
Minimizing a Regular Function on Uniform
Machines with Ordered Completion Times

Svetlana A. Kravchenko
United Institute of Informatics Problems,

Surganova St. 6, 220012 Minsk, Belarus

Frank Werner ∗

Otto-von-Guericke-Universität, Fakultät für Mathematik,

39106 Magdeburg, Germany

October 22, 2010

Abstract

The scheduling problem we are dealing with is the following one. A set of n
jobs has to be scheduled on a set of uniform machines. Each machine can
handle at most one job at a time. Each job Jj, j = 1, . . . , n, has an arbitrary
due date dj. Job Jj becomes available for processing at its release date rj
and has to be scheduled by its deadline Dj. Each machine has a known
speed. The processing of any job may be interrupted arbitrarily often and
resumed later on any machine. The goal is to find a schedule with a given
order of the completion times that minimizes a non-decreasing function F .
Thus, we consider problem Q | rj, pmtn, Dj | F and want to find an optimal
schedule among the schedules with a given order of completion times. We
show that problem Q | rj, pmtn, Dj | F with a given order of completion
times is equivalent to the problem of minimizing a function F subject to
linear constraints.
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1 Introduction

Linear programming is a powerful tool for solving optimization problems. In the area of
scheduling, it is sufficient to mention the results from [2] and [3] for problem R || ∑Cj

and from [4] for problem R | pmtn | Cmax to demonstrate the power and elegance of
linear programming (in this paper, we always use the standard 3-parameter classification
scheme α | β | γ for scheduling problems introduced in [1]).

For scheduling problems with equal processing times (for a survey on such problems
see [8]), the idea of using linear programming was exploited in [6], where a polynomial
algorithm for problem Q | rj, pj = p, pmtn | ∑Cj has been derived. In spite of the fact
that the order of the completion times in an optimal schedule is known in advance, the
complexity status of this problem remained open for a long time. A subsequent step
was the consideration of problem Q | rj, pj = p, pmtn | ∑wjTj in [7]. It appeared that
problem Q | rj, pj = p, pmtn | ∑Tj is NP-hard whereas problem Q | pj = p, pmtn |∑
Tj can be polynomially solved. Note that for the latter problem, the order of the

completion times in an optimal schedule is known in advance. In this chapter, we
generalize the ideas from [6] and [7] to a more general case.

The problem considered can be stated as follows. There are n independent jobs and m
uniform machines. For each job Jj, j = 1, . . . , n, there is given its processing time pj,
its due date dj ≥ 0, its release time rj ≥ 0, i.e., the processing of any job can be started
only at or after its release date, and its deadline Dj ≥ 0, i.e., no part of the job can be
processed after its deadline. Each machine Mq, q = 1, . . . ,m, has some speed sq ≥ 1,
i.e., the execution of job Jj on machine Mq requires pj/sq time units. Any machine can
process any job but only one job at a time. Furthermore, a job can be processed only
on one machine at a time. Preemptions of processing are allowed, i.e., the processing
of any job may be interrupted at any time and resumed later, possibly on a different
machine. For a schedule s, let F = F (C1(s), . . . , Cn(s)) denote a non-decreasing function
depending on the variables Cj(s), j = 1, . . . , n, where Cj(s) denotes the time at which
the processing of job Jj is completed. If no ambiguity arises, we drop the reference
to schedule s and write Cj. The problem is to schedule all jobs so as to minimize the
optimality criterion F within the class of schedules with a fixed order of completion
times. The described problem can be denoted as Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F .
We show that this problem is equivalent to the problem of minimizing a function F
subject to linear constraints.

This chapter is organized as follows. In Section 2, we describe a polynomial reduction
of problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F to the problem of minimizing a non-
decreasing function F subject to linear constraints. In Section 3, we apply the derived
model to problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn |

∑
wjTj and show that this problem

can be polynomially solved.
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2 Problem Q | rj,pmtn, Dj, C1 ≤ . . . ≤ Cn | F

In this section, we show that problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F, where F is a
non-decreasing function, can be reduced to the problem of minimizing a non-decreasing
function F subject to linear constraints. The idea of the reduction is taken from [6],
where a polynomial algorithm for problem Q | rj, pj = p, pmtn | ∑Cj has been derived.

