

1

Minimizing Mean Flow Time for the Two-Machine Scheduling Problem with

a Single Server

Keramat Hasani1,2, Svetlana A. Kravchenko2, Frank Werner

3

1

keramat@newman.bas-net.by
Islamic Azad University, Malayer Branch, Malayer, Iran

2

kravch@newman.bas-net.by
United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus

3

Postfach 4120, 39016 Magdeburg, Germany
Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg,

frank.werner@ovgu.de

July 12, 2013

Abstract
In this paper, we consider the problem of scheduling a set of jobs on two parallel machines to
minimize the sum of completion times. Each job requires a setup which must be done by a single
server. It is known that this problem is strongly NP-hard. We propose two mixed integer linear
programming models and a simulated annealing algorithm. The performance of these algorithms
is evaluated for instances with up to 250 jobs.

Keywords: Scheduling, Parallel machines, Single server, Mixed integer linear programming,
Simulated annealing

1. Introduction

The problem considered in this paper can be described as follows. There are n independent jobs
and two identical parallel machines. For each job j, j = 1, …, n, its processing time jp is known.
Denote by maxp the maximal value of the processing times, i.e., },,1|max{max njpp j == .
Before processing, a job must be loaded on the same machine qM , 2,1=q , where it is
processed, which requires a known setup time js . During such a setup, the machine qM is also
involved into this process for js time units, i.e., no other job can be processed on this machine
during this setup. All setups have to be done by a single server which can handle at most one job
at a time. The objective is to determine a feasible schedule which minimizes the sum of
completion times. So, using the common scheduling notation, we consider the problem

∑ jCSP ||1,2 . This problem is unary NP-hard, since it is known that problem

∑= jj CssSP ||1,2 is unary NP-hard, see Hall et al. (2000). Some special cases of this problem

2

were already considered. The problem ∑= jj CppSP ||1,2 is binary NP-hard, see Brucker et al.

(2002). There is a polynomial algorithm for the problem ∑= jj CsSP |1|1,2 , see Hall et al.

(2000). For the problem ∑= jj CsSP |1|1,3 , Brucker et al. (2002) developed a polynomial

algorithm with the complexity)(7nO . For the problem ∑= jj CsSP |1|1, , Kravchenko and
Werner (2001) proposed an algorithm which creates a schedule with the following estimation:

 ∑ ∑
= =

−′≤−
n

i

n

i
ii mnCC

1 1

*)2(~ ,

where |}1|{| −<=′ mpin i . In Wang and Cheng (2001), a)15(
m

− - approximation algorithm was

proposed for the problem ∑ jjCwSP ||1, , and it was shown that the SPT schedule is a
2
3 -

approximation for the problem ∑= jj CssSP ||1, .

For the problem ∑ jCSP ||1,2 , nothing is known about heuristic algorithms. However,
some results for close models are known. In Weng et al. (2001), the problem of scheduling a set
of independent jobs on unrelated parallel machines with job sequence dependent setup times and
the minimization of weighted mean completion time was considered. Seven heuristic algorithms
were presented and compared with each other and the best algorithm was selected. The heuristics
were tested for up to 120 jobs and 12 machines. In Dunstall and Wirth (2005), the problem with
identical parallel machines, jobs divided into families and sequence-independent set-up times
was considered. The objective was to minimize the weighted sum of completion times. Several
heuristics were proposed for instances with up to 8 families, 25 jobs and 5 machines. In Azizoglu
and Webster (2003), several branch-and-bound algorithms for the identical parallel machine
scheduling problem with family set-up times and the objective of minimizing total weighted flow
time were presented. They applied their methods to problems with up to 25 jobs, 8 families, and
5 machines. In Guirchoun et al. (2005), a parallel machine scheduling problem with a server was
considered, however, the general requirements that loading requires the server and the machine
were omitted. Thus, the considered problem was modelled as a two-stage hybrid flow shop with
no-wait constraint between the two stages. A mathematical formulation for the problem was
proposed and some polynomially solvable special cases were considered.

In this paper, we consider the problem ∑ jCSP ||1,2 and develop two mixed integer
linear programming models and a simulated annealing algorithm. We apply these methods to
instances with up to 250 jobs.

2. Preliminary results

 One can see that an optimal schedule for the problem ∑ jCSP ||1,2 can be found in the
class of list schedules, i.e., one can consider a sequence of the jobs, where all jobs are placed into
a list and the algorithm schedules the first unscheduled job from the list whenever a machine
becomes idle.

