
A Minimal Dominant Set of Critical Paths

for the Project-Network with Interval

Activity Durations

Yuri N. Sotskov
United Institute of Informatics Problems,
National Academy of Sciences of Belarus,
Surganova Str. 6, Minsk, 220012, Belarus

sotskov@newman.bas-net.by

Frank Werner
Fakultät für Mathematik, Otto-von-Guericke-Universität

PSF 4120, 39106 Magdeburg, Germany
frank.werner@ovgu.de

Abstract

In project management, it is usually difficult to obtain the exact values of
the activity durations and the assumption is more realistic that the activity
duration may remain uncertain until the activity completion. We assume
that lower and upper bounds on a factual activity duration are given at the
stage of project planning, the probability distribution of a random duration
being unknown before the activity completion. Therefore, one cannot find a
priory a critical path in the given project-network G. We propose a two-step
approach, where the initial project-network G is minimized in the first step
and the resulting minimized project-network determines a minimal dominant
set of the critical paths in the second step. A fuzzy logic procedure (or an-
other heuristic technique) may be used to choose a single potentially critical
path from the minimal dominant set.

Keywords: project management, uncertain activity, dominant paths

November 3, 2014

1

1 Introduction

This paper addresses project management with uncertain (interval) activity
durations. We use the terminology from [8] for graph theory and that from
[7] for scheduling theory.

In project management [1, 2, 5, 6], it is usually difficult to obtain the exact
values of the activity durations and the assumption is more realistic that the
activity duration may remain uncertain until the completion of the activity
[2]. We assume that lower and upper bounds on a factual activity duration
are given at the stage of project planning, the probability distribution of
a random duration being unknown before the completion of the activity
[2, 3, 4]. Therefore, one cannot find a priory a critical path in the given
project-network G = (V,A). We propose a two-step approach, where the
initial project-network G is minimized in the first step and the resulting
minimized project-network determines a minimal dominant set of critical
paths in the second step. A fuzzy logic procedure (or another heuristic
technique) may be used to choose a unique potentially critical path from
the minimal dominant set.

The rest of the paper is organized as follows. The problem setting and
some notations are given in Section 2. Criteria for the dominance of a path by
another path are proven in Section 3. Properties of so-called a-maximal paths
are studied in Section 4, where the main theorem is proven. Algorithms for
minimizing a project-network are developed in Section 5. Potentially critical
paths are investigated in Section 6. Section 7 gives some concluding remarks.

2 Problem setting and notations

Let a circuit-free digraph G = (V,A) be given, where V = {0, 1, . . . , n} is
the set of vertices (activities) and A is the set of arcs. We assume that the
numbering of the vertices V is correct in the sense that the inclusion (i, j) ∈ A
implies the inequality i < j. Let Pij(G) denote the set of all pathes νij in
the digraph G started at vertex i ∈ V and finished at vertex j ∈ V . The
digraph G is called a project-network (or simply, a network) if for any vertex
i, 0 < i < n, both sets P0i(G) and Pin(G) are not empty and vertex 0 (vertex
n) is the only vertex of the digraph G having a zero in-degree (a zero out-
degree) called a source vertex (a sink vertex, respectively) in the network G.
In what follows, only networks G = (V,A) are considered.

2

The durations of the activities 0 and n are equal to zero. The duration of
the activity i, 0 < i < n, may take any value from the given closed interval
(segment) [ai, bi], where ai ≤ bi. For the source vertex 0 and the sink vertex
n, we obtain a0 = b0 = 0 and an = bn = 0, respectively. Let the weight
of path νrs ∈ Prs(G) be defined as the sum of the durations of all vertices
(activities) included in the path νrs.

Since the duration of the activity i ∈ V \{0, n} may be equal to any value
ti ∈ [ai, bi], the weight of the path νrs ∈ Prs(G) may remain uncertain until
the completion of the project. As far as the weight of the path νrs ∈ Prs(G)
is uncertain at the stage of project planning, we denote the weight of the
path νrs as Lt(νrs) with a mandatory indication of the fixed vector t of the
activity durations: t = (t0, t1, . . . , tn), where ai ≤ ti ≤ bi, i ∈ V .

