
Minimizing the Number of Machines in a
Unit-Time Scheduling Problem

Svetlana A. Kravchenko 1

United Institute of Informatics Problems,

Surganova St. 6, 220012 Minsk, Belarus

kravch@newman.bas-net.by

Frank Werner
Otto-von-Guericke-Universität, Fakultät für Mathematik,

39106 Magdeburg, Germany

Frank.Werner@Mathematik.Uni-Magdeburg.De

August 23, 2007

Abstract

In this paper, we give a polynomial algorithm for the problem of minimizing the
number of machines in a parallel machine environment with equal processing times
of all jobs and arbitrarily given release dates and deadlines.

Keywords: parallel machine scheduling, linear programming

1 Introduction

The problem considered can be stated as follows. There are n jobs J1, . . . , Jn which have to be
processed on a set of identical parallel machines. For each job Jj, j = 1, . . . , n, a processing
time pj = p, which is equal for all the jobs, a release date rj, and a deadline Dj are given. Each
machine can process only one job at a time. Preemption of processing is not allowed, i.e. the
processing of any job started at time t on one of the identical machines will be completed at
time t + p on the same machine. We want to find a feasible schedule such that the number

1Supported by the Alexander von Humboldt Foundation

1

of machines is minimal. In this paper, we present a polynomial time algorithm for the above
problem.

Note that, if the number of machines is given, then the problem of finding a feasible schedule
was considered in [4]. The criterion of minimizing the number of machines is very important
in practice, see e.g. [3]. The algorithm, presented in this note, is based on the approach given
in [1] and [2].

The remainder of this note is organized as follows. In Section 2, we give a linear programming
(LP) formulation for a relaxation of the scheduling problem under consideration. A polynomial
algorithm for the scheduling problem is presented in Section 3. Finally, we give the correctness
proof for this algorithm in Section 4.

2 LP formulation

A feasible schedule for the problem considered can be found in the class of schedules, where
each job is processed in one of the following intervals of length p :

{[rj + kp, rj + kp + p [| k ∈ {0, 1, . . .}}.

On the other hand, if for some rk and for any index j < k the inequality rj +
∑

rj≤ri<rk
pi ≤ rk

holds, then the problem can be decomposed into subproblems that can be solved independently
from each other. Therefore, without loss of generality, we can suppose that in an optimal
schedule any job is processed within the time interval [mini{ri}, mini{ri}+2np [. Thus, we will
restrict the possible positions of the jobs by the set of intervals

{[rj + kp, rj + kp + p [| k ∈ Z, rj + kp ≥ mini{ri}, rj + kp + p ≤ mini{ri}+ 2np}.

Take all the different intervals from this set and enumerate them in increasing order of their
left endpoints. Denote the obtained set by {Ii | i ∈ {1, . . . , z}} and for each Ii, denote by D(Ii)
the right endpoint of Ii and by R(Ii) the left endpoint of Ii.

One can see that there exists some q such that Ii+1 ∩ . . . ∩ Ii+q 6= ∅ for any i ∈ {0, . . . , z − q}.
Set y = max{q | Ii+1 ∩ . . . ∩ Ii+q 6= ∅, i ∈ {0, . . . , z − q}}, i.e. y is the number of intersecting
intervals.

Consider the following LP problem:
minimize M (2.1)

subject to
z∑

i=1

xji = p, j = 1, . . . , n (2.2)

n∑
j=1

xj,i+1 + . . . +
n∑

j=1

xj,i+y ≤ Mp, i = 0, . . . , z − y (2.3)

2

xji = 0 if R(Ii) < rj i = 1, . . . , z, j = 1, . . . , n (2.4)

xji = 0 if Dj < D(Ii) i = 1, . . . , z, j = 1, . . . , n (2.5)

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n (2.6)

If we set xji equal to the amount of job Jj processed in the interval Ii and set m = dMe
to be the number of machines, then any feasible schedule for the scheduling problem under
consideration can be described as a feasible solution of problem (2.1) – (2.6). On the other
hand, if the obtained solution of problem (2.1) – (2.6) is integer, then it is a solution of the
scheduling problem considered.

In the following, we will suppose that problem (2.1) – (2.6) has been solved and that the
obtained solution x∗ is not integer. Parallel to the notation xji, we will use xj,i to avoid a
confusion between the first index and the second one.