3

Example 1. We consider an instance with five jobs and the setup and processing times given in
Table 1. Let the current job sequence be π0 = (3, 1, 4, 2, 5).

j 1 2 3 4 5
sj 2 2 1 2 1
pj 4 3 5 4 2

Table1. Setup and processing times of the jobs in Example 1.

According to the given sequence, we assign the jobs in a greedy manner to the machines. In this
way, we get the job sequence (3, 4, 5) on machine M1 and the job sequence (1, 2) on machine
M2. Thus, we get the schedule described in Figure 1, where the grey parts represent the setups.
The total completion time value is 53.

Figure 1: A schedule with five jobs resulting from π0.

Denote by jL the sum jj ps + for nj ,,1= . Further, we will suppose that all jobs are ordered
in such a way that nLL ≤≤1 holds.

Statement 1. For the list schedule corresponding to the sequence },,1{ n , where nLL ≤≤1 ,
inequality

 2
~

* ≤∑
∑

j

j

C
C

holds. Here ∑ jC~ is the sum of the completion times for the list schedule corresponding to the

sequence },,1{ n , and ∑ *
jC is the sum of the completion times for an optimal schedule.

Proof: It is straightforward to see that

 j

j

k
k

j

k
kj

j

k
k

j

k
kj LLsLpsC ++=++≤ ∑∑∑∑

−

=

−

=

−

=

−

=

1

1

1

1

1

1

1

1 2
1

2
1

2
1~

holds. Since

 *

1

1

1 2
1

2
1

2
1

j

j

k
kj

j

k
k CLLs ≤≤+ ∑∑

=

−

=
 and *

1

1 2
1

2
1

jj

j

k
k CLL ≤+∑

−

=
,

We obtain *2~
jj CC ≤ . ■

Further, we will use two lower bounds:
For the first lower bound 1LB we have 1

1 LBC
j

j =∑ , where

M1

M2

3

1

4

2

 5

6 12 15

7 13

4

 ++= −2
1

jjj LLC .

For the second lower bound 2LB we have 2
2 LBC

j
j =∑ , where

 +++= −− 21
2

jjjj ssssLC ,
and nssss ,,1  are the setup times ordered according to a non-decreasing order of their values,
i.e., nssss ≤≤1 .

2. M1 model

The M1 model is constructed to find an optimal schedule for the problem ∑ jCSP ||1,2 , and an
optimal schedule belongs to the class of list schedules. Suppose one has a schedule s defined by
a list π . Let jft be the time of completing job j , and let jst denote the starting time of loading
the job j . Moreover, let jmt denote the completion time of loading the job j , and let jiO , be a
binary variable which defines the order of the jobs i and j in the list π , i.e.,



 ≤

=
otherwise

ststif
O ji

ji 0

1
, .

Let 1, =jip if iji ftstmt ≤≤ , i.e., job j is started after starting but before finishing the processing
of job i . Now, the minimization of ∑ jC is equivalent to the minimization of ∑

j
jft . Since jiO ,

defines the order of the jobs i and j in the list π ,
 1,, =

≠

+
ji

ijji OO

must hold. Both inequalities
 jjjj psstft +≥− and jji sstmt ≥−

are satisfied by definition. Since there are only two machines, the inequality ∑
=

≤
n

i
jip

1
, 1holds.

 Let P be a large number. We use

 ∑
∑

=

= ++
−

=
n

i
i

n

i
i

ps
pp

P
1

max
1

max

2
.

Now, if job j is before job i in the list π , then 0≥− ij mtst . However, if job j is after job i in
the list π , then
 ijiij ppmtst)1(,−≥− ,
i.e., if the job j does not overlap with job i , then iij pmtst ≥− holds. Thus, in general we obtain
the inequality
 POppOmtst ijijijiij ,,,)(−−≥− .
 One can see that, if 1, =jip , i.e., job j overlaps with job i , then iij pmtst ≤− holds. It
follows that the inequality
 Ppppmtst jiijiij)1(,, −+≤− holds.

