x=25$, and the limit L does not exist since the rightand left-side limits as x tends to 25 do not coincide.

Answer 3: Function f has a pole at $x=25$ and $L=\infty$.
Answer 4: Function f has a gap at $x=25$ and $L=20$.
Answer 5: Function f has a jump at $x=25$ and L does not exist.

Question 21: What can be said about function $f: D_{f} \rightarrow R_{f}$ with $f(x)=1-\frac{2 e^{x}}{e^{x}+1}$?
Answer 1: Function f has no zero and no extreme point, but an inflection point at $x=0$.
Answer 2: Function f has no zero and no inflection point, but a local extreme point at $x=0$.
Answer 3: Function f has a zero and a local extreme point at $x=0$, but no inflection point at $x=0$.
Answer 4: Function f has a zero and an inflection point at $x=0$, but it has no local extreme point at all.

Answer 5: Function f has a zero, an extreme point and an inflection point at $x=0$.

Question 22: What can be said about monotonicity as well as convexity / concavity of function $f: D_{f} \rightarrow R_{f}$ with $f(x)=\frac{3 x-3}{2 x^{3}}$?

Answer 1: Function f is strictly increasing and strictly convex on the domain D_{f}.
Answer 2: Function f is strictly decreasing and strictly concave on the domain D_{f}.
Answer 3: Function f is strictly increasing on $\left(-\infty, \frac{3}{2}\right]$ as well as strictly decreasing on $\left[\frac{3}{2}, \infty\right)$ and strictly convex on $(-\infty, 2]$ as well as strictly concave on $[2, \infty)$.
Answer 4: Function f is strictly increasing on $(-\infty, 0)$ and strictly decreasing on $(0, \infty)$ as well as strictly convex on $(-\infty, 0)$ and strictly concave on $(0, \infty)$
Answer 5: Function f is strictly increasing on $(-\infty, 0)$ as well as on $\left(0, \frac{3}{2}\right]$ and strictly decreasing on $\left[\frac{3}{2}, \infty\right)$ as well as strictly convex on $(-\infty, 0)$, strictly concave on $(0,2]$ as well as strictly convex on $[2, \infty)$.

Question 23: What can be said about the limits

$$
L_{1}=\lim _{x \rightarrow 0} \frac{e^{3 x}+e^{-3 x}-2}{5 x^{2}} \quad \text { and } \quad L_{2}=\lim _{x \rightarrow 0} \frac{e^{3 x}+e^{-3 x}-2}{5 x^{2}-2 x} ?
$$

Answer 1: $L_{1}=1.8$ and $L_{2}=0$.
Answer 2: $L_{1}=L_{2}=0$.
Answer 3: $L_{1}=0$ and $L_{2}=-\infty$.
Answer 4: $L_{1}=\infty$ and $L_{2}=-\infty$.
Answer 5: $L_{1}=L_{2}=\infty$.

Question 24: How can the integral $\int\left(x^{2}+x\right) \cdot e^{\frac{x}{2}} d x$ be found?

Answer 1: Apply integration by substitution with $t=x^{2}+x$.
Answer 2: Apply integration by substitution with $t=e^{\frac{x}{2}}$.
Answer 3: Apply once integration by parts, differentiating the term $e^{\frac{x}{2}}$ and integrating the term $x^{2}+x$.
Answer 4: Apply twice integration by parts, differentiating each time the term $e^{\frac{x}{2}}$.
Answer 5: Apply twice integration by parts, integrating each time the term $e^{\frac{x}{2}}$.

Question 25: Which of the following computations of the area A enclosed by the function f : $D_{f} \rightarrow R_{f}$ with $f(x)=\sin 2 x$ and the x-axis between $x_{1}=0$ and $x_{2}=2 \pi$ is correct?

Answer 1: $A=4 \int_{0}^{\pi / 2} \sin 2 x d x$.
Answer 2: $A=\int_{0}^{2 \pi} \sin 2 x d x$.
Answer 3: $A=\left|\int_{0}^{2 \pi} \sin 2 x d x\right|$.
Answer 4: $A=\int_{0}^{\pi} \sin 2 x d x+\int_{\pi}^{2 \pi} \sin 2 x d x$.
Answer 5: $A=\left|\int_{0}^{\pi} \sin 2 x d x\right|+\left|\int_{\pi}^{2 \pi} \sin 2 x d x\right|$.

Question 26: Which of the following answers is correct for the vectors

$$
\mathbf{a}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right), \quad \mathbf{c}=\left(\begin{array}{c}
-1 \\
4 \\
-2
\end{array}\right) ?
$$

Answer 1: The vectors a and care orthogonal.
Answer 2: We have $\mathbf{b}^{T} \cdot \mathbf{c}=7$.
Answer 3: We have $|\mathbf{a}|=4$.
Answer 4: We have $2 \mathbf{a}+3 \mathbf{b}=\mathbf{c}$.
Answer 5: Vector $\mathbf{a}+\mathbf{b}$ is orthogonal to vector \mathbf{c}.

Question 27: How often does one need to throw a dice so that with probability $\mathrm{P}=0.9$, at least once the number 1 appears?

Answer 1: One has to throw the dice no more than 6 times.
Answer 2: One has to throw the dice 9 times.
Answer 3: One has to throw the dice less than 12 times.
Answer 4: One has to throw the dice 13 times.
Answer 5: One has to throw the dice at least 18 times.

Question 28: In an urn, there are 16 balls, each of them containing one of the numbers 1,2 , $\ldots, 16$. If one notices 5 different numbers and then draws 5 balls from the urn, how large is the probability P_{1} that exactly 3 of the noticed numbers are drawn and how large is the probability P_{2} that at most two of the noticed numbers are drawn (probabilities rounded to two decimal places)?

Answer 1: $P_{1}=0.13$ and $P_{2}=0.86$.
Answer 2: $P_{1}=0.38$ and $P_{2}=0.98$.
Answer 3: $P_{1}=0.01$ and $P_{2}=0.48$.
Answer 4: $P_{1}=0.48$ and $P_{2}=0.99$.
Answer 5: $P_{1}=0.11$ and $P_{2}=0.38$.

Question 29: Let X be a discrete random variable with the probabilities

$$
P(X=1)=0.12, P(X=2)=0.25, P(X=3)=0.45, P(X=4)=0.15, P(X=5)=0.03
$$

How large are the probabilities $P_{1}=P(X<4), P_{2}=P(X \geq 3), P_{3}=P(2<X \leq 4)$?
Answer 1: $P_{1}=0.98, P_{2}=0.63, P_{3}=0.6$.
Answer 2: $P_{1}=0.82, P_{2}=0.18, P_{3}=0.85$.
Answer 3: $P_{1}=0.82, P_{2}=0.18, P_{3}=0.45$.
Answer 4: $P_{1}=0.82, P_{2}=0.63, P_{3}=0.6$.
Answer 5: $P_{1}=0.98, P_{2}=0.63, P_{3}=0.7$.

Question 30: How can the probability that an $N\left(\mu, \sigma^{2}\right)=N(50,4)$-distributed random variable is in the interval $[42,62]$ be calculated using the distribution function Φ of the standard normal distribution?

Answer 1: One has to calculate $\Phi(62)-\Phi(42)$.
Answer 2: One has to calculate $\Phi(62)+\Phi(42)-1$.
Answer 3: One has to calculate $\Phi(6)+\Phi(4)-1$.
Answer 4: One has to calculate $\Phi(3)+\Phi(2)-1$.
Answer 5: One has to calculate $\Phi(6)+1-\Phi(4)$.