Suppose that all jobs are numbered according to non-decreasing completion times, i.e.,
i < j implies Ci ≤ Cj for any pair of jobs Ji and Jj. Thus, we will look for an optimal
schedule among the class of schedules for which C1 ≤ . . . ≤ Cn holds.

Note that, if i < j and Di > Dj, then Ci ≤ Cj and Cj ≤ Dj. Therefore, we can set
Di := Dj. Thus, in the following we suppose that D1 ≤ . . . ≤ Dn holds.

Let {b1, . . . , bz} with b1 < . . . < bz be the set of release times, due dates and deadlines,
i.e., {b1, . . . , bz} = {r1, . . . , rn}∪{d1, . . . , dn}∪{D1, . . . , Dn}. Furthermore, we set b0 = 0
and suppose that bz < bz+1 = max{r1, . . . , rn}+

∑n
j=1 pj, i.e., [b0, bz+1] is the time interval

within which all jobs have to be processed. Note that the set of all points {b0, . . . , bz+1}
together with the set of all completion times {C1, . . . , Cn} define a partition of the time
interval. If we know both sets, then an optimal schedule can be easily found using a
reduction to a network flow problem, see [9].

Now, for each job j ∈ {1, . . . , n} and for each interval [bi, bi+1] such that [bi, bi+1] ⊆
[rj, Dj], we define the ‘completion’ time of job Jj : For each job Jj with j = 1, . . . , n and
for each interval [bi, bi+1] ⊆ [rj, Dj] with i = 0, . . . , z, we define the value Ci

j such that, if
some part of job Jj is scheduled in [bi, bi+1], then this part has to be scheduled in [bi, C

i
j],

i.e., there is no part of job Jj processed within the interval [Ci
j, bi+1]. So, for each job

j ∈ {1, . . . , n} and for each interval [bi, bi+1], i = 0, . . . , n, such that [bi, bi+1] ⊆ [rj, Dj],
the values Ci

j define a partition of the interval [bi, bi+1]. It may happen that there is a
job Jj such that [bi, bi+1] 6⊆ [rj, Dj] holds. In this case, we set Ci

j = Ci
j−1. Moreover, we

set Ci
1 ≤ . . . ≤ Ci

n.

For each j ∈ {1, . . . , n}, denote by v(j) the index such that bv(j) = rj and by u(j) the
index such that bu(j)+1 = Dj.

Thus, if we know a feasible schedule s, we can set

Ci
j =


Cj(s) if bi < Cj(s) < bi+1

bi if Cj(s) ≤ bi
bi+1 if Cj(s) ≥ bi+1

(2.1)

for each j = 1, . . . , n, and i = 0, . . . , z such that [bi, bi+1] ⊆ [rj, Dj], see Figure 1.

Using equalities (2.1), we can calculate the value Cj by the formula

Cj = rj + (C
v(j)
j − bv(j)) + (C

v(j)+1
j − bv(j)+1) + . . .+ (C

u(j)
j − bu(j)).
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Figure 1: The structure of the interval [rj , Dj ].

Indeed, let Cj(s) ∈ [bi, bi+1], then

Cj = rj + (C
v(j)
j − bv(j)) + . . .+ (Ci−1

j − bi−1)+

(Ci
j − bi) + (Ci+1

j − bi+1) + . . .+ (C
u(j)
j − bu(j)).

Since rj = bv(j), C
v(j)
j = bv(j)+1, . . . , C

i−1
j = bi and Ci+1

j = bi+1, . . . , C
u(j)
j = bu(j), we

obtain
Cj = bv(j) + (bv(j)+1 − bv(j)) + . . .+ (bi − bi−1)+

(Cj(s)− bi) + (bi+1 − bi+1) + . . .+ (bu(j) − bu(j)) = Cj(s).

Each interval [Ci
k, C

i
k+1] is completely defined by the jobs processed in it. Thus, we

denote by vqj ([C
i
k, C

i
k+1]) the part (amount) of job Jj processed in the interval [Ci

k, C
i
k+1]

on machine Mq, see Figure 2, i.e., the total processing time of job Jj on machine Mq in

the interval [Ci
k, C

i
k+1] equals

vqj ([C
i
k,C

i
k+1])

sq
and for any job Jj, equality

m∑
q=1

n∑
k=0

z∑
i=0

vqj ([C
i
k, C

i
k+1]) = pj

holds.

b0 b1

· · ·
bi = Ci

0 Ci
1

· · ·
Ci
k Ci

k+1

· · ·

vqj ([C
i
k, C

i
k+1])

?