5

Finally, we obtain the model
∑ →

j
jft min

 s.t. 1,, =
≠

+
ji

ijji OO

jjjj psstft +≥−

jjj sstmt ≥−

∑
=

≤
n

i
jip

1
, 1

POppOmtst ijijijiij ,,,)(−−≥−

∑ ≥
j

j LBft

Here jiO , and jip , are binary variables; ift , ist , and imt are positive variables; jp and js are
the processing and setup times known in advance, ni ,,1= and nj ,,1= , P is a constant
number and },max{ 21 LBLBLB = .

3. M2 model

The M2 model is constructed to find an optimal schedule, where all jobs from the list π have to
be scheduled in a staggered order, i.e., taking the new job from the list, the algorithm has to
change the machine. We observed that the M2 model cannot find an optimal schedule for the
problem ∑ jCSP ||1,2 , but the schedules produced by this model appear to be rather close to the
lower bound.

Next, we describe the M2 model. Suppose one has a staggered schedule s defined by a list π .
Let the variable jiN , define the position of the job j in the list π , i.e.,



 −

=
otherwise

thischeduledisjjobif
N ji 0

1
, .

Let the variable ift be the time of completing the i -th job j in the list π . Let ist be the starting
time of loading the i -th job j in the list π , and let imt be the completion time of loading the i -
th job j in the list π . Then, the minimization of ∑ jC is equivalent to the minimization of

∑
i

ift . Since each position in the list π can be occupied by only one job, the equality

∑ =
i

jiN 1, holds. Since each job has to be placed at some position in the listπ , the equality

∑ =
j

jiN 1, holds. The inequality

 ∑ +≥−
j

jjjiii psNstft)(,

6

holds since between the starting time ist and the finishing time ift of the i -th job j , one has to
load and to process the job j . The inequality
 ∑≥−

j
jjiii sNstmt ,

holds since between the starting time ist and the finishing time imt of the i -th job j , one has to
load the job j . The inequality 1−≥ ii mtst holds since the list π defines the order for loading all
the jobs. The inequality 2−≥ ii ftst holds since we consider schedules where all jobs are
processed in a staggered order.
Thus, the model M2 can be described in the following way:

∑ →

i
ift min

 s.t. ∑ =
i

jiN 1,

∑ =
j

jiN 1,

∑ +≥−
j

jjjiii psNstft)(,

∑≥−
j

jjiii sNstmt ,

1−≥ ii mtst

2−≥ ii ftst .
Here jiN , are binary variables; ift , ist , and imt are positive variables; jp and js are the
processing and setup times known in advance; ni ,,1= and nj ,,1= .

4. Simulated annealing algorithm

This section presents a simulated annealing algorithm to minimize total completion time for the
two-machine scheduling problem with a single server. Simulated annealing tries to avoid cycling
by randomization and simulates an annealing process in physics, see e.g. Kirkpatrick et al.
(1983). In any iteration, a neighbor is determined by means of random decisions. In the case
when the generated neighbor has a better objective function value than the starting solution, the
neighbor is always accepted as the new starting solution while in the case of a worse neighbor,
this solution is only with a certain probability accepted. For the quality of the results by a
simulated annealing algorithm, the chosen neighborhood and the cooling scheme applied are
important. Below we give more details.

Neighborhood

The definition of an appropriate neighborhood for a current scheduling solution has usually a
large influence on the quality of the final solution. The algorithm presented later is based on the
generation of a neighbor in a specific neighborhood. For permutation problems, one can use e.g.
the following operators for generating a neighbor:

7

− Swap operator: Here two randomly selected jobs are swapped. Given π0 in Example 1
and assume that the two randomly selected positions a = 3 and b = 5, we obtain the
sequence
 Swap(π0, a, b) = Swap(π0, 3, 5) = (3, 1, 5, 2, 4).

− Swap two adjacent positions: Here two randomly selected adjacent jobs are swapped.
Given π0 in Example 1 and assume that the two randomly selected positions a = 3 and b =
4, we obtain the sequence

 SwapAdj(π0, a, b) = SwapAdj(π0, 3, 4) = (3, 1, 2, 4, 5).
− Swap Block operator: Here a randomly selected block of ℓ jobs is swapped with another

randomly selected block of ℓ jobs as well. The block length ℓ is a randomly selected

integer from the set {2, 3, … 




2
n }. If the block length ℓ has been chosen, we randomly

determine a position a of the first job of the first block and a position b of the first job of
the second block. Here we have a + ℓ ≤ b ≤ n – ℓ + 1. Given the sequence π0 in
Example 1 and assume that first the block length ℓ = 2 and then the positions a = 2 and b
= 4 have been selected. Then we obtain the sequence
 SwapBlock(π0, a, b, ℓ) = SwapBlock(π0, 2, 4, 2) = (3, 2, 5, 1, 4).

