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Abstract

We consider the problem of planning the ISS cosmonaut training
with different objectives. A pre-defined set of minimum qualification
levels should be distributed between the crew members with minimum
training time differences, training expenses or a maximum of the train-
ing level with a limitation of the budget.

First, a description of the cosmonaut training process is given.
Then four models are considered for the volume planning problem.
The objective of the first model is to minimize the differences between
the total time of the preparation of all crew members, the objective of
the second one is to minimize the training expenses with a limitation of
the training level, and the objective of the third one is to maximize the
training level with a limited budget. The fourth model considers the
problem as an 𝑛-partition problem. Then two models are considered
for the calendar planning problem.
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For the volume planning problem, two algorithms are presented.
The first one is a heuristic with a complexity of 𝑂(𝑛) operations. The
second one consists of a heuristic and exact parts, and it is based on
the 𝑛-partition problem approach.
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1 Relevance of the problem
In Fig. 1, one can see the logotype of the

Figure 1: ISS logotype

International Space Station.
The International Space Station (ISS) is an

artificial satellite, on a low Earth orbit. It
is made of many modules. The first one was
launched in 1998. Nowadays it is the biggest
artificial object on an orbit, often it could be
seen from the earth with a naked eye.

The ISS has the potential to conduct a wide
spectrum of scientific researches. The experi-
ments could last for decades with the possibil-
ity of a careful control of the humans. The ISS
maintains an orbit with an altitude between

330 km (205 mi) and 435 km (270 mi) by means of reboot maneuvers using
the engines of the Zvezda module or the visiting spacecraft. It completes
15.51 orbits per day. The length is 72.8 m (239 ft), and the width is 108.5
m (356 ft).

In Fig. 2, one can see the ISS when it would be placed on the Red square.
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Размеры МКС на фоне Красной площади 

10 

Figure 2: ISS in comparison with the Red square

Among all the cosmonautic problems, particular attention is dedicated to
the planning problems. For scheduling the operations during the flight and
for scheduling the trainings before, it is necessary to maximize the efficiency.
Due to the date, it takes lots of human, time and material resources.

The proper preparation of cosmonauts is a long, expensive and sophisti-
cated process. In order to maintain reliability of a flight, the crew members
are obligated to be trained for different types of situations and operations,
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to obtain required skills and knowledge before the launch. Hence, the Yu.
A. Gagarin Research & Test Cosmonaut Training Center (CTC) must plan
and schedule a list of trainings for every cosmonaut.

In general, three crew qualification levels are defined; a user level, an
operator level and a specialist level. For a given flight program, for every
onboard complex, a pre-defined set of minimum qualifications is needed to
safely operate and maintain the system (e.g. one specialist, one operator and
one user).

All this has to fit into an overall integrated training schedule, which is
a challenge of its own – remember that all astronauts and cosmonauts have
individually tailored training plans.

Each crew member, while being a specialist for some systems, will be
an operator or only a user for other systems. Consequently, the training
program for each crew member is individually tailored to his or her set of
tasks and pre-defined qualification levels.

Then the Mission Control Center (MCC) has to distribute the flight op-
erations between the crew members and the MCC controllers.

Due to the fact that the potential of the ISS is limited, it is extremely
important to maximize the efficiency of use, according to a budget constraint.

Nowadays, scheduling is performed manually without using any mathe-
matical approach, based only on the experience of the employees. Besides,
errors cumulate during the planning process and cause huge time and finan-
cial expenses. We hope that the considered approaches and models have the
potential to reduce these expenses.

In this paper, the following problems are considered: The development
of training plans for a crew of three cosmonauts, which is determined as the
distribution of a pre-defined set of minimum qualification levels among the
members of a crew, using the following criteria:

∙ minimizing the differences between the total time of the preparation of
all crew members;

∙ minimizing the training expenses;

∙ maximizing the training level with a limited budget.

In Section 2, the cosmonaut training process is described. Mathematical
models are given in Section 3, and approaches are considered in Section 4.

2 Description of the cosmonaut training
The sequence of the training program is based on four training phases:
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1. General space training (GST) of candidates for cosmonauts;

2. Training in groups, separated by the type of manned spacecraft (MSC)
or areas of specialization;

3. Training in approved crews for a specific space flight on MSC;

Passing the sequence of the stages of the training is mandatory for all
Russian cosmonauts. The GST is performed for every candidate only once.
The other stages can be performed repeatedly. Usually, the first three phases
last 2, 2 and 2.5 years, repspectively. In order to increase the efficiency and
to decrease the expenses, the training time should be as short as possible.

2.1 General space training

The general space training provides the candidate cosmonauts with basic
knowledge on space technology and science, basic medical skills and basic
skills related to their future operational tasks, including those related to the
station systems and operations.

The GST objectives are:

∙ to provide with knowledge and skills related to

– theoretical foundations of cosmonautics;

– principles of the design and the basis of the MSC, its service sys-
tems, scientific and special equipment;

– operation of the MSC, its serving systems, scientific and special
equipment;

– theoretical foundations of scientific research and experiments car-
rying out at the MSC;

– systems of the manned orbital station;

– foreign MSC;

– the objects of the ground space infrastructure;

– interaction with the ground;

– working on a personal computer;

– conducting testing, research and experimentation on MSC;

– influence of dynamic factors of a space flight;

– working in space suits;
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– Extra Vehicular Activity (EVA) in a hydrosphere and short-term
weightlessness on flying laboratories;

– initial implementation of maintenance operations and maintenance
(MOM), assembly and dismantling operations (ADO), handling
operations (HO);

– scuba diving (see Fig. 3);

– landing under extreme conditions of various climatic zones (CZ)(see
Fig. 4);

– flight and parachute;

– functions and responsibilities of crew members of the MSC;

– safety of space flight, including medical support;

– international and space law;

– English language, minimally required to prepare on the bases of
the ISS program partners;

∙ to develop individual neuro-psychological resistance to adverse factors
of a space flight and skills when working under difficult conditions of
existence;

∙ to control and improve health;

∙ to identify individual psychophysiological characteristics of each candi-
date.