Ci
n Ci

n+1 = bi+1

· · ·
bz bz+1

Figure 2: A partition of the interval [bi, bi+1].

The values C̃j, where j = 0, . . . , n and C̃0 = 0, the values Ci
k, where k = 0, . . . , n+ 1,

i = 0, . . . , z, and the values vqj ([C
i
k, C

i
k+1]), where j = 1, . . . , n, i = 0, . . . , z, k =

0, . . . , n + 1, q = 1, . . . ,m, define a feasible solution of the following minimization
problem:

Minimize
F (C̃1, . . . , C̃n) (2.2)
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subject to

bi = Ci
0 ≤ Ci

1 ≤ · · · ≤ Ci
n ≤ Ci

n+1 = bi+1, i = 0, . . . , z (2.3)

Ci
j = Ci

j−1 if [bi, bi+1] 6⊆ [rj, Dj], i = 0, . . . , z, j = 1, . . . , n (2.4)

m∑
q=1

vqj ([C
i
k, C

i
k+1])

sq
≤ Ci

k+1 − Ci
k, i = 0, . . . , z, j = 1, . . . , n, k = 1, . . . , n (2.5)

n∑
j=1

vqj ([C
i
k, C

i
k+1])

sq
≤ Ci

k+1 − Ci
k, i = 0, . . . , z, q = 1, . . . ,m, k = 1, . . . , n (2.6)

z∑
i=0

n∑
k=0

m∑
q=1

vqj ([C
i
k, C

i
k+1]) = pj, j = 1, . . . , n (2.7)

vqj ([C
i
k, C

i
k+1]) = 0 if [bi, bi+1] 6⊆ [rj, Dj] or j ≤ k,

i = 0, . . . , z, j = 1, . . . , n,

k = 0, . . . , n, q = 1, . . . ,m (2.8)

C̃j = max{C̃j−1, rj +
u(j)∑

i=v(j)

(Ci
j − bi)}, j = 1, . . . , n, C̃0 = 0 (2.9)

Ci
k ≥ 0, i = 0, . . . , z, k = 0, . . . , n (2.10)

vqj ([C
i
k, C

i
k+1]) ≥ 0, i = 0, . . . , z, j = 1, . . . , n,

k = 0, . . . , n, q = 1, . . . ,m (2.11)

C̃j ≥ 0, j = 1, . . . , n, C̃0 = 0 (2.12)

The above formulation includes O(mn2z) variables and constraints.

Theorem 1 For any feasible schedule s of problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F ,
there exists a corresponding feasible solution of problem (2.3)-(2.12) such that

F (C1(s), . . . , Cn(s)) = F (C̃1, . . . , C̃n)

holds.
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Proof: Let s be a feasible schedule of problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F .
Using schedule s, equalities (2.1), (2.4) and (2.8), we obtain the values of all variables
Ci

k and vqj ([C
i
k, C

i
k+1]).

Conditions (2.4) holds by definition.

Conditions (2.9) hold since on the one hand, Cj(s) ≥ Cj−1(s) holds and on the other

hand, Cj(s) = rj +
∑u(j)

i=v(j)(C
i
j − bi) holds because the values Ci

j satisfy (2.1).

To prove that condition (2.3) holds, i.e., that bi = Ci
0 ≤ Ci

1 ≤ · · · ≤ Ci
n ≤ Ci

n+1 = bi+1,
consider two jobs Jx and Jy such that x < y, i.e., Cx ≤ Cy holds.

Let [bi, bi+1] ⊆ [rx, Dx] and [bi, bi+1] ⊆ [ry, Dy]. Consider all possible cases for Cx and Cy.
If Cx ∈ [bi, bi+1] and Cy ∈ [bi, bi+1] hold, then Ci

x ≤ Ci
y since Cx ≤ Cy by definition.

If Cx ∈ [bi, bi+1] and Cy 6∈ [bi, bi+1] hold, then Ci
y = bi+1 and therefore, Ci

x ≤ Ci
y holds.