− Insert operator: Here one randomly selected job is removed from its position a and is
put on a randomly determined new position b. Given π0 in Example 1 and assume that the
two randomly selected positions are a = 2 and b = 4, we obtain the sequence
 Insert(π0, a, b) = Insert(π0, 2, 4) = (3, 4, 2, 1, 5).

− Insert Block operator: Here one randomly selected block is removed from its position a
and it is put on a randomly determined new position b. The block length ℓ is a randomly
selected integer from the set {2, 3, … n - b}. If the block length ℓ has been chosen, we
randomly determine two positions a and b. Here we have b + ℓ ≤ n. Given the sequence
π0 in Example 1 and assume that first the block length ℓ = 2 and then the positions a = 2
and b = 4 have been selected. Then we obtain the sequence
 InsertBlock(π0, a, b, ℓ) = InsertBlock (π0, 2, 4, 2) = (3, 2, 5, 1, 4).

− Reverse Block operator: Here a part of the sequence with length ℓ is reversed. Given
the sequence π0 in Example 1 and assume that the block length ℓ = 3 and then the
position a = 2 have been selected. Then we obtain the sequence
 ReverseBlock(π0, a, ℓ) = ReverseBlock (π0, 2, 3) = (3, 2, 4, 1, 5).

− Insert Block and reverse operator: Here after applying insert the block operator, the
inserted block has been inversed. Given the sequence π0 in Example 1 and assume that
first the block length ℓ = 2 and then the positions a = 2 and b = 4 have been selected.
Then we obtain the sequence
 InsertBlock(π0, a, b, ℓ) = InsertBlock (π0, 2, 4, 2) = (3, 2, 5, 4, 1).

In any iteration of our simulated annealing algorithm, each of these seven operators is used and
seven neighbors are randomly generated. Then the neighbor with the best makespan value among
them is taken as the generated neighbor and compared with the current starting solution by the
simulated annealing acceptance criterion. We have found that the composite neighborhood
worked better than each of the single neighborhoods.

8

Cooling scheme

Typical cooling schemes used in a simulated annealing algorithm are a geometric, an
exponential, a Lundy-Mees and a linear reduction scheme. We tested some different cooling
schemes for the problem under consideration and found that often the geometric scheme is
slightly superior. In many other applications to scheduling problems, a geometric cooling scheme
is also preferred. Therefore, in the following we test exclusively geometric schemes. The
geometric cooling scheme reduces the current temperature to the new temperature in the next
epoch according to

Tk = α Tk-1, k = 0,1,2,…
where 0 < α < 1. We have found that the initial temperature should be chosen such that about
25 percent of worse solutions should be accepted at the beginning. For the problem under
consideration, we have chosen the initial temperature 15=T . On the other hand, the final
temperature should be low enough so that worse solutions do not longer replace solutions with
better objective function values. Moreover, in our experiments it turned out that the value α =
0.999 worked good. We have chosen an epoch length of 1, i.e., after each iteration the
temperature is reduced. Alternatively, only after a period with constant temperature, one may
reduce the temperature. In fact, updating the temperature must be done in such a way that, when
the defined run time limit denoted by TL is going to be finished, the temperature becomes very
close to zero. According to the geometric cooling scheme, at the final stage of the algorithm TN =

Nα T0 . Therefore, we have

 N = log 0T
TN

α .
With the given value TN = 0.0005, the algorithm will be finished after N = 10304 iterations and T
will be updated every TL/10304 seconds.

Algorithm

In our simulated annealing algorithm, we used a randomly generated starting solution. As a
stopping criterion, we used the first of the following events:

− a maximal run time limit, or
− within the last 2000 iterations, no improvement of the best objective function value was

obtained, or
− for the currently best sum of completion time value BestSumC, the inequality BestSumC –

LB < 1 holds.

The complete simulated annealing algorithm is given below as Algorithm 1, where Rand(0,1)
denotes a uniformly distributed random number form the interval (0,1).