This training phase is a candidacy period and upon completion, successful
candidates are certified as being career cosmonaut-test pilot or cosmonaut-
researcher. The GST has a duration of up to two years.

2.2 Training in groups, separated by the type of manned
spacecraft or areas of specialization

The main purpose of this training phase is to study the MSC elements
more in-depth. The cosmonauts learn to service and operate the different
modules, systems and subsystems, and to fly and dock transport vehicles
and an unmanned cargo carrier.

The objectives of this phase are to acquire a better knowledge and skills
related to

∙ design, layout, on-board service systems, scientific and specialized equip-
ment of a specific MSC;
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Figure 3: Underwater low-gravity training

∙ work with on-board systems and scientific equipment;

∙ flight procedures and mission;

∙ typical operations on EVA in the Neutral Buoyancy Laboratory (NBL)
and short-term weightlessness on flying laboratories and other technical
facilities of the Cosmonaut Training (TFCT);

∙ active behavior in real stress;

∙ equipment inventory, MOM, ADO, HO;

∙ physical condition and functional capacity of the organism, high effi-
ciency in the performance of professional tasks;

∙ on-board documentation;

∙ work with the Lead Operations Management Group of MCC;

∙ safety of the manned missions;

∙ operation and control of the MSC;

∙ typical accidents and emergency situations;
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∙ English language (to a level that allows to participate in a training
program at the facilities of the partner countries).

During this training phase, the cosmonauts ought to pass exams and
tests in the relevant disciplines. The training in groups can be performed
even after the formation of crews during the third training phase.

2.3 Training in crews

During this training phase, the cosmonauts learn everything they need to
know for their mission. All crew members, prime and backup crews, selected
for the space flight will train together.

Figure 4: Winter forest landing training

This is important not only because the crew members have to become
known to each other (later they will spend about half a year together in
the enclosed environment of the ISS), but they also learn to work efficiently
together as a team and according to the distributed roles and responsibilities
for which they are assigned to.

The crew tasks on the ISS are individually tailored, always considering
the particular experience of the astronauts and the professional background.

The objectives of this phase are:

∙ to acquire knowledge and skills related to
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– features and maintenance rules of the concrete MSC;

– program of the upcoming flight, on-board documentation and doc-
uments governing the rules of interaction between the crew mem-
bers themselves and with the management teams and provide the
flight crew with the code of conduct;

– control and operation of the MSC in regular modes and in case of
emergencies;

– scientific research and experiments included into the flight pro-
gram;

– functional duties in a crew;

– personal equipment (rescue suits, EVA suits, spacecraft chairs and
others);

– concrete flight EVA tasks;

– rules and methods to ensure flight safety on a specific MSC;

∙ to form a psychological compatibility in the crew;

∙ to improve the interaction between the crew members, between the
crews, and between the crews and the control groups;

∙ to ensure a good health, a high performance and the readiness to per-
form a biomedical section of the flight program;

∙ to conduct a pre-launch preparation with the crew;

∙ to increase the level of English up to the one needed to perform a space
flight as a part of the international crew of the ISS.

There exist the following crew functions:

∙ on an MSC:

– commander,

– onboard engineer,

– onboard engineer-2,

– space flight participant.

∙ on an ISS:

– commander,
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– onboard engineer,

– cosmonaut-researcher,

– space flight participant.

The training program contains a knowledge-based classroom training, as
well as ’hands-on’ using flight-like training mock-ups and simulators.

3 Mathematical models
The whole planning of the ISS cosmonaut training can be logically divided

into two stages: the problem of volume planning and the problem of calendar
planning.

The data for the volume planning problem is a set of onboard complexes
and the required number of cosmonauts of different qualifications of each
onboard complex. The aim is to distribute the training in qualifications of
onboard complexes between the cosmonauts so that the total time of training
becomes minimal.

The next important step of the planning process is the calendar planning.
Once solved the volume problem of planning for each cosmonaut’s defined
set of onboard complexes for which it is necessary to be trained, it also raised
the necessary qualifications for these onboard complexes. It is necessary to
plan the training to minimize the time of preparation of the first crew, but
to comply with the resource constraints and deadlines of the preparation of
the other crews.

3.1 Volume planning problem

3.1.1 Model 1: Minimizing the differences.

Notations

∙ 𝐾 – number of cosmonauts;

∙ 𝒦={1, . . . , 𝐾} – set of cosmonauts;

∙ 𝐽 – number of onboard complexes;

∙ 𝒥={1, . . . , 𝐽} – set of onboard complexes;

∙ 𝑄 – number of qualifications;

∙ 𝒬={1, . . . , 𝑄} — set of qualifications;
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∙ 𝒪𝑗 – set of tasks on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝒪𝑗𝑞 – set of tasks on the onboard complex 𝑗 ∈ 𝒥 , available for a
cosmonaut with qualification 𝑞 ∈ 𝒬;

∙ 𝑝𝑗,𝑞,𝑒 , 𝑒 ∈ {0, 1} – amount of time needed to train an experienced
(𝑒 = 1) or an inexperienced (𝑒 = 0) cosmonaut to qualification level
𝑞 ∈ 𝒬 on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑛𝑗,𝑞 – required number of cosmonauts with qualification level 𝑞 ∈ 𝒬 on
the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝐷 – maximum time of the training plan (constrained by the initial
data);

Data A set of cosmonauts 𝒦 should be trained. The cosmonauts could be
experienced (𝑒 = 1) or inexperienced (𝑒 = 0). We have 𝐽 onboard complexes
𝑗 ∈ 𝒥 . The number of qualifications can range from 𝑄 = 2 to 𝑄 = 4. We
consider the case of the following 𝑄 = 3 qualifications 𝑞 ∈ 𝒬: user (𝑞 = 1),
operator (𝑞 = 2) and specialist (𝑞 = 3). It is assumed that all amounts 𝑝𝑗,𝑞,𝑒
and all numbers 𝑛𝑗,𝑞 are known.
Besides we know that