If Cx 6∈ [bi, bi+1] and Cy ∈ [bi, bi+1] hold, then Cx < bi and hence Ci
x = bi and therefore,

Ci
x ≤ Ci

y holds.
If Cx 6∈ [bi, bi+1] and Cy 6∈ [bi, bi+1] hold, then

Ci
x = Ci

y = bi if Cx ≤ bi and Cy ≤ bi;

Ci
x = bi and Ci

y = bi+1 if Cx ≤ bi and Cy ≥ bi+1;

Ci
x = Ci

y = bi+1 if Cx ≥ bi+1 and Cy ≥ bi+1.

Thus, for each case Ci
x ≤ Ci

y holds.

Let [bi, bi+1] 6⊆ [rx, Dx] and [bi, bi+1] 6⊆ [ry, Dy]. In this case, Ci
x = Ci

x−1 and Ci
y = Ci

y−1

hold and to compare Ci
x and Ci

y, we have to consider Ci
x−1 and Ci

y−1 under the condition
that x− 1 < y − 1 holds.

Let [bi, bi+1] 6⊆ [rx, Dx] and [bi, bi+1] ⊆ [ry, Dy]. In this case, Ci
x = Ci

x−1 and to compare
Ci

x and Ci
y, we have to consider Ci

x−1 and Ci
y under the condition that x− 1 < y holds.

Let [bi, bi+1] ⊆ [rx, Dx] and [bi, bi+1] 6⊆ [ry, Dy]. In this case, Ci
y = Ci

y−1 and if y − 1 = x
holds, then Ci

x = Ci
y but if y − 1 > x, then to compare Ci

x and Ci
y, we have to consider

Ci
x and Ci

y−1 under the condition that x < y − 1 holds.

Thus, condition (2.3) holds.

Inequalities (2.5) hold since all parts v1j ([Ci
k, C

i
k+1]), · · · , vmj ([Ci

k, C
i
k+1]) of job j have to

be scheduled in the interval [Ci
k, C

i
k+1] on different machines without overlapping.

Inequalities (2.6) hold since the parts vq1([C
i
k, C

i
k+1]), · · · , vqn([Ci

k, C
i
k+1]) of all jobs have

to be scheduled in the interval [Ci
k, C

i
k+1] on machine Mq without overlapping.

For each job Jj, the sum of all values vqj ([C
i
k, C

i
k+1]) has to be equal to pj since job Jj

has to be processed completely. Therefore, equalities (2.7) must hold.
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Furthermore, C̃j = Cj(s) since, due to (2.1),

Ci
j − bi =


Cj(s)− bi if bi < Cj(s) < bi+1

0 if Cj(s) ≤ bi
bi+1 − bi if Cj(s) ≥ bi+1

holds for any interval [bi, bi+1] with [bi, bi+1] ⊆ [rj, Dj]. Therefore,

Cj(s) = rj +
u(j)∑

i=v(j)

(Ci
j − bi).

Thus, minimizing F (C1(s), . . . , Cn(s)) is equivalent to minimizing F (C̃1, . . . , C̃n). 2

Now we prove

Theorem 2 Any feasible solution of problem (2.2)-(2.12) provides a feasible schedule s
for the scheduling problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F such that

F (C1(s), . . . , Cn(s)) = F (C̃1, . . . , C̃n)

holds.

Proof: Let vqj ([C
i
k, C

i
k+1]) and Ci

k, where k = 0, . . . , n, i = 0, . . . , z, j = 1, . . . , n, and
q = 1, . . . ,m, be a feasible solution of problem (2.2)-(2.12). For any interval [Ci

k, C
i
k+1],

it is possible to construct a feasible schedule with the length

max

 max
1≤j≤n

m∑
q=1

vqj ([C
i
k, C

i
k+1])

sq
, max
1≤q≤m

n∑
j=1

vqj ([C
i
k, C

i
k+1])

sq

 ,

having a finite number of preemptions, see [11]. Taking into account inequalities (2.5)
and (2.6), we obtain

max

 max
1≤j≤n

m∑
q=1

vqj ([C
i
k, C

i
k+1])

sq
, max
1≤q≤m

n∑
j=1

vqj ([C
i
k, C

i
k+1])

sq

 ≤ Ci
k+1 − Ci

k.