If ai = bi for each activity i ∈ V , then G = (V,A) is a determinis-
tic project-network, whose total duration is equal to the critical (maximal)
weight Lt(ν0n) of the critical path (a path of maximal weight) ν0n ∈ P0n(G)
from the source vertex 0 to the sink vertex n with the fixed vector t = a =
(a0, a1, . . . , an) = b = (b0, b1, . . . , bn) of the activity durations.

On the other hand, if equality ai = bi does not hold for at least one
vertex (activity) i ∈ V , i.e., ai < bi, then at the stage of project planning it
is not clear which path ν0n ∈ P0n(G) has a maximal weight. Therefore, it is
necessary to construct a specific set of paths in the digraph G belonging to
the set P0n(G). Such a set of paths must contain at least one critical path for
any vector t of the feasible durations. For the investigation of an uncertain
project-network, we introduce the following dominance relation on the set
Pij(G), which is reflexive and transitive.

Definition 1 The path λij ∈ Pij(G) dominates the path νij ∈ Pij(G), if
for any feasible real vector t = (t0, t1, . . . , tn), ai ≤ ti ≤ bi, of the activity
durations the inequality Lt(λij) ≥ Lt(νij) holds. A minimal (with respect to
inclusion) set of paths Hij(G) ⊆ Pij(G) is called a minimal dominant set for
the ordered pair (i → j) of the vertices, if for any path νij ∈ Pij(G), there
exits a path λij ∈ Hij(G) dominating path νij. A minimal dominant set for
the ordered pair (0 → n) is called a minimal dominant set for the network
G.

If the equality ai = bi holds for any activity i ∈ V , a minimal dominant
set H0n(G) for the network G is determined by any critical path ν0n ∈ P0n(G)
existing in the network G, i.e., H0n(G) = {ν0n}. Indeed, any critical path in
the deterministic network G dominates any path from the set P0n(G).

3

In Sections 3 – 5, we show how to construct a project-network G∗ for the
given project-network G such that the network G∗ has the source vertex 0
and the sink vertex n and the equality H0n(G) = P0n(G∗) holds.

In Section 6, we show how to construct a project-network G0 for the given
project-network G such that the network G0 has the source vertex 0 and the
sink vertex n and for any path λ0n ∈ P0n(G0), there exists a feasible vector
t of the activity durations such that the path λ0n is critical for this vector t.

3 Dominance criteria

Let the set of vertices belonging to path νij be denoted as [νij] and the set
of arcs belonging to path νij be denoted as {νij}. For simplicity, the indexes
i and j may be omitted in the notation νij of the path νij, i.e., ν = νij, if a
misunderstanding does not arise. The following criterion has been proven in
[3].

Lemma 1 The path λ dominates the path ν if and only if∑
i∈[λ]\[ν]

ai ≥
∑

i∈[ν]\[λ]

bi. (1)

It is easy to show that Lemma 1 implies the following one.

Lemma 2 The path λ dominates the path ν if and only if

Lc(λ)(λ) ≥ Lc(λ)(ν), (2)

where c(λ) = (c0(λ), c1(λ), . . . , cn(λ)) and ci(λ) =

{
ai, i ∈ [λ],
bi, i /∈ [λ].

Next, we prove the following

Lemma 3 If the path ν does not dominate the path λ, then for any subset
Z ⊆ [ν] ∩ [λ], the following inequality holds:∑

i∈[ν]\Z

ai <
∑

i∈[λ]\Z

bi. (3)

4

Proof: We consider an arbitrary subset Z ⊆ [ν]∩[λ]. The following equalities
hold: ∑

i∈[ν]\Z

ai =
∑

i∈[ν]\[λ]

ai +
∑

i∈[ν]∩[λ]\Z

ai, (4)

∑
i∈[λ]\Z

bi =
∑

i∈[λ]\[ν]

bi +
∑

i∈[λ]∩[ν]\Z

bi. (5)