𝒪𝑗1

⋂︁
𝒪𝑗2 = ø, 𝑗1 ̸= 𝑗2, 𝑗1, 𝑗2 ∈ 𝒥

Variables

∙ 𝑥𝑘,𝑗,𝑞 ∈ {0, 1} — Boolean variable: We have 𝑥𝑘𝑗𝑞 = 1 if cosmonaut
𝑘 ∈ 𝒦 should have the qualification level 𝑞 ∈ 𝒬 on the onboard complex
𝑗 ∈ 𝒥 ;

∙ 𝜏𝑘 — total time of the training plan for cosmonaut 𝑘 ∈ 𝒦;

In our notation, the total training time of cosmonaut 𝑘 can be represented
as the sum of the training times, assigned to the cosmonaut:

𝜏𝑘 =
∑︁
𝑞∈𝒬

∑︁
𝑗∈𝒥

𝑝𝑗𝑞𝑒𝑥𝑘𝑗𝑞.
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Objective function

(max
𝑘

𝜏𝑘 − min
𝑘

𝜏𝑘) → min, 𝑘 ∈ 𝒦, (1)

max
𝑘

𝜏𝑘 → min, 𝑘 ∈ 𝒦, (2)

min
𝑘

𝜏𝑘 → max, 𝑘 ∈ 𝒦. (3)

Constraints ∑︁
𝑘∈𝒦

𝑥𝑘,𝑗,𝑞 = 𝑛𝑗,𝑞, 𝑗 ∈ 𝒥 , 𝑞 ∈ 𝒬, (4)

∑︁
𝑞∈𝒬

𝑥𝑘,𝑗,𝑞 ≤ 1, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, (5)

∑︁
𝑞∈𝒬

𝑛𝑗,𝑞 ≤ 𝑄, 𝑗 ∈ 𝒥 . (6)

𝜏𝑘 ≤ 𝐷, 𝑘 ∈ 𝒦 (7)

In [10], it was shown that for this type of problem it is possible to use
three different objective functions (1), (2), (3). Constraint (5) forbids that
a cosmonaut has two different qualification levels on the same onboard com-
plex. Constraint (4) requires that the number of cosmonauts, trained for
each onboard complex, should be equal to the required number.

3.1.2 Model 2: Minimizing the expenses.

Notations

∙ 𝐾 — number of cosmonauts;

∙ 𝒦={1, . . . , 𝐾} — set of cosmonauts;

∙ 𝐽 — number of onboard complexes;

∙ 𝒥={1, . . . , 𝐽} — set of onboard complexes;

∙ 𝑄 — number of qualifications;

∙ 𝒬={1, . . . , 𝑄} — set of qualifications;

∙ 𝒪 — set of all tasks provided on the ISS;

∙ 𝒪𝑗 — set of tasks on the onboard complex 𝑗 ∈ 𝒥 ;

13



∙ 𝒪𝑗𝑞 — set of tasks on the onboard complex 𝑗 ∈ 𝒥 , available for a
cosmonaut with qualification 𝑞 ∈ 𝒬;

∙ 𝑝𝑗,𝑞,𝑒 , 𝑒 ∈ {0, 1}— amount of time needed to train an experienced
(𝑒 = 1) or an inexperienced (𝑒 = 0) cosmonaut to qualification level
𝑞 ∈ 𝒬 on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑛𝑗,𝑞 — required amount of cosmonauts with qualification level 𝑞 ∈ 𝒬
on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝐷 — maximum time of the training plan;

∙ 𝑥𝑘,𝑗,𝑞 ∈ {0, 1} — Boolean variable: We have 𝑥𝑘𝑗𝑞 = 1 if cosmonaut
𝑘 ∈ 𝒦 should have the qualification level 𝑞 ∈ 𝒬 on the onboard complex
𝑗 ∈ 𝒥 ;

∙ 𝜏𝑘 — total time of the training plan for cosmonaut 𝑘 ∈ 𝒦;

∙ 𝑐𝑘,𝑗,𝑞 — the cost of training cosmonaut 𝑘 ∈ 𝒦 to qualification level
𝑞 ∈ 𝒬 on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑊𝑗 — required training level on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑓𝑞 — training level of a cosmonaut with the qualification level 𝑞 ∈ 𝒬.

Objective function ∑︁
𝑘∈𝐾

∑︁
𝑗∈𝒥

∑︁
𝑞∈𝒬

𝑐𝑘,𝑗,𝑞𝑥𝑘,𝑗,𝑞 → min . (8)

Constraints ∑︁
𝑞∈𝒬

∑︁
𝑘∈𝒦

𝑓𝑞𝑥𝑘,𝑗,𝑞 ≥ 𝑊𝑗, (9)

(5): ∑︁
𝑞∈𝒬

𝑥𝑘,𝑗,𝑞 ≤ 1, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦,

(4): ∑︁
𝑘∈𝒦

𝑥𝑘,𝑗,𝑞 = 𝑛𝑗,𝑞, 𝑗 ∈ 𝒥 , 𝑞 ∈ 𝒬,

(7):
𝜏𝑘 ≤ 𝐷, 𝑘 ∈ 𝒦.
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3.1.3 Model 3: Maximizing the training level.