Thus, for any interval [Ci
k, C

i
k+1], one can construct a feasible schedule. Therefore, for

any feasible solution of problem (2.2)–(2.12), one can construct a feasible schedule s̃.

Now, if for any k = 0, . . . , n, the values Ci
k satisfy equalities (2.1), then

Ck(s̃) =

 rk +
∑u(k)

i=v(k)(C
i
k − bi) if Ck−1(s̃) ≤ rk +

∑u(k)
i=v(k)(C

i
k − bi)

Ck−1(s̃) if Ck−1(s̃) > rk +
∑u(k)

i=v(k)(C
i
k − bi).

In other words,

Ck(s̃) = max

rk +
u(k)∑

i=v(k)

(Ci
k − bi), Ck−1

 = C̃k,
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and therefore,
F (C1(s), . . . , Cn(s)) = F (C̃1, . . . , C̃n)

holds.

Now, suppose that for some job Jk, the values Ci
k do not satisfy equalities (2.1). Take

the maximal value of k. Then there exist two intervals [bg, bg+1] and [bh, bh+1] such that
bg ≤ Cg

k < bg+1 ≤ bh < Ch
k ≤ bh+1. Choose [bh, bh+1] in such a way that Ch

k = C̃k holds.
Now we describe a transformation of the schedule s̃. The transformation does not change
the value of function F (C̃1, . . . , C̃n), but it changes schedule s̃.

Transform the schedule s̃ in the following way. Take the largest value of δ such that
in the intervals [Cg

k , C
g
k + δ] and [Ch

k − δ, Ch
k ], each machine is either idle or processes

exactly one job. Without loss of generality, we suppose that among all jobs processed in
[Ch

k − δ, Ch
k ] only one job, namely job Jk, is available but is not processed in [Cg

k , bg+1].

Case 1: Ch
k−1 < Ch

k . Now, we swap Jk from the interval [Ch
k − δ, Ch

k ] and Jl (if any) from
the interval [Cg

k , C
g
k + δ] on the same machine, say Mz (see Figure 3). Set Cg

k = Cg
k + δ

and Ch
k = Ch

k − δ. Since in the interval [bh, bh+1] inequality Ch
l ≥ Ch

k holds, it follows
that after the described swapping, the completion time of job Jl is not changed.

Consider the F value before and after the swapping in [bg, bh+1]. Before the swapping,
it was F (C̃1, . . . , C̃n) and after the swapping, only the value of C̃k can changes. Before

the transformation according to (2.9), equality C̃k = max{C̃k−1, rk +
∑u(k)

i=v(k)(C
i
k − bi)}

holds, i.e.,
C̃k = max{C̃k−1, rk + (C

v(k)
k − bv(k)) + . . .

+(Cg
k − bg) + (Cg+1

k − bg+1) + . . .+ (Ch
k − bh)}.

After the swapping, we have

C̃k = max{C̃k−1, rk + (C
v(k)
k − bv(k)) + . . .

+(Cg
k + δ − bg) + (Cg+1

k − bg+1) + . . .+ (Ch
k − δ − bh)}.

Thus, one can see that the value of C̃k does also not change. It means that the value of
F (C̃1, . . . , C̃n) does not change, too.

Now, if it happens that after such a swapping the schedule becomes infeasible, i.e., Jl
is processed in [Ch

k − δ, Ch
k ] on some other machine, say Mq 6= Mz, then we swap job Jl

from [Ch
k − δ, Ch

k ] and Jf (if any) from [Cg
k , C

g
k + δ] on machine Mq. Since inequalities

Cg
l ≥ Cg

k + δ and Cg
f ≥ Cg

k + δ hold, also inequalities Ch
l ≥ Ch

k and Ch
f ≥ Ch

k hold.
Since this swapping does not influence the jobs within the intervals [Cg

k + δ, bg+1] and
[Ch

k , bh+1], the completion times of the jobs Jl and Jf are not changed.

We will continue with this swapping as long as the schedule remains infeasible. The
maximal number of required swaps is determined by the number of different due dates,
by the number of different Ci

k values for k = 1, . . . , n and i = 0, . . . , z, and by the number
of preemptions.
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-

bg+1

δ︷ ︸︸ ︷
JlMz · · · · · · · · · · · · · · · · · · · · · · · ·

JkMq

Cg
kbg bh

Jk

Ch
k

δ︷ ︸︸ ︷
bh+1· · ·

Figure 3: Swap of Jk from [Ch
k − δ, Ch

k ] and Jl from [Cg
k , C

g
k + δ].