3 Algorithm

In this section, we present a polynomial algorithm for the scheduling problem under considera-
tion. Using x∗ and m, we determine all intervals where jobs are processed in a feasible schedule.
With this purpose, we calculate the value v(Ik) for each interval Ik as follows:

v(Ik) =
k∑

i=1

n∑
j=1

x∗ji, k = 1, . . . , z.

Note that v(Iz) =
∑z

i=1

∑n
j=1 x∗ji = np holds if the solution is feasible.

Since in any interval at most m jobs can be scheduled, we define the values:

v1 = v(I1), . . . , vm = v(I1),

vm+1 = v(I2), . . . , v2m = v(I2),

. . .

v(z−1)m+1 = v(Iz), . . . , vzm = v(Iz),

i.e. we take m copies of each interval enumerated in nondecreasing order of their left endpoints.

Now, using v1, . . . , vzm, we mark all intervals where some jobs are processed in an optimal
schedule. The marking procedure is as follows:

Step 1: To select the first marked interval, one moves from v1 to vzm and takes the first vj such
that vj > 0 · p holds. Denote the corresponding interval by I∗1 , i.e. vj = v(I∗1).

Step 2: To select the second marked interval, one moves from vj = v(I∗1) to vzm and takes the first
vg such that vg > 1 · p holds. Denote the corresponding interval by I∗2 , i.e. vg = v(I∗2).

3

· · ·

Step n: To select the n-th marked interval, one moves from v(I∗n−1) to vzm and takes the first vh

such that vh > (n− 1) · p holds. Denote the corresponding interval by I∗n, i.e. vh = v(I∗n).

The marked intervals determine the places where the jobs are processed in an optimal schedule.
Now, we use all marked intervals I∗1 , . . . , I

∗
n and apply the following

Algorithm 1

Consider the marked intervals I∗1 , . . . , I
∗
n in the given order and schedule

in each of these intervals a currently available job with the earliest

deadline.

4 Feasibility proof

Before proving that the schedule constructed by Algorithm 1 is a feasible one, we investigate
some properties of the vector v. For a solution x∗, let Ii1 , . . . , Iin be all marked intervals and
denote by eij the number of marked copies of the interval Iij , j = 1, . . . , n.

Lemma 1 For any index j ∈ {1, . . . , n}, inequalities

(ei1 + ei2 + . . . + eij)p ≥ v(Iij) > (ei1 + ei2 + . . . + eij − 1)p

hold.

Proof: The proof is done by induction. By Algorithm 1, we have the following properties for
j = 1:

- the first copy of Ii1 is marked since v(Ii1) > 0 · p,

- the second copy of Ii1 is marked since v(Ii1) > 1 · p,

- . . .

- the ei1−th copy of Ii1 is marked since v(Ii1) > (ei1 − 1)p.

Thus, v(Ii1) > (ei1 − 1)p holds. Moreover, if ei1 < m, then by definition of ei1 , the inequalities
ei1p ≥ v(Ii1) > (ei1 − 1)p hold. On the other hand, v(Ii1) ≤ mp holds since for all intervals
Ii with i < i1, the equality x∗ji = 0 holds. Hence, if ei1 = m, then v(Ii1) ≤ ei1p holds. Thus,
Lemma1 is true for i1.

Suppose that Lemma1 holds for any j ≤ k, where k ≤ n− 1, i.e.

(ei1 + ei2 + . . . + eij)p ≥ v(Iij) > (ei1 + ei2 + . . . + eij − 1)p.

4

We want to show that

(ei1 + ei2 + . . . + eik+1
)p ≥ v(Iik+1

) > (ei1 + ei2 + . . . + eik+1
− 1)p

holds.

By Algorithm 1, we have the following properties:

- the first copy of Iik+1
is marked since v(Iik+1

) > (ei1 + ei2 + . . . + eik)p;

- the second copy of Iik+1
is marked since v(Iik+1

) > (ei1 + ei2 + . . . + eik + 1)p;

- . . .

- the eik+1
−th copy of Iik+1

is marked since v(Iik+1
) > (ei1 + ei2 + . . . + eik+1

− 1)p,

i.e. if eik+1
< m, then v(Iik+1

) ≤ (ei1 + ei2 + . . . + eik+1
)p by definition of eik+1

.