Notations

∙ 𝐾 – number of cosmonauts;

∙ 𝒦={1, . . . , 𝐾} – set of cosmonauts;

∙ 𝐽 – number of onboard complexes;

∙ 𝒥={1, . . . , 𝐽} – set of onboard complexes;

∙ 𝑄 – number of qualifications;

∙ 𝒬={1, . . . , 𝑄} – set of qualifications;

∙ 𝒪 – set of all tasks provided on ISS;

∙ 𝒪𝑗 – set of tasks on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝒪𝑗𝑞 – set of tasks on the onboard complex 𝑗 ∈ 𝒥 , available for a
cosmonaut with qualification 𝑞 ∈ 𝒬;

∙ 𝑝𝑗,𝑞,𝑒 , 𝑒 ∈ {0, 1} – amount of time needed to train an experienced
(𝑒 = 1) or an inexperienced (𝑒 = 0) cosmonaut to qualification level
𝑞 ∈ 𝒬 on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑛𝑗,𝑞 – required number of cosmonauts with qualification level 𝑞 ∈ 𝒬 on
the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝐷 – maximum time of the training plan;

∙ 𝑥𝑘,𝑗,𝑞 ∈ {0, 1} – Boolean variable: We have 𝑥𝑘𝑗𝑞 = 1 if cosmonaut
𝑘 ∈ 𝒦 should have the qualification level 𝑞 ∈ 𝒬 on the onboard complex
𝑗 ∈ 𝒥 ;

∙ 𝜏𝑘 – total time of the training plan for cosmonaut 𝑘 ∈ 𝒦;

∙ 𝑐𝑘,𝑗,𝑙 – the cost of training cosmonaut 𝑘 to qualification level 𝑞 ∈ 𝒬 on
the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑊𝑗 – required training level on the onboard complex 𝑗 ∈ 𝒥 ;

∙ 𝑓𝑞 – training level of a cosmonaut with the qualification level 𝑞 ∈ 𝒬.

∙ 𝐵 – limit of the budget of a whole training process.
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Objective function ∑︁
𝑘∈𝒦

∑︁
𝑗∈𝐽

∑︁
𝑞∈𝒬

𝑓𝑞𝑥𝑘,𝑗,𝑞 → max . (10)

Constraints ∑︁
𝑘∈𝒦

∑︁
𝑗∈𝒥

∑︁
𝑞∈𝒬

𝑐𝑘,𝑗,𝑞𝑥𝑘,𝑗,𝑞 ≤ 𝐵. (11)

(5): ∑︁
𝑞∈𝒬

𝑥𝑘,𝑗,𝑞 ≤ 1, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦,

(4): ∑︁
𝑘∈𝒦

𝑥𝑘,𝑗,𝑞 = 𝑛𝑗,𝑞, 𝑗 ∈ 𝒥 , 𝑞 ∈ 𝒬,

(7):
𝜏𝑘 ≤ 𝐷, 𝑘 ∈ 𝒦.

3.1.4 Model 4: 𝐾-partition formulation.

Problem Consider now the special case when only one qualification level
exists (𝑄 = 1) and each onboard complex can be assigned only to one cos-
monaut. Then

𝑝𝑒𝑘,𝑗,𝑞 → 𝑝𝑒𝑘,𝑗,

𝑛𝑗,𝑞 → 𝑛𝑗,

𝑛𝑗 ≤ 𝐾,

𝑒 = {0, 1}, 𝑘 ∈ 𝒦, 𝑗 ∈ 𝒥

Let 𝒥 be the set of onboard complexes and 𝒥𝑘 be the subset of onboard
complexes assigned to cosmonaut 𝑘:⋃︁

𝑘

𝒥𝑘 = 𝒥 , 𝒥 ′
𝑘 ∩ 𝒥𝑘 = ø (12)

𝜏𝑘 → 𝜏𝑘 =
∑︁
𝑗∈𝒥𝑘

𝑝𝑒𝑘,𝑗,

𝑒 = {0, 1}, 𝑘, 𝑘′ ∈ 𝒦, 𝑘 ̸= 𝑘′, 𝑗 ∈ 𝒥 .

The major goal is to find a partition of the set 𝒥 , which minimizes the
difference between the total time of the preparation of all crew members.
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Objective function Consider the same objective function as in the bot-
tleneck assignment problem [10]:

max
𝑘

𝜏𝑘 → min
𝒥𝑗

. (13)

In [2], algorithms for the "exact" solution of this problem were presented
with a constraint on the number of jobs assigned to each cosmonaut. In
[12], it was showen that these algorithms have a pseudo-polynomial time
complexity. It was also proven that the problem is strongly 𝒩𝒫-hard for
general 𝑚. Thus, the algorithms in [2] cannot guarantee an optimal solution
unless 𝒫 ≠ 𝒩𝒫 , although they may be used as good heuristics [4].

From the statement of the problem, it can be seen that it is possible to
use the objective function of one of the multi-way partition problems. In [10],
it was shown that there were at least three of them: minimizing the largest
subset sum (as in (13)), maximizing the smallest subset sum, and minimizing
the difference between the largest and smallest subset sums.

We will use the third objective function:

𝛿 = (max
𝑘

𝜏𝑘 − min
𝑘

𝜏𝑘) → min
𝒥𝑗

. (14)

3.2 Calendar planning problem

3.2.1 Model 5.

Notations

∙ 𝒞 = {1, . . . ,𝐶} – set of crews, where the crews are sorted according to
a non-decreasing order of their due dates;

∙ 𝒦𝑐={1, . . . , 𝐾𝑐} – set of cosmonauts in crew 𝑐 ∈ 𝒞;

∙ 𝒦=
⋃︀

𝑐 𝒦𝑐 – complete set of cosmonauts;

∙ 𝒥𝑘 – set of tasks of cosmonaut 𝑘, which are required for the implemen-
tation of the training plan;

∙ 𝒥=
⋃︀

𝑘 𝒥𝑘 — set of all tasks;

∙ 𝒯 ={1, . . . , 𝑇} – set of the time moments (planning horizon);

∙ 𝑝𝑗 – execution time of the operation 𝑗 ∈ 𝒥 ;

∙ ℛ = {1, . . . ,𝑅} – set of resources;
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∙ 𝑟𝑐𝑗𝑟 – amount of the resource 𝑟 needed to perform the task 𝑗;

∙ 𝑟𝑎𝑟𝑡 – amount of resource 𝑟 accessible during the time moment 𝑡;

∙ 𝐷𝑐 – due date of the crew 𝑐 ∈ 𝒞;

∙ 𝐺 = (𝐽,Γ) – graph of the precedence relationships between the tasks:
We have (𝑗,𝑗′) ∈ Γ if task 𝑗 must be performed before task 𝑗′.