9

Algorithm 1. Simulated Annealing (SA)

BEGIN
 Generate an initial feasible solution X and determine the objective function value SumC(π);
 BestSol := π; BestSumC := SumC (π)
 T := initial temperature;
 WHILE (stopping criterion is not met) DO
 π' := best neighbor among the generated neighbors of π;
 ΔC := SumC (π') – SumC (π);
 prob := Rand (0,1);
 IF ((ΔC ≤ 0) or (prob < e-ΔC/T)) THEN
 π := π'; SumC (π) := SumC (π');
 IF (SumC (π) < BestSumC) THEN
 BestSumC := SumC (π); BestSol := π;
 END IF
 END IF
 Update T according to the chosen cooling scheme;
 END WHILE
 Output BestSol together with its SumC value;
END.

5 Computational Results

The performance of the proposed models and the heuristic SA has been tested on the data
generated in the same way as it was described in Hasani et al. (2013). Moreover, for comparison
purposes, we used the same run time limit of (300/8)n seconds for the instances with n ∈{8, 20,
50} and 3600 seconds for the other instances.
For n∈{8, 20}, the data sets were generated for server load values ranging between 0.1 and 2
with 0.1 increments, i.e., for each L ∈{0.1, 0.2, …,2}, the value sj is distributed uniformly in (0,

100L) . For each value of L, 10 instances were randomly generated with pj
d
=  (0, 100), i.e., pj

is uniformly distributed in the interval (0, 100).
For n∈{50, 100, 200, 250}, 5 instances were generated for each L ∈{0.1, 0.5, 0.8, 1, 1.5, 1.8, 2}
with

 pj
d
=  (0, 100) and sj

d
=  (0, 100L).

The algorithms have been implemented by the java programming language and run using JDK
1.3.0, with 2GB of memory available for working storage, running on a personal computer
Intel(R) Core(TM) i5-2430M CPU @2.4GHz.
In Tables 1 – 4, we present in the first column the number of jobs n, in the second column, the
value of L, in the third column the model/algorithm applied, in columns 4 to 6, the minimal,
average and maximal times used by the models/algorithms, and in columns 7 to 9, the minimal,
average and maximum values of the relations Cmax/LB (in Tables 5 and 6, the time limit is given
in column 2 which is always exhausted by the algorithms).

10

Table 1: Results for n=8

n L mod/alg min time

sec
average time

sec
max time

sec
min

Cmax/LB
average
Cmax/LB

max
Cmax/LB

8

0.1

M1 33.0 48.4 59.7 1.00 1.00 1.00
M2 0.0 0.1 0.2 1.00 1.02 1.05
SA 9.5 10.5 13.4 1.00 1.00 1.00

0.5

M1 2.4 20.8 58.3 1.00 1.00 1.00
M2 0.0 0.1 0.1 1.00 1.01 1.02
SA 10.6 13.2 15.4 1.00 1.00 1.00

0.8

M1 1.5 9.1 18.8 1.00 1.00 1.00
M2 0.0 0.1 0.1 1.00 1.01 1.03
SA 11.0 13.8 15.5 1.00 1.00 1.00

1.0

M1 2.6 8.2 18.4 1.00 1.00 1.00
M2 0.0 0.0 0.1 1.00 1.00 1.00
SA 13.2 14.3 15.7 1.00 1.00 1.00

1.5

M1 0.6 2.8 6.0 1.00 1.00 1.00
M2 0.0 0.0 0.1 1.00 1.02 1.06
SA 13.0 15.0 15.9 1.00 1.00 1.00

1.8

M1 0.3 2.5 6.5 1.00 1.00 1.00
M2 0.1 1.1 2.2 1.00 1.00 1.01
SA 15.5 15.0 11.7 1.00 1.00 1.00

2.0

M1 0.3 2.4 6.0 1.00 1.00 1.00
M2 0.0 0.0 0.0 1.00 1.00 1.00
SA 12.5 14.9 16.5 1.00 1.00 1.00

In Table 1, we give the results for n=8. It can be seen that the model M1 and algorithm SA
perform very well. However, the model M2 is very fast. It can also be observed that the model
M1 requires larger computational times than algorithm SA for the instances with a small value of
L while for the instances with a larger value of L it is opposite.

For n=20 (see Table 2), the model M2 is comparable with the heuristic SA both with respect to
time and the quality of the solution. M2 takes much less time than heuristic SA and outperforms
the model M1. Note that for the model M1, we used a time limit of 750 sec.