Case 2: Ch
k−1 = Ch

k and rk−1 ≥ bg+1 hold. Since Ch
k = C̃k, equality Ch

k−1 = C̃k−1 holds.
Apply the same transformation as it is described in case 1. After the swapping, we have

C̃k = max{C̃k−1, rk + (C
v(k)
k − bv(k)) + . . .

+(Cg
k + δ − bg) + (Cg+1

k − bg+1) + . . .+ (Ch
k − bh)}.

However, since

rk + (C
v(k)
k − bv(k)) + . . .+ (Cg

k + δ − bg) + (Cg+1
k − bg+1) + . . .+ (Ch

k − bh) < C̃k−1

holds, we obtain that after the swapping C̃k = C̃k−1 holds.

Thus, any swapping does not change the value of function F . Therefore, the schedule
can be transformed in such a way that for any two intervals [bg, bg+1] and [bh, bh+1] with
bg ≤ Cg

k < bg+1 ≤ bh < Ch
k ≤ bh+1, equality Ch

k−1 = Ch
k holds.

Thus, we obtain schedule s̃ and the set of values Ci
k. For each k = 1, . . . , n, the values

Ci
k either satisfy equalities (2.1), or they do not satisfy equalities (2.1). If the values Ci

k

satisfy equalities (2.1), then

Ck(s̃) = rk +
u(k)∑

i=v(k)

(Ci
k − bi) = C̃k

holds. However, if the values Ci
k do not satisfy equalities (2.1), then

Ck(s̃) = Ck−1(s̃) = C̃k−1 = C̃k

holds.

Thus,
F (C1(s), . . . , Cn(s)) = F (C̃1, . . . , C̃n)

holds. 2
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Since the described transformation does not change the value (C
v(j)
j −bv(j))+· · ·+(C

u(j)
j −

bu(j)) for each job Jj, we do not need to apply the transformation. As a result of solving
problem (2.2)-(2.12), we obtain the values

C̃1 = r1 + (C
v(1)
1 − bv(1)) + · · ·+ (C

u(1)
1 − bu(1)),

C̃2 = max{C̃1, r2 + (C
v(2)
2 − bv(2)) + · · ·+ (C

u(2)
2 − bu(2))},

. . . ,

C̃n = max{C̃n−1, rn + (Cv(n)
n − bv(n)) + · · ·+ (Cu(n)

n − bu(n))},

and we can reconstruct an optimal schedule using the known values C1 = C̃1, . . . , Cn =
C̃n by solving the corresponding network flow problem, see pages 255–256 in [9] and [10].

Thus, to solve problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn | F, one has to do the following:

1. Solve the corresponding problem (2.2) - (2.12).

2. Using the values C̃j, reconstruct an optimal schedule by solving the corresponding
network flow problem.

3 Problem Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn |
∑
wjTj

In [5], it has been proven that problem Q | rj, pj = p, pmtn | ∑wjTj is NP-hard in
the strong sense. Using the results presented in the previous section, we can derive a
polynomial algorithm for problem Q | rj, pj = p, pmtn | ∑wjTj with a fixed order of the
completion times. Throughout this section, we suppose that the jobs are numbered in
such a way that C1 ≤ · · · ≤ Cn holds. Thus, we have to find an optimal schedule among
the class of schedules for which C1 ≤ . . . ≤ Cn holds.

Remind that b1 < . . . < bz is the set of release times, due dates and deadlines, i.e.,
{b1, . . . , bz} = {r1, . . . , rn} ∪ {d1, . . . , dn} ∪ {D1, . . . , Dn}.

For each j ∈ {1, . . . , n}, denote by v(j) the index such that bv(j) = dj and by u(j) the
index such that bu(j)+1 = Dj.