∙ 𝐻 = (𝐽,ℋ) – the graph of the strict precedence relationships between
the tasks: We have (𝑗,𝑗′) ∈ ℋ if task 𝑗′ must be performed immediately
after the task 𝑗.

Variables

∙ 𝑥𝑗𝑡 ∈ {0, 1} – Boolean variable: We have 𝑥𝑖𝑗𝑡 = 1 if and only if task 𝑗
starts the execution at time moment 𝑡;

∙ 𝑆𝑐 ∈ 𝑆 – set of moments at which the execution of tasks from the set
𝐽𝑐 starts.

Formulation of the problem

The optimization criterion is to minimize the total training time of the
first crew:

𝐶𝑚𝑎𝑥(𝑆1) → min, (15)

where
𝐶𝑚𝑎𝑥(𝑆1) = max

𝑗∈𝒥 1
{𝑆𝑗 + 𝑝𝑗}.

Each task must be performed during the planning horizon:

𝒯∑︁
𝑡=1

𝑥𝑗𝑡 = 1, 𝑗 ∈ 𝒥 . (16)

The resource limits must be respected:

∑︁
𝑗∈𝒥

𝑡∑︁
𝑡′=𝑡−𝑝𝑗+1

𝑟𝑐𝑗𝑟𝑥𝑗𝑡′ ≤ 𝑟𝑎𝑟𝑡, ∀𝑡 ∈ 𝒯 , ∀𝑟 ∈ ℛ. (17)
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The precedence relationships between the tasks must be respected:

𝑇∑︁
𝑡′=𝑡−𝑝𝑗+1

𝑥𝑗𝑡′ +
𝑡∑︁

𝑡′=1

𝑥𝑗′𝑡′ ≤ 1, ∀(𝑗,𝑗′) ∈ Γ,∀𝑡 ∈ 𝒯 . (18)

The strict precedence relationships between the tasks must be respected:

𝑥𝑗𝑡 − 𝑥𝑗′(𝑡+𝑝𝑗) = 0, ∀(𝑗,𝑗′) ∈ ℋ,∀𝑡 ∈ 𝒯 . (19)

The completion of the training time of the remaining crews may not
exceed the due dates:

𝐶𝑚𝑎𝑥(𝑆𝑐) ≤ 𝐷𝑐 𝑐 = 2, . . . , 𝐶. (20)

Formulation as an integer programming problem

The formulation below is a RCPSP. As it is known, such a problem can
be represented as an integer programming problem.

We introduce the formal tasks:

∙ zero task 𝑗0, 𝑝0 = 0;

∙ final task for the first crew 𝑗 = 𝐽 + 1 that should be performed after
all tasks of the first crew, 𝑝𝐽+1 = 0;

∙ . . . ;

∙ final task for the crew 𝑐 ∈ 𝒞, 𝑗 = 𝐽 + 𝑐 that should be performed after
all tasks of the crew 𝑐 ∈ 𝒞, 𝑝𝐽+𝑐 = 0;

Let 𝑒𝑠𝑗 and 𝑙𝑠𝑗 be the earliest and the latest moments at which task
𝑗 ∈ 𝒥𝑘 can be performed.
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Then we get the following optimization problem:
𝑙𝑠𝐽+1∑︁

𝑡=𝑒𝑠𝐽+1

𝑡𝑥(𝐽+1)𝑡 → min; (21)

𝑙𝑠𝑗∑︁
𝑡=𝑒𝑠𝑗

𝑥𝑗𝑡 = 1 𝑗 ∈ 𝒥 ; (22)

𝑙𝑠𝑗∑︁
𝑡=𝑒𝑠𝑗

𝑡𝑥𝑗𝑡 −
𝑙𝑠𝑖∑︁

𝑡=𝑒𝑠𝑖

𝑡𝑥𝑖𝑡 ≥ 𝑝𝑖 (𝑖, 𝑗) ∈ 𝐺 = (𝐽,Γ); (23)

𝑙𝑠𝑗∑︁
𝑡=𝑒𝑠𝑗

𝑡𝑥𝑗𝑡 −
𝑙𝑠𝑖∑︁

𝑡=𝑒𝑠𝑖

𝑡𝑥𝑖𝑡 = 𝑝𝑖 (𝑖, 𝑗) ∈ 𝐻 = (𝐽,ℋ); (24)

∑︁
𝑗∈𝒥

𝑟𝑐𝑗𝑟

𝑡∑︁
𝜏=𝜎(𝑡,𝑗)

𝑥𝑗𝜏 ≤𝑟𝑎𝑟𝑡 𝑡 ∈ 𝒯 , 𝑟 ∈ ℛ, (25)

with 𝜎(𝑡, 𝑗) = max(0, 𝑡− 𝑝𝑗 + 1);

𝑙𝑠𝐽+𝑐∑︁
𝑡=𝑒𝑠𝐽+𝑐

𝑡𝑥(𝐽+𝑐)𝑡 ≤ 𝐷𝑐 𝑐 = 2, . . . , 𝐶. (26)

where (21) is the price function that minimizes the total training time of
the first crew, constraint (22) means that each task must be performed, con-
straints (23) and (24) describe the precedence and strict precedence relation-
ships, respectively, constraint (25) is a resource constraint, and constraint
(26) means that the completion of the training time of the remaining crews
may not exceed the due dates.

Given the structure of the constraints as well as the size of the input
data, one can observe that this problem is quite complex for modern solvers
implementing standard algorithms of integer programming. Therefore, it is
more likely, that an optimal solution cannot be obtained within a reasonable
time. For this reason, we will develop heuristic algorithms for solving this
problem.