Inequality
v(Iik) ≤ (ei1 + ei2 + . . . + eik)p (4.1)

holds by the inductive assumption, and

v(Iik+1
) = v(Iik) +

n∑
l=1

x∗l,ik+1
(4.2)

holds by definition. Moreover, inequality

n∑
l=1

x∗l,ik+1
≤ mp (4.3)

holds by constraint (2.2). Combining (4.1) – (4.3), we have v(Iik+1
) ≤ (ei1 +ei2 +. . .+eik)p+mp,

i.e. if eik+1
= m, then v(Iik+1

) ≤ (ei1 + ei2 + . . . + eik+1
)p holds. 2

Theorem 1 Algorithm 1 constructs a feasible schedule.

Proof: To prove Theorem1, it is sufficient to show that there is a feasible schedule in which
all marked intervals are occupied.

Using vector x∗, we can calculate the restricted release date r∗j and the restricted deadline D∗
j

for each job Jj in the following way: r∗j = min{r(Ii) | x∗ji 6= 0}, D∗
j = max{D(Ii) | x∗ji 6= 0}. It

is clear that [r∗j , D
∗
j [⊆ [rj, Dj[holds. Now we schedule in each marked interval the job with the

minimal restricted deadline among all jobs that are currently available for processing, denote
this schedule by s̃.

To prove Theorem1, it is sufficient to show that s̃ is a feasible schedule. Determine x̃ in the
following way: x̃ji = p if job Jj is scheduled in the interval Ii in s̃, and x̃ji = 0 otherwise.

5

Now, we want to prove that x̃ is a feasible solution of problem (2.2) – (2.6). It is clear that
0 ≤ x̃ji ≤ p for any i = 1, . . . , z and for any j = 1, . . . , n. Thus, we have to prove (2.2), (2.3),
(2.4), and (2.5).

First, we prove (2.2). We show that
∑z

i=1 x̃ji = p for any j = 1, . . . , n. This means that any
job is scheduled in some interval. Since we choose only jobs which are currently available for
processing, this will also prove (2.4) and (2.5). Take any job Jk which is not scheduled. Let
r∗k = r(Iγ), D∗

k = D(Iβ), see Figure 1. In [r∗k, D
∗
k[, there is at least one marked interval since

v(Iβ) − v(Iγ) ≥ p. For all jobs Jj scheduled in these marked intervals, we have D∗
j ≤ D∗

k since
otherwise job Jk would be scheduled but not job Jj. Besides all these marked intervals are
occupied by some jobs.

-

r∗k

Iγ

D∗
k

Iβ

�
�

�	

@
@

@R

Jk

x∗kγ 6=0 x∗kβ 6=0

Figure 1: r∗k = r(Iγ), D∗
k = D(Iβ), and job Jk is not scheduled

Take
r∗u = min{r∗j | Jj is scheduled in some marked interval within [r∗k, D

∗
k[}.

Consider [r∗u, r
∗
k[and all marked intervals in it. For any job g scheduled in these marked intervals,

inequality D∗
g ≤ D∗

k holds since otherwise job Ju would be scheduled but not job Jg. Again,
all these marked intervals are occupied by some jobs because otherwise Ju could have been
scheduled earlier. Take

r∗w = min{r∗j | Jj is scheduled in some marked interval within [r∗u, r
∗
k[}.

Now, we consider [r∗w, r∗u[and all marked intervals in it, and so on. At the end of this process,
we find an interval I∗ = [r∗τ , D

∗
k[such that

• all marked intervals in I∗ are occupied by some jobs;

• for all, say N , jobs scheduled in I∗, we have [r∗j , D
∗
j [⊆ [r∗τ , D

∗
k[;

• job Jk is not scheduled in I∗ but inclusion [r∗k, D
∗
k[⊆ [r∗τ , D

∗
k[holds.

Denote all marked intervals in [r∗τ , D
∗
k[by Iiq+1 , Iiq+2 , . . . , Iiq+f

and the corresponding numbers
of marked copies by eiq+1 , eiq+2 , . . . , eiq+f

. We also consider Iiq , i.e. the last marked interval
before Iiq+1 .