Since ai ≤ bi for any vertex i ∈ V , we obtain∑
i∈[ν]∩[λ]\Z

ai <
∑

i∈[ν]∩[λ]\Z

bi. (6)

Since the path ν does not dominate the path λ, due to Lemma 1, we
obtain ∑

i∈[ν]\[λ]

ai <
∑

i∈[λ]\[ν]

bi. (7)

The relations (4) – (7) imply inequality (3). Lemma 3 has been proven.
�

4 An a-maximal path

For minimizing a project-network, we shall use the paths µxy ∈ Pxy(G),
which have a maximal weight for the minimal values (a0, a1, . . . , an) = a of
the activity durations.

Definition 2 The path µxy ∈ Pxy(G) is called a-maximal, if

La(µxy) = max
νxy∈Pxy(G)

La(νxy).

In what follows, the letter µ in the notation µxy will be used only for
indicating an a-maximal path from the vertex x to the vertex y. If there are
several such paths, then µxy indicates a path such that its value

∑
i∈[µxy] bi

is maximal. If there are also several such paths, then µxy indicates a path
that has a minimal lexicographical order of its vertices. Thus, the path µxy
is uniquely determined for each ordered pair (x → y) of the vertices with
x < y.

5

4.1 Properties of a-maximal paths

The algorithms developed in Section 5 for minimizing a project-network G
are based on choosing the a-maximal path µxy. For the proof of the main
Theorem 1, we need three lemmas, which follow.

Lemma 4 Assume that for the vertices x ∈ V and y ∈ V , the a-maximal
path µxy does not dominate another path from the set Pxy(G). Then the set
Pxy(G) does not contain a path that dominates the path µ.

Proof: We assume that the a-maximal path µxy does not dominate another
path from the set Pxy(G), however, there exists a path λxy ∈ P(G), which is
different from the path µxy and which dominates the path µxy.

Then, due to Lemma 1, we obtain∑
i∈[λxy]\[µxy]

ai ≥
∑

i∈[µxy]\[λxy]

bi ≥
∑

i∈[µxy]\[λxy]

ai. (8)

Due to Definition 2 of the a-maximal path µxy, we obtain∑
i∈[λxy]\[µxy]

ai ≤
∑

i∈[µxy]\[λxy]

ai ≤
∑

i∈[µxy]\[λxy]

bi. (9)

From relations (8) and (9), we obtain∑
i∈[λxy]\[µxy]

ai =
∑

i∈[µxy]\[λxy]

bi =
∑

i∈[µxy]\[λxy]

ai. (10)

Since the path µxy does not dominate the path λxy, Lemma 1 implies∑
i∈[µxy]\[λxy]

ai <
∑

i∈[λxy]\[µxy]

bi. (11)

From (10) and (11), we obtain∑
i∈[λxy]\[µxy]

ai <
∑

i∈[λxy]\[µxy]

bi. (12)

The equalities (10) imply La(λxy) = La(µxy). Thus, due to Definition 2 of
the a-maximal path µxy, we obtain∑

i∈[λxy]\[µxy]

bi ≤
∑

i∈[µxy]\[λxy]

bi. (13)

6

The equalities (10) and the inequality (13) imply∑
i∈[λxy]\[µxy]

bi ≤
∑

i∈[λxy]\[µxy]

ai. (14)

The obtained inequalities (12) and (14) contradict one to each other. Thus,
our assumptions that the a-maximal path µxy does not dominate another
path from the set Pxy(G) but there exists a path λxy ∈ P(G), which is differ-
ent from the path µxy and which dominates the path µxy, are wrong. Lemma
4 has been proven. �

Lemma 4 implies

Corollary 1 If for any vertices x ∈ V and y ∈ V , the a-maximal path µxy
does not dominate any other path from the set Pxy(G), then µxy ∈ H(G).

We also need the following two lemmas.

Lemma 5 If the path λ0n dominates the path ν0n in the network G and
[λ0n] ∩ [ν0n] = {x1, x2, . . . , xs}, where x1 < x2 < . . . < xs and s ≥ 2, then
there exists an index i (1 ≤ i ≤ s − 1) such that the path λxixi+1

dominates
the path νxixi+1

.