3.2.2 Model 6.

Notations First, we introduce some time intervals:

∙ 𝑊 = {1, . . . ,|𝑊 |} — set of weeks in the planning period. The maximum
is |𝑊 | = 130 weeks (2.5 years). Because of the time previously given
to specific operations, this set can be significantly reduced.
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Figure 5: Time intervals

∙ 𝐷𝑤 = {1,2,3,4,5,6,7} — set of days per week, 𝑤 ∈ 𝑊 . If required, the
operator can change this set, increasing or decreasing it (e.g., holidays,
etc.).

∙ 𝐻𝑤𝑑 = {1, . . . ,18,19} — set of half-hour intervals of the day 𝑑 ∈ 𝐷𝑤 of
week 𝑤 ∈ 𝑊 .

It is assumed that the first interval begins at 9.00 a.m. and ends latest
at 6.00 p.m., followed by the dinner. Due to the dinner, it is necessary to
divide the days in the model. In some cases, according to the information
available to us, a typical schedule may increase the duration of the day for
1 hour (two intervals). Probably, the following process is possible: a feasible
schedule with the current set of intervals cannot be developed, the program
indicates where the conflict is, the operator decides to extend the working
day, and to re-develop the schedule. As in a typical schedule there are very
few operations that take no more than half an hour, perhaps the partition of
the working day by hours (i.e., not by half of an hour) can be done. Then
we have 𝐻𝑤𝑑 = {1, . . . , 9} and a significantly smaller dimension.

It will be convenient to work with restrictions such as “not more than 2
times a week”, “in the morning”, etc. On the other hand, for the calculation
of the duration of the steps, it is necessary to have a linear decomposition
of the planning horizon. To do this, let us arrange all triples (𝑤, 𝑑, ℎ) in
lexicographical order and to each triple, we associate its number: (𝑤, 𝑑, ℎ) →
𝑡(𝑤, 𝑑, ℎ), where 𝑡 ∈ 𝑇 = {1, . . . , |𝑇 |}, |𝑇 | is the number of triples (see Fig. 5).
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Due date of crew 1

Figure 6: Training schedule for all crews.

We denote the set of all triples (𝑤,𝑑,ℎ) as 𝑌 :

𝑌 = {(𝑤,𝑑,ℎ)|𝑤 ∈ 𝑊,𝑑 ∈ 𝐷𝑤, ℎ ∈ 𝐻𝑤𝑑}.

The crews start the training at different moments (see. Fig. 6). There-
fore, over the period of 2.5 years, some cosmonauts have already mastered a
part of the operations and thus, each cosmonaut has its own set of current
operations.

Denote by 𝑌 (𝑘,𝑗) the set of all possible time intervals for performing task
𝑗 by cosmonaut 𝑘. In this case, we do not consider the days when cosmonaut
𝑘 is on vacation and consider time constraints (limits 𝑒𝑗 and 𝑙𝑗).

Next, we introduce the basic notations.

∙ 𝐶 = {1, . . . ,|𝐶|} — set of crews.

∙ 𝐾𝑐 — set of cosmonauts in the crew 𝑐 ∈ 𝐶. Usually, 𝐾𝑐 = {1,2,3}.

∙ 𝐾 — the complete set of cosmonauts.

∙ 𝐽𝑐 — set of tasks of the crew 𝑐 ∈ 𝐶.

∙ 𝐽𝑘 — set of tasks of cosmonaut 𝑘, which are required for the imple-
mentation of the training plan. We divide this set into the following
subsets:

– 𝐽𝑇
𝑘 — set of technical tasks of the cosmonaut 𝑘, all tasks with

onboard complexes are contained in it. Denote all tasks for the
onboard complexes as 𝐽𝐵

𝑘 .

22



– 𝐽𝐹
𝑘 — set of physical training tasks of the cosmonaut 𝑘 (which last

2 hours, i.e., we have 4 intervals).
– 𝐽𝐴

𝑘 — set of administrative tasks of the cosmonaut 𝑘.
– 𝐽𝐿

𝑘 — set of language lessons of the cosmonaut 𝑘 (which last 2
hours, i.e., we have 4 intervals).

We distinguish subsets in the set 𝐽𝐵
𝑘 which contain the tasks of the

onboard complexes 𝐽𝐵1
𝑘 , 𝐽𝐵2

𝑘 , . . . , 𝐽
𝐵𝑚𝑘
𝑘 , where 𝑚𝑘 denotes the number

of onboard complexes which should examine cosmonaut 𝑘.

∙ 𝑝𝑗 — 𝑗 ∈ 𝐽 execution time.

∙ 𝑅 = {1, . . . ,|𝑅|} — set of resources. Each cosmonaut is also a resource
that is available in amount 1 at any time.

∙ 𝑟𝑐𝑗𝑟 — amount of the resource 𝑟 needed to perform the task 𝑗.

∙ 𝑟𝑎𝑟𝑤𝑑ℎ — amount of the resource 𝑟 accessible during time interval ℎ of
a day 𝑑, week 𝑤.

∙ 𝑒𝑗, 𝑙𝑗 — the earliest and the latest moments at which task 𝑗 ∈ 𝐽 can
be performed.

∙ 𝐽 𝑏𝑜𝑢𝑛𝑑
𝑘 — set of tasks for which time constraints are defined. Due dates

can also be described using these boundaries.

∙ 𝐽𝑑𝑎𝑦
𝑘 — set of tasks that should be performed during one day.

∙ 𝐽𝑤𝑒𝑒𝑘
𝑘 — set of tasks that should be performed during one week.

∙ 𝐽123
𝑐 — set of tasks that should be performed by all cosmonauts of the

crew 𝑐 ∈ 𝐶. Similarly, we define the sets 𝐽12
𝑐 , 𝐽13

𝑐 , 𝐽23
𝑐 .