For n=50, 100, 200, the model M1 is unable to produce any solution for most examples, so we
compare the heuristic SA only with model M2.

11

Table 2: Results for n=20

n L mod/alg min time

sec
ave time
sec

max time
sec

Min
Cmax/LB

Ave
Cmax/LB

Max
Cmax/LB

20

0.1

M1 750.0 750.0 750.0 1.04 1.07 1.13
M2 0.0 0.1 0.5 1.00 1.01 1.02
SA 41.4 44.1 48.2 1.00 1.00 1.01

0.5

M1 750.0 750.0 750.0 1.07 1.09 1.13
M2 0.4 28.4 96.0 1.01 1.05 1.13
SA 55.5 60.4 65.1 1.01 1.03 1.07

0.8

M1 750.0 750.0 750.0 1.05 1.09 1.11
M2 0.2 10.3 29.7 1.02 1.05 1.11
SA 56.3 62.7 71.6 1.01 1.03 1.06

1.0

M1 750.0 750.0 750.0 1.09 1.14 1.19
M2 10.6 91.5 340.9 1.05 1.08 1.10
SA 57.6 64.9 68.6 1.05 1.06 1.08

1.5

M1 750.0 750.0 750.0 1.10 1.14 1.20
M2 2.1 8.7 17.2 1.03 1.07 1.10
SA 61.4 66.0 67.6 1.03 1.06 1.10

1.8

M1 750.0 750.0 750.0 1.06 1.10 1.16
M2 0.1 1.1 2.2 1.00 1.04 1.06
SA 52.7 58.4 64.2 1.00 1.03 1.05

2.0

M1 750.0 750.0 750.0 1.02 1.06 1.15
M2 0.0 0.9 3.1 1.01 1.03 1.08
SA 62.3 70.9 79.4 1.01 1.03 1.07

Table 3: Results for n=50

n L mod/alg min
time sec

ave time
sec

max
time sec

min
Cmax/LB

ave
Cmax/LB

max
Cmax/LB

50

0.1 M2 0 77 238 1.00 1.00 1.01
SA 369 459 586 1.00 1.00 1.00

0.5 M2 177 980 1875 1.00 1.04 1.06
SA 372 547 734 1.00 1.01 1.02

0.8 M2 1069 1680 1876 1.03 1.06 1.11
SA 463 510 619 1.02 1.03 1.04

1 M2 1025 1622 1875 1.06 1.08 1.11
SA 444 529 759 1.05 1.07 1.09

1.5 M2 544 983 1531 1.03 1.05 1.10
SA 331 436 509 1.03 1.05 1.08

1.8 M2 577 664 782 1.03 1.05 1.07
SA 336 410 540 1.02 1.05 1.07

2.0 M2 531 609 691 1.02 1.06 1.11
SA 338 420 519 1.02 1.05 1.10

For n=50 (see Table 3), algorithm SA is the best both with respect to time and the quality of the
solution. However, for L=0.1 the model M2 gives similar results (and often even slightly better
objective function values). Remind that model M2 looks for an optimal schedule within a very

12

special class of sub-schedules. For this reason, the results also show the distance from the
considered subset of schedules to the optimal schedule.

Table 4: Results for n=100

n L mod/alg min
time sec

ave time
sec

max
time sec

min
Cmax/LB

ave
Cmax/LB

max
Cmax/LB

100

0.1 M2 15 233 633 1.00 1.00 1.00
SA 1792 1865 1960 1.00 1.00 1.00

0.5 M2 711 1039 1400 1.01 1.02 1.04
SA 1843 2065 2212 1.00 1.01 1.01

0.8 M2 1718 1847 2064 1.03 1.05 1.07
SA 1592 1764 2086 1.01 1.02 1.04

1 M2 1702 1861 2080 1.05 1.07 1.11
SA 1925 2041 2332 1.02 1.04 1.07

1.5 M2 1733 1837 1944 1.03 1.06 1.09
SA 1525 1778 1886 1.02 1.05 1.07

1.8 M2 1310 1683 1998 1.04 1.05 1.06
SA 1561 1779 2432 1.03 1.04 1.05

2.0 M2 920 1123 1354 1.01 1.03 1.05
SA 1561 1833 2349 1.01 1.03 1.05

For n=100 (see Table 4) and L=0.8, 1, 1.5 algorithm SA produced better results than the model
M2. However, for L=0.1, 0.5, 2.0 the model M2 gives similar results than heuristic SA (and often
even a slightly better objective function value has been obtained).