Proof: We assume that the path λ0n dominates the path ν0n, however, for
any index i (1 ≤ i ≤ s − 1), the path λxixi+1

does not dominate the path
νxixi+1

.
Then for any index i, due to Lemma 2, we obtain the inequality

Lc(λ0n)(λxixi+1
) < Lc(λ0n)(νxixi+1

) (15)

contradicting inequality (2). Note that x1 = 0, xs = n,

λ0n =
s−1⋃
i=1

λxixi+1
and ν0n =

s−1⋃
i=1

νxixi+1
.

Therefore, we obtain the following two equalities:

Lc(λ0n)(λ0n) =
s−1∑
i=0

Lc(λ0n)(λxixi+1
) and Lc(λ0n)(ν0n) =

s−1∑
i=0

Lc(λ0n)(νxixi+1
).

Due to inequality (15), we obtain Lc(λ0n)(λ0n) < Lc(λ0n)(ν0n). Hence, due
to Lemma 2, the path λ0n does not dominate the path ν0n. This contradiction
to our assumption completes the proof of Lemma 5. �

7

Lemma 6 For the given network G, the equality P0n(G) = H0n(G) holds if
and only if for any pair of vertices x ∈ V and y ∈ V , the equality Pxy(G) =
Hxy(G) holds.

Proof: Necessity. We assume that there exist vertices x ∈ V and y ∈ V
such that Pxy(G) 6= Hxy(G). Hence, there exist paths λxy and νxy in the set
Pxy(G) such that the path λxy dominates the path νxy. Then there exist a
path λ0n = (λ0x, λxy, λyn) and a path ν0n = (λ0x, νxy, λyn) in the set P0n(G)
such that the path λ0n dominates the path ν0n. As a result, P0n(G) 6= H0n(G).
We obtained a contradiction.
Sufficiency. Since x and y may be arbitrary vertices in the network G, we
can assume that x = 0 and y = n. As a result, the equality Pxy(G) = Hxy(G)
turns into the equality P0n(G) = H0n(G). Lemma 6 has been proven. �

4.2 Main theorem

Now, we can prove the main result as follows.

Theorem 1 The equality P0n(G) = H0n(G) holds for the digraph G if and
only if for any pair of vertices i ∈ V and j ∈ V, i < j, the a-maximal path
µij does not dominate any other path νij ∈ Pij(G).

Proof: Necessity. Let there exist a pair of vertices i and j in the digraph G
such that the a-maximal path µij dominates some path νij ∈ Pij(G), µij 6=
νij. Since the digraph G is a network, there exist a path ν0i ∈ P0i(G) and a
path νjn ∈ Pjn(G). Therefore, there exists a path (ν0i, µij, νjn) ∈ P0n(G) that
dominates the path (ν0i, νij, νjn) ∈ P0n(G). Therefore, P0n(G) 6= H0n(G).
Sufficiency. Let the condition of Theorem 1 hold. We shall prove that for
any pair of the vertices x ∈ V and y ∈ V, x < y, no path from the set Pxy(G)
dominates another path from the set Pxy(G).

1. If | P(G) |≤ 1, then the above claim holds.
2. Let | Pxy(G) |= 2, i.e., along with the path µxy, there exists a path

νxy ∈ Pxy(G) such that µxy 6= νxy. Due to the condition of the theorem, the
path µxy does not dominate the path νxy. Due to Lemma 4, the path νxy
does not dominate the path µxy.

3. Let | Pxy(G) |= p + 1 > 2 and Pxy(G) = {µxy, ν1xy, . . . , νpxy}. Due to
the condition of the theorem, the path µxy does not dominate any path from
the set {ν1xy, . . . , νpxy}. Thus, due to Lemma 4, we obtain that no path from
the set {ν1xy, . . . , νpxy} dominates the path µxy.

8

We assume that there exist a path φxy and a path ψxy in the set {ν1xy, ν2xy, . . . ,
νpxy} such that the path φxy dominates the path ψxy. The following two cases
are possible.