∙ 𝐺 = (𝐽,Γ) – the graph of the precedence relations between the tasks:
We have (𝑗,𝑗′) ∈ Γ if task 𝑗 must be performed before the task 𝑗′.

∙ 𝐻 = (𝐽,ℋ) – the graph of the strict precedence relations between the
tasks: We have (𝑗,𝑗′) ∈ ℋ if task 𝑗′ must be performed immediately
after the task 𝑗.

We can divide the operations that take more than one day into one-day
operations. For these operations, we can introduce the graph of the "almost
strict" precedence relations 𝑆𝐻. If (𝑗1,𝑗2) ∈ 𝑆𝐻, then operation 𝑗2 should be
performed after operation 𝑗1 and there should be one time interval between
them. So, we get a sequence of one-day operations divided by the dinner
instead of a multi-day operation.
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Variables

∙ 𝑥𝑘𝑗𝑤𝑑ℎ — Boolean variable: We have 𝑥𝑘𝑗𝑤𝑑ℎ = 1 if and only if the
cosmonaut 𝑘 starts the task 𝑗 from the interval ℎ of the day 𝑑 of week
𝑤;

∙ 𝑦𝑖𝑘𝑤 — Boolean variable: We have 𝑦𝑖𝑘𝑤 = 1 if and only if the cosmonaut
𝑘 trains for the onboard complex 𝑖 during the week 𝑤.

Constraints The following relations between the variables have to be sat-
isfied: ∑︁

𝑗∈𝐽𝐵𝑖
𝑘

𝑥𝑘𝑗𝑤𝑑ℎ ≤ 𝑦𝑖𝑘𝑤, (27)

∀𝑘 ∈ 𝐾, ∀𝑖 ∈ {1, . . . ,𝑚𝑘}, ∀(𝑤,𝑑,ℎ) ∈ 𝑌.

The resource limits have to be respected:∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

𝑟𝑐𝑗𝑟
∑︁

(𝑤′,𝑑′,ℎ′) ∈ 𝑌
𝑡(𝑤,𝑑,ℎ) − 𝑝𝑗 + 1 ≤ 𝑡(𝑤′,𝑑′,ℎ′) ≤ 𝑡(𝑤,𝑑,ℎ)

𝑥𝑘𝑗𝑤′𝑑′ℎ′ ≤ 𝑟𝑎𝑟𝑤𝑑ℎ,

∀𝑟 ∈ 𝑅, ∀(𝑤,𝑑,ℎ) ∈ 𝑌. (28)

In this inequality, for each (𝑤,𝑑,ℎ) ∈ 𝑌 , we consider only the operations that
are performed at this interval, i.e., which started in the interval [𝑡(𝑤,𝑑,ℎ) −
𝑝𝑗 + 1, 𝑡(𝑤,𝑑,ℎ)].

Each cosmonaut should perform all required tasks:∑︁
(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗)

𝑥𝑘𝑗𝑤𝑑ℎ = 1, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽𝑖. (29)

Each cosmonaut must have 4 hours (2 tasks for 2 hours) of physical
training per week:∑︁

𝑗∈𝐽𝐹
𝑘

∑︁
𝑑∈𝐷𝑤

∑︁
ℎ∈𝐻𝑤𝑑

𝑥𝑘𝑗𝑤𝑑ℎ ≤ 2, ∀𝑘 ∈ 𝐾,∀𝑤 ∈ 𝑊. (30)

Similarly, we can set constraints on the language study. Each cosmonaut
must have 4 hours of language lessons per week at the beginning of the whole
training: ∑︁

𝑗∈𝐽𝐿
𝑘

∑︁
𝑑∈𝐷𝑤

∑︁
ℎ∈𝐻𝑤𝑑

𝑥𝑘𝑗𝑤𝑑ℎ ≤ 2, ∀𝑘 ∈ 𝐾,∀𝑤 ∈ 𝑊. (31)
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Similarly, we have constraints for the administrative tasks:∑︁
𝑗∈𝐽𝐴

𝑘

∑︁
𝑑∈𝐷𝑤

∑︁
ℎ∈𝐻𝑤𝑑

𝑥𝑘𝑗𝑤𝑑ℎ ≤ 4, ∀𝑘 ∈ 𝐾,∀𝑤 ∈ 𝑊. (32)

It is forbidden to plan more than 4 hours of training for one onboard
complex per day: ∑︁

𝑗∈𝐽𝐵𝑖
𝑘

∑︁
ℎ∈𝐻𝑤𝑑

𝑝𝑗𝑥𝑘𝑗𝑤𝑑ℎ ≤ 8, (33)

∀𝑘 ∈ 𝐾, ∀𝑖 ∈ {1, . . . ,𝑚𝑘},∀𝑤 ∈ 𝑊,∀𝑑 ∈ 𝐷𝑤.

It is forbidden to plan the training for more than two onboard complexes
per week:

𝑚𝑘∑︁
𝑘=1

𝑦𝑖𝑘𝑤 ≤ 2, ∀𝑘 ∈ 𝐾, ∀𝑤 ∈ 𝑊. (34)

There are time limits for some tasks:

𝑥𝑘𝑗𝑤ℎ𝑑 = 0, (35)

∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽 𝑏𝑜𝑢𝑛𝑑
𝑘 ,∀(𝑤,𝑑,ℎ) ∈ 𝑌 : 𝑡(𝑤,𝑑,ℎ) ≤ 𝑒𝑗 − 1,

𝑥𝑘𝑗𝑤ℎ𝑑 = 0, (36)

∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽 𝑏𝑜𝑢𝑛𝑑
𝑘 ,∀(𝑤,𝑑,ℎ) ∈ 𝑌 : 𝑡(𝑤,𝑑,ℎ) ≥ 𝑙𝑗 + 1.

The precedence relations (if (𝑗1,𝑗2) ∈ Γ, then task 𝑗1 must be performed
before task 𝑗2) must be respected:∑︁

(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗2)

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗2𝑤𝑑ℎ −
∑︁

(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗1)

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗1𝑤𝑑ℎ ≤ 𝑝𝑗1 , (37)

∀𝑘 ∈ 𝐾, ∀(𝑗1,𝑗2) ∈ Γ.