Table 5: Results for n=200

n time
sec

L mod/alg min
Cmax/LB

ave
Cmax/LB

max
Cmax/LB

200

3600

0.1 M2 1.00 1.00 1.00
SA 1.00 1.00 1.00

0.5 M2 1.02 1.02 1.03
SA 1.01 1.01 1.01

0.8 M2 1.03 1.05 1.08
SA 1.01 1.02 1.02

1 M2 1.04 1.06 1.08
SA 1.02 1.02 1.04

1.5 M2 1.06 1.08 1.11
SA 1.05 1.07 1.09

1.8 M2 1.03 1.04 1.06
SA 1.02 1.03 1.05

2.0 M2 1.02 1.05 1.07
SA 1.02 1.04 1.06

For n=200 (see Table 5), heuristic SA outperforms the model M2. Note that now the time is not
sufficient to find an optimal solution for the model M2.

13

Table 6: Results for n=250

n time
sec

L mod/alg min
Cmax/LB

ave
Cmax/LB

max
Cmax/LB

250

3600

0.1 M2 1.00 1.00 1.00
SA 1.00 1.00 1.00

0.5 M2 1.01 1.04 1.06
SA 1.01 1.01 1.02

0.8 M2 1.04 1.06 1.08
SA 1.01 1.02 1.02

1 M2 1.06 1.07 1.08
SA 1.02 1.02 1.03

1.5 M2 1.04 1.07 1.12
SA 1.03 1.05 1.09

1.8 M2 1.03 1.05 1.06
SA 1.02 1.03 1.04

2.0 M2 1.02 1.05 1.07
SA 1.02 1.04 1.05

For n=250 (see Table 6), algorithm SA outperforms the model M2.

Thus, up to 100 jobs, the model M2 produces solutions rather close to the optimal solution.
Taking into account the very simple structure of the considered schedules, this result looks
interesting. We also note that, from an overall point of view, the hardest instances in terms of the
percentage deviation from the lower bound are those with L = 0.8, 1 and 1.5.

On the other hand, the ∑ jC criterion appears to be much harder for the applied simulated
annealing approach in comparison with the maxC criterion. Remind that a simulated annealing
approach appears rather efficient for the problem max||1,2 CSP , and it can work with instances
containing up to 1000 jobs, see Hasani et al. (2013).

References

[1] Hall N., Potts C., Sriskandarajah C., 2000. Parallel machine scheduling with a common
server. Discrete Applied Mathematics 102, 223-243.

[2] Brucker P., Dhaenens-Flipo C., Knust S., Kravchenko S.A., Werner F., 2002. Complexity
results for parallel machine problems with a single server. Journal of Scheduling 5, 429-457.

[3] Kravchenko S.A., Werner F. (2001). A heuristic algorithm for minimizing mean flow time
with unit setups, Information Processing Letters 79, 291-296.

[4] Wang G., Cheng T.C.E. (2001). An approximation algorithm for parallel machine
scheduling with a common server, Journal of the Operations Research Society 52, 234-237.

14

[5] Weng M. X., Lu J., Ren H. (2001). Unrelated parallel machine scheduling with setup
consideration and a total weighted completion time objective. Int. J. Production Economics 70,
215-226.

[6] Dunstall S., Wirth A., 2005. Heuristic methods for the identical parallel machine flowtime
problem with set-up times. Computers & Operations Research 32, 2479–2491.

[7] Azizoglu M., Webster S., 2003. Scheduling parallel machines to minimize weighted flowtime
with family set-up times. Int. J. Production Research 41, 1199–1215.

[8] Guirchoun S., Martineau P., Billaut J.-C., 2005. Total completion time minimization in a
computer system with a server and two parallel processors. Computers & Operations Research
32, 599–611.

[9] Hasani K., Kravchenko S.A., Werner F., 2013. Two heuristics for minimizing the makespan
for the two-machine scheduling problem with a single server. Preprint 08/13, Faculty of
Mathematics, Otto-von-Guericke-University Magdeburg, 20 pages.

[10] Kirkpatrick S., Gelatt C. D., Vecchi M. P., 1983. Optimization by Simulated
Annealing. Science 220 (4598), 671–680.