3.1. Case [φxy] ∩ [ψxy] = {x, y}.
Since [φxy] \ [ψxy] = [φxy] \ {x, y} and [ψxy] \ [φxy] = [ψxy] \ {x, y}, then

assuming that the path φxy dominates the path ψxy, due to Lemma 1, we
obtain ∑

k∈[φxy]\{x,y}

ak ≥
∑

k∈[ψxy]\{x,y}

bk. (16)

Definition 2 of the a-maximal path µxy implies∑
k∈[µxy]\{x,y}

ak ≥
∑

k∈[φxy]\{x,y}

ak. (17)

Since the path µxy does not dominate the path ψxy, Lemma 3 implies∑
k∈[µxy]\{x,y}

ak <
∑

k∈[ψxy]\{x,y}

bk. (18)

Inequalities (16) – (16) imply the contradicting inequality:∑
k∈[µxy]\{x,y}

ak <
∑

k∈[µxy]\{x,y}

ak.

3.2. Case [φxy] ∩ [ψxy] = {x = x1, x2, . . . , xr = y}, x1 < x2 < ... < xr,
r > 2.

Since it is assumed that the path φxy dominates the path ψxy, due to
Lemma 5, there exists an index s (1 ≤ s ≤ r − 1) such that the path φxsxs+1

dominates the path ψxsxs+1 .
Assume that between the vertices xs and xs+1, there are only two paths

φxy and ψxy, i.e., | Pxsxs+1(G) |= 2. Then, arguing similarly as in the above
point 2 for x = xs and y = xs+1, we obtain a contradiction to the assumption
that the path φxsxs+1 dominates the path ψxsxs+1 .

Assume that between the vertices xs and xs+1, there is an additional path,
i.e., | Pxsxs+1(G) | > 2. Then, arguing similarly as in the point 3.1 for x = xs
and y = xs+1, we obtain a contradiction to the assumption that the path
φxsxs+1 dominates the path ψxsxs+1 .

Thus, it has been proven that for any pair of vertices x ∈ V and y ∈ V ,
x < y, the equality Pxy(G) = Hxy(G) holds. Due to Lemma 6, this equality
implies P0n(G) = H0n(G). Theorem 1 has been proven. �

9

5 Minimizing a project-network

The proven criteria for the path domination and Theorem 1 are used in two
algorithms described in the following subsection.

5.1 Algorithms for minimizing a project-network

Let V −i (V +
i , respectively) denote the set of all direct predecessors (suc-

cessors) of the vertex i ∈ V in the digraph G. First, we describe Algo-
rithm 1 for deleting arcs from the digraph G in order to destroy all paths
Uij(G) ⊆ Pij(G) that dominate the a-maximal path µij.

At each iteration of Algorithm 1, a subgraph of the digraph G is consid-
ered, which is a network with the source vertex i ∈ V and the sink vertex
n ∈ V . For determining the vertices of such a subgraph, we shall mark the
vertices of the set {i, i + 1, . . . , n} ⊆ V via considering them in increasing
order of their numbers. In the description of Algorithm 1, Wi denotes the
set of the marked vertices, tai and tbi denote the earliest completion time of
the activity i for the vector a and the vector b of the activity durations,
respectively.

Algorithm 1

Step 1. Determine the ordered sets V −k and V +
k for each vertex k ∈ V . Mark

vertex i = 0 and set Wi := {0}.
IF |V +

k | ≥ 2 GOTO step 13 OTHERWISE GOTO step 10.

Step 2. IF set V −j contains at least one non-marked vertex, i.e., V −j ∩Wi 6= ∅
GOTO step 4 OTHERWISE GOTO step 3.

Step 3. Set j := j + 1. IF j ≤ n GOTO step 2
OTHERWISE GOTO step 7.

Step 4. Calculate the earliest completion times taj and tbj of the activity j ∈ V
with the vector a and the vector b of the activity durations, respectively:

taj = max{tak + aj : k ∈ V −j ∩Wi} and tbj = max{tbk + bj : k ∈ V −j ∩Wi}.