By Lemma 1, we have

(ei1 + ei2 + . . . + eiq)p ≥ v(Iiq) > (ei1 + ei2 + . . . + eiq − 1)p.

6

-

�
�

�
��	

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

Jw

�
�

�
��	

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

Ju

r∗τ r∗w r∗u r∗k D∗
k

�
�

�
��	

@
@

@R

Jk

�
�

�
��	

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

Jτ

Figure 2: Jobs Jτ , Jw, Ju are scheduled in [r∗τ , D∗
k[

Let us assume that v(Iiq) is equal to (ei1 + ei2 + . . . + eiq − 1)p + δ, where 0 < δ ≤ p, and

(ei1 + ei2 + . . . + eiq+f
)p ≥ v(Iiq+f

) > (ei1 + ei2 + . . . + eiq+f
− 1)p.

Moreover, let v(Iiq+f
) = (ei1 + ei2 + . . . + eiq+f

− 1)p + ε, where 0 < ε ≤ p.

Then, for the intervals Iiq+1 , Iiq+2 , . . . , Iiq+f
, we obtain

n∑
j=1

x∗j,iq+1
+

n∑
j=1

x∗j,iq+2
+ . . . +

n∑
j=1

x∗j,iq+f
= (N + 1)p

= v(Iiq+f
)− v(Iiq) = (eiq+1 + eiq+2 + . . . + eiq+f

)p + ε− δ,

since eiq+1 + eiq+2 + . . . + eiq+f
= N . Hence, we have ε − δ = p, i.e. ε = p and δ = 0 but δ has

to be positive by our assumption. Thus, we get a contradiction with the statement that Jk is
not scheduled by Algorithm 1.

Now we want to prove (2.3), i.e. we show that

n∑
j=1

x̃j,i+1 +
n∑

j=1

x̃j,i+2 + . . . +
n∑

j=1

x̃j,i+y ≤ mp

holds for any i = 1, . . . , z − y. Suppose that among the intervals Ii+1, Ii+2, . . . , Ii+y, the
marked intervals are the following ones: Iic , Iic+1 , . . . , Iig with the numbers of marked copies
eic , eic+1 , . . . , eig correspondingly. Thus, we have to show that (eic + eic+1 + . . . + eig)p ≤ mp.

By Lemma 1, we have (ei1 + ei2 + . . .+ eic−1)p ≥ v(Iic−1) and v(Iig) > (ei1 + ei2 + . . .+ eig − 1)p.
Thus,

(eic + eic+1 + . . .+ eig)p = (ei1 + ei2 + . . .+ eig)p− (ei1 + ei2 + . . .+ eic−1)p < v(Iig)− v(Iic−1)+ p.

Furthermore, we obtain

v(Iig)− v(Iic−1) =
n∑

j=1

x∗j,ic +
n∑

j=1

x∗j,ic+1
+ . . . +

n∑
j=1

x∗j,ig ≤ mp

by condition (2.2). Therefore,

v(Iig)− v(Iic−1) + p ≤ mp + p = (m + 1)p,

7

i.e.
eic + eic+1 + . . . + eig < m + 1,

which gives
eic + eic+1 + . . . + eig ≤ m.

2

ACKNOWLEDGEMENTS

The results presented in this paper were attained during a visit of S.A. Kravchenko at the Otto-
von-Guericke-Universität of Magdeburg which was supported by a fellowship of the Alexander
von Humboldt Foundation.

References

[1] P. Brucker, S.A. Kravchenko, Scheduling jobs with equal processing times and time win-
dows on identical parallel machines, OSM Reihe P, Heft 257, Universität Osnabrück, Fach-
bereich Mathematik/Informatik, 2004.

[2] P. Brucker, S.A. Kravchenko, Scheduling jobs with release times on parallel machines
to minimize total tardiness, OSM Reihe P, Heft 258, Universität Osnabrück, Fachbereich
Mathematik/Informatik, 2005.

[3] G.B. Dantzig, D.R. Fulkerson, Minimizing the number of tankers to meet a fixed schedule,
Naval Res. Logist. Quart. 1 (1954) 217-222.

[4] B. Simons, Multiprocessor scheduling of unit-time jobs with arbitrary release times and
deadlines, SIAM J. Comput. 12 (1983) 294-299.

8