We apply the mathematical programming model (2.2)-(2.12) to problemQ | rj, pmtn, Dj,
C1 ≤ . . . ≤ Cn |

∑
wjTj. This yields:

Minimize
n∑

j=1

wj max{0, C̃j − dj} (3.1)

subject to

bi = Ci
0 ≤ Ci

1 ≤ · · · ≤ Ci
n ≤ Ci

n+1 = bi+1, i = 0, . . . , z (3.2)

10



Ci
j = Ci

j−1 if [bi, bi+1] 6⊆ [rj, Dj], i = 0, . . . , z, j = 1, . . . , n (3.3)

m∑
q=1

vqj ([C
i
k, C

i
k+1])

sq
≤ Ci

k+1 − Ci
k, i = 0, . . . , z, j = 1, . . . , n, k = 1, . . . , n (3.4)

n∑
j=1

vqj ([C
i
k, C

i
k+1])

sq
≤ Ci

k+1 − Ci
k, i = 0, . . . , z, q = 1, . . . ,m, k = 1, . . . , n (3.5)

z∑
i=0

n∑
k=0

m∑
q=1

vqj ([C
i
k, C

i
k+1]) = pj, j = 1, . . . , n (3.6)

vqj ([C
i
k, C

i
k+1]) = 0 if [bi, bi+1] 6⊆ [rj, Dj] or j ≤ k,

i = 0, . . . , z, j = 1, . . . , n,

k = 0, . . . , n, q = 1, . . . ,m (3.7)

C̃j = max{C̃j−1, rj +
u(j)∑

i=v(j)

(Ci
j − bi)}, j = 1, . . . , n, C̃0 = 0 (3.8)

Ci
k ≥ 0, i = 0, . . . , z, k = 0, . . . , n (3.9)

vqj ([C
i
k, C

i
k+1]) ≥ 0, i = 0, . . . , z, j = 1, . . . , n,

k = 0, . . . , n, q = 1, . . . ,m (3.10)

C̃j ≥ 0, j = 1, . . . , n, C̃0 = 0 (3.11)

Since wjTj = wj max{0, Cj − dj} holds by definition, we obtain that

wjTj =

{
0 if rj < Cj(s) < dj

wj(Cj(s)− dj) if dj ≤ Cj(s) ≤ Dj

for each j = 1, . . . , n.

Thus, if we know a feasible schedule s, we can set

Ci
j =


Cj(s) if bi < Cj(s) < bi+1

bi if Cj(s) ≤ bi
bi+1 if Cj(s) ≥ bi+1

(3.12)
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bv(j)

dj

bv(j)+1

C
v(j)
j

bv(j)+2

C
v(j)+1
j

· · ·
bi Cj(s)

Ci
j

bi+1

Ci+1
j

bi+1

Ci+2
j

· · ·
bu(j)

C
u(j)
j

bu(j)+1

Dj

Figure 4: The structure of the interval [dj , Dj ].

for each j = 1, . . . , n, and i = 0, . . . , z such that [bi, bi+1] ⊆ [dj, Dj], see Figure 4.

Using equalities (3.12), we can calculate the value wjTj by the formula

wjTj = wj(C
v(j)
j − bv(j)) + wj(C

v(j)+1
j − bv(j)+1) + . . .+ wj(C

u(j)
j − bu(j)).

Indeed, let Cj(s) ∈ [bi, bi+1], then using (3.12), we obtain

wjTj = wj(C
v(j)
j − bv(j)) + wj(C

v(j)+1
j − bv(j)+1) + . . .+ wj(C

u(j)
j − bu(j))

= wj(bv(j)+1 − bv(j)) + wj(bv(j)+2 − bv(j)+1)

+wj(bv(j)+3 − bv(j)+2) + . . .+ wj(C
i
j − bi)

+wj(bi − bi) + wj(bi+1 − bi+1) + . . .+ wj(bu(j) − bu(j))

= wjC
i
j − wjbv(j)

= wj(Cj − dj).

Thus, to minimize
∑n

j=1wjTj, we need to minimize
∑n

j=1wj max{0, C̃j−dj}. So, problem
Q | rj, pmtn, Dj, C1 ≤ . . . ≤ Cn |

∑
wjTj can be reduced to a linear programming

problem and therefore, it can be polynomially solved.

4 Concluding Remarks

In this paper, we have considered scheduling problems with ordered completion times.
We have shown that a wide class of scheduling problems with preemptions can be poly-
nomially solved if the order of the completion times is known in advance. Note that in
contrast to [6, 7], here we did not restrict to equal processing times but considered the
general case of arbitrary processing times.
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