Step 5. Determine the set of paths P ∗0k(G) = {ν0k : k ∈ V −j ∩Wi}.

Step 6. For each path ν0k ∈ P ∗0k(G) with the marked vertex k ∈ V −j ∩Wi,
test the inequality

taj − aj ≥ Lb(ν0k). (19)

10

IF inequality (19) holds THEN include the path (ν0k, j) into the set U0j(G)
of dominant paths.

Step 7. Determine the arc set Ai ⊂ A such that for any path (ν0k, j) ∈
U0j(G), the condition {(ν0k, j)} ∩ Ai 6= ∅ holds and for any path (νij, j) ∈
P ∗0j(G) \ U0j(G), the equality {(ν0k, j)} ∩ Ai = ∅ holds.

Step 8. Delete the arc set Ai from the digraph Gi = (V,Ai).

Step 9. Mark the vertex j, i.e., set Wi := Wi ∪ {j}. Set j := j + 1.
IF j ≤ n GOTO step 2 OTHERWISE GOTO step 10.

Step 10. Set i := i+ 1. Assume that all vertices V are not marked, i.e., set
Wi := ∅. IF i ≥ n− 1 STOP.
OTHERWISE GOTO step 11.

Step 11. Let Gi = (V,Ai) denote the digraph obtained from the digraph
Gi−1 via deleting the set Ai of arcs in step 8.
IF step 8 was not realized yet or the arcs Ai were not deleted yet THEN
set Gi := Gi−1.

Step 12. Mark vertex i, i.e., set Wi := {i}.
IF | V +

i |≥ 2 GOTO step 13 OTHERWISE GOTO step 10.

Step 13. Set Gi = (V,Ai) := G, tai = tbi := 0, j := i+ 1, and i := 0.
GOTO step 2.

Implementing Algorithm 1 to the digraph G destroys all paths starting
from vertex i and ending in vertex j which dominate the a-maximal path µij
(see inequality (19)). However, after deleting the set Ai of arcs, the resulting
digraph may contain arcs and vertices, which are not contained in any path
from the source vertex 0 to the sink vertex n. To delete such arcs and vertices,
one can use the following algorithm.

Algorithm 2

Step 1*. Choose an arbitrary arc (0, i) in the digraph G′ = (V ′, A′) obtained
from the digraph G after implementing Algorithm 1. Mark this arc (0, i) and
pass to vertex i in order to consider the vertex i.

Step 2*. Assume that after a sequence of previous steps, one passed to vertex
i in order to consider this vertex.

11

Step 3*. IF in the resulting digraph, there exist non-marked arcs starting
from vertex i THEN choose any such non-marked arc, say arc (i, j), mark
arc (i, j), pass to vertex j GOTO step 2* and realize step 2* with setting
i := j.

IF vertex i is not the sink vertex n or there is no arc starting from vertex
i THEN delete the arc, which was used when passing to vertex i. IF the
deleted arc was a single arc ending in vertex i, delete the vertex i as well.
Pass to the previous vertex, say vertex k, GOTO step 2* and realize step
2* with setting i := k.

IF vertex i is the sink vertex n THEN pass to the previous vertex k GOTO
step 2* and realize step 2* with setting i := k.

IF vertex i is the source vertex 0 and all arcs starting from i are marked
THEN GOTO step 4*.

IF vertex i is not the sink vertex n and all arcs starting from i are marked
THEN pass to the previous vertex k, GOTO step 2* and realize step 2*
with setting i := k.

Step 4*. IF the resulting digraph contains non-considered vertices THEN
delete them. In both cases STOP.

It is easy to convince that the condition of Theorem 1 holds for the digraph
G∗ = (V ∗, A∗) obtained from the digraph G = (V,A) after implementing first
Algorithm 1 and then Algorithm 2.

5.2 Complexity of Algorithms 1 and 2

In what follows, the notations m = |A| and m∗ are used, where m∗ denotes
the number of arcs in the digraph G, which are deleted due to the imple-
mentation of Algorithm 1.

Lemma 7 Algorithm 1 can be realized in O(nm) time.

Proof: In step 1, the ordered sets V −k and V +
k may be constructed after a

single consideration of the arcs of the set A which takes O(m) time. Realizing
steps 2 – 6 requires two considerations of the arcs of the set A, which take
O(m) time. Testing the subgraphs Gi of the digraph G can be realized in

12

steps 7 and 8, the number of subgraphs Gi being restricted by n. Thus, the
asymptotic complexity of Algorithm 1 is O(nm). �

Lemma 8 Algorithm 2 can be realized in O(m) time.

Proof: In steps 1* – 3*, a pass through each arc (i, j) ∈ A∗ is realized no
more than twice (in the direct direction of the arc and in the opposite direc-
tion of the arc). Step 4* is realized by a single test of all arcs (i, j) ∈ A∗.
Thus, the complexity of Algorithm 2 can be restricted by O(m−m∗) or more
roughly by O(m). �

Due to Lemmas 7 and 8, we can conclude that the implementation of Al-
gorithm 1 and Algorithm 2 to the digraph G allow us to construct a minimal
network G∗ in O(nm) time.

6 Potentially critical paths

Since the digraph G∗ contains at least one critical path for any feasible ac-
tivity durations t = (t0, t1, . . . , tn), ti ∈ [ai, bi], the digraph G∗ allows us to
determine the total duration of the project defined by the project-network
G for any possible vector t of the activity durations. As it was mentioned in
[2], it is also important for the project control to know the set of all paths in
the project-network G, which may become critical for at least one feasible
vector t of the activity durations.

Definition 3 The path λ0n ∈ P0n(G) is called potentially critical for the
project-network G, if there exists a vector t = (t0, t1, . . . , tn), ai ≤ ti ≤ bi, of
the activity durations, for which the path λ0n is critical, i.e., the equality

Lt(λ0n) = max
ν0n∈P0n(G)

Lt(ν0n)

holds.

Let K0n(G) denote the set of all potentially critical paths in the project-
network G. Let the subgraph G0 of the digraph G be also a network with
the source vertex 0 and the sink vertex n such that K0n(G) = P0n(G0).

The knowledge of the set K0n(G) allows a manager of the project G to
control effectively the realization of the project G. In fact, the set K0n(G)

13

plays the same role in the uncertain project control as the set of all critical
paths in the control of the deterministic project. Constructing the network
G0 may be realized similarly as constructing the network G∗, if instead of
the dominance relation (see Definition 1) we shall use the following strong
dominance relation, which is non-reflective and transitive.

Definition 4 The path λij ∈ Pij(G) strongly dominates the path νij ∈ Pij(G),
if for any feasible vector x of the activity durations x = (x0, x1, . . . , xn),
ai ≤ xi ≤ bi, the inequality Lx(λij) > Lx(νij) holds.

It is easy to convince that Lemma 1 and Lemma 2 become correct for the
strong dominance relation if the sign ≥ of the non-strict inequality is replaced
by the sign > of the strict inequality. Furthermore, analogues of Lemmas 3
– 6 and Theorem 1 may be proven for the project-network G0 and for the
strong dominance relation given on the set of paths in the project-network
G. As a result, for constructing the network G0 from the given network G,
one can use Algorithm 1, in which the non-strict inequality (19) is replaced
by the following strict inequality:

taj − aj > Lb(ν0k). (20)

Then by implementing Algorithm 2 to the obtained network, the desired
project-network G0 will be constructed. Thus, constructing the project-
network G0 from the project-network G takes O(nm) time.

In conclusion, we prove that a path containing a transitive arc (x, y) ∈ A
with the inequality ai > 0 cannot be critical for any feasible vector t of the
activity durations. An arc (x, y) ∈ A is called transitive if there exists a path
λxy starting from the vertex x and ending in the vertex y with a length more
than one. It is clear that the above path λxy cannot include the arc (x, y).

Theorem 2 If the path λ0n ∈ P0n(G) contains at least one transitive arc
(x, y) ∈ A with ai > 0, then λ0n /∈ K0n(G) and λ0n /∈ H0n(G).

Proof: We consider a path λ0n = (λ0x, (x, y), λyn), where the arc (x, y) is
transitive and the inequality ai > 0 holds. Since the arc (x, y) is transitive,
there exists a path λxy in the digraph G, which does not contain the arc
(x, y). Therefore, there exists a path λ∗0n = (λ0x, λxy, λyn), which does not
include the arc (x, y). Since the equality [λ0n] \ [λ∗0n] = ∅ holds, we obtain∑

k∈[λ0n]\[λ∗0n]

bk = 0.

14

The inequality ∑
k∈[λ∗0n]\[λ0n]

ak > 0

implies ∑
k∈[λ∗0n]\[λ0n]

ak >
∑

k∈[λ0n]\[λ∗0n]

bk.

Due to Lemma 1, the path λ∗0n dominates the path λ0n. Hence λ0n /∈
K0n(G). Due to the analogue of Lemma 1 for the strong domination on the
set of paths, one can conclude that the path λ∗0n strongly dominates the path
λ0n. Hence, λ0n /∈ H0n(G). Theorem 2 has been proven. �

Theorem 2 implies the following

Corollary 2 If ai > 0, 0 < i < n, and the path λ0n ∈ P0n(G) contains at
least one transitive arc (x, y) ∈ A, then λ0n /∈ K0n(G) and λ0n /∈ H0n(G).

For any feasible vector t = (t0, t1, . . . , tn), ti ∈ [ai, bi], i ∈ V , of the
activity durations, the constructed networkG0 contains all potentially critical
paths of the original network G. Therefore, in the control of the project-
network G, it is sufficient to control only the network G0 which is usually
simpler than the original network G.

7 Concluding remarks

The above results proven in Sections 4 – 6 and the algorithms developed
in Section 5 and Section 6 allow a manager to simplify the original project-
network without loss of the main characteristics of the project-network. In-
deed, the network G∗ allows a manager to calculate the total duration of
the project for any feasible activity durations. Furthermore, the network G0

allows a manager to determine all possible critical paths, which may appear
during a realization of the project.

For calculating different time reserves of the activity realization in the
uncertain project-network, one can use calculations based on fuzzy logic.
Unfortunately, such calculations are often time-consuming. The usage of the
simplified network instead of the original one will simplify such calculations.

The developed approach to minimize the digraph without loss of the
main digraph characteristics may be used for solving appropriate scheduling
problems with uncertain (interval) input parameters [3, 4].

15

References

[1] Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E., 1999,
Resource-constrained project scheduling: Notation, classification, mod-
els, and methods, European Journal of Operational Research, 112, 1, 3
- 41.

[2] Chen, B., Pinar, M. C., Tansel, B., and Yaman H., 1998, Project man-
agement with interval activity durations, Proceedings of the Sixth Inter-
national Workshop on Project Management and Scheduling, Istanbul,
Turkey, 24 - 26.

[3] Lai, T.-C. and Sotskov, Y. N., 1999, Sequencing with uncertain nu-
merical data for makespan minimization, Journal of the Operational
Research Society, 50, 230 - 243.

[4] Lai, T.-C., Sotskov, Y. N., Sotskova, N. Y., and Werner, F., 1997, Opti-
mal makespan scheduling with given bounds of processing times, Math-
ematical and Computer Modelling, 26, 3, 67 - 86.

[5] Lootsma, F. A., 1989, Stochastic and fuzzy PERT, European Journal of
Operational Research, 43, 174 - 183.

[6] McCahon, C. S., 1993, Using PERT as an approximation of fuzzy
project-network analysis, IEEE Transaction on Engineering Manage-
ment, 40, 2, 146 - 153.

[7] Tanaev, V. S., Sotskov, Y. N. and Strusevich, V. A., 1994, Scheduling
Theory: Multi-Stage Systems, Kluwer Academic Publishers, Dordrecht,
The Netherlands.

[8] Thulasiraman, K. and Swamy, M. N. S., 1992, Graphs: Theory and
Algorithms, John Wiley & Sons, USA.

16