The strict precedence relations must be respected:∑︁
(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗2)

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗2𝑤𝑑ℎ −
∑︁

(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗1)

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗1𝑤𝑑ℎ = 𝑝𝑗1 , (38)

∀𝑘 ∈ 𝐾, ∀(𝑗1,𝑗2) ∈ ℋ.

We must consider that 𝐻 ⊆ 𝐺.
The "almost strict" precedence relations must be respected:∑︁

(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗2)

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗2𝑤𝑑ℎ −
∑︁

(𝑤,𝑑,ℎ)∈𝑌 (𝑘,𝑗1)

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗1𝑤𝑑ℎ = 𝑝𝑗1 + 1, (39)

∀𝑘 ∈ 𝐾, ∀(𝑗1,𝑗2) ∈ 𝒮ℋ.
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Remark 3.1. If the date of the vacation of the cosmonaut is not defined and
must be determined during the planning phase, it can be considered as an
additional task of appropriate length.

Remark 3.2. The lunch time can be strictly fixed or it can be considered as
a task with time constraints (for example, from 12.00 a.m. to 3.00 p.m.).

Objective function Since the first crew starts before the others, it has
the priority in the planning phase, and a possible formulation of the problem
includes the minimization of its total training time. To do this, we introduce
an additional variable 𝑡𝑓 and constraints on the additional last task 𝑡𝑓𝑘 for
each cosmonaut 𝑘 ∈ 𝐾1:

𝑡(𝑤,𝑑,ℎ)𝑥𝑘𝑗𝑓𝑘𝑤𝑑ℎ ≤ 𝑡𝑓 , ∀𝑘 ∈ 𝐾1, ∀(𝑤,𝑑,ℎ) ∈ 𝑌. (40)

In this case, the objective function is:

min 𝑡𝑓 . (41)

4 Approaches

4.1 Algorithm-3.0

Consider the model 1.
We combine the variables 𝑥𝑘,𝑗,𝑞 of the same qualification level and onboard

complex into a vector �⃗�𝑗,𝑞 = {𝑥1,𝑗,𝑞, 𝑥2,𝑗,𝑞, 𝑥3,𝑗,𝑞}.

Step 1 First, we are going to find all onboard complexes which require all
three cosmonauts or none of them have the same qualification level. Then
there exists only one option of the training plan satisfying this condition:

�⃗�𝑗𝑞 = {1, 1, 1}, ∀𝑗,𝑞 : 𝑛𝑗,𝑞 = 3,

�⃗�𝑗𝑞 = {0, 0, 0}, ∀𝑗,𝑞 : 𝑛𝑗,𝑞 = 0.

Step 2 Let 𝐽 ′ be the number of onboard complexes left after the previ-
ous step. Consider this problem as 𝐽 ′ independent subproblems. For each
subproblem, we will find the minimum separately.

It can be interpreted as 𝐽 ′ boxes (Fig. 7) with

𝐶𝑗 = 𝐶
𝑛𝑗,𝑆

3 · 𝐶𝑛𝑗,𝑂

3−𝑛𝑗,𝑆
· 𝐶𝑛𝑗,𝑈

3−𝑛𝑗,𝑆−𝑛𝑗,𝑂
, 𝑗 = 1, 𝐽 ′,
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Figure 7: Each box is an onboard complex, and each item is an option for
the distribution.

objects in each of them. It is allowed to take only one of them from each
box.

Considering all subproblems as independent ones reduces the number of
variations from

𝐽 ′∏︁
𝑗=1

𝐶𝑗 ≤ 6𝐽 ′

to
𝐽 ′∑︁
𝑗=1

𝐶𝑗 ≤ 6𝐽 ′.

Step 3 For each required qualification level on each onboard complex, a
cosmonaut should be determined. Due to this fact, the problem is less com-
plicated than that where a subset of qualification levels should be chosen on
which the best value is distinguished like in a knapsack problem.

At this step, we sort the values 𝑝1,𝑗,𝑞 in non-increasing order to cover the
difference among the total time of the training plans of each cosmonaut at
the next steps of the algorithm.

Step 4 Perform 𝐽 ′ iterations.
At iteration 𝑗, find �⃗�𝑗,𝑆, �⃗�𝑗,𝑂, �⃗�𝑗,𝑈 such that

min
�⃗�𝑗,𝑆 , �⃗�𝑗,𝑂, �⃗�𝑗,𝑈

(𝑅𝑗(�⃗�𝑗,𝑆, �⃗�𝑗,𝑂, �⃗�𝑗,𝑈)) = min
�⃗�𝑗,𝑆 , �⃗�𝑗,𝑂, �⃗�𝑗,𝑈

(︃
3∑︁

𝑘′=1

∑︁
𝑘′>𝑘

| 𝜏𝑘,𝑗 − 𝜏𝑘′,𝑗 |

)︃
,
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𝜏𝑘,0 = 0,

𝜏𝑘,𝑗 = 𝜏𝑘,𝑗−1 +
∑︁

𝑞=𝑆,𝑂,𝑈

𝑐𝑒𝑘,𝑗,𝑞𝑥𝑘,𝑗,𝑞,

𝑘 = 1, 3, 𝑗 = 1, 𝐽 ′, 𝑒𝑘 = 1 if and only if cosmonaut 𝑘 is experienced and
𝑥𝑘,𝑗,𝑞 satisfies the constraints (4) and (5).

If 𝑛𝑗,𝑞 = 1, then

�⃗�𝑗,𝑞 = {1, 0, 0} or {0, 1, 0} or {0, 0, 1}.

If 𝑛𝑗,𝑞 = 2, then

�⃗�𝑗,𝑞 = {1, 1, 0} or {0, 1, 1} or {1, 0, 1}.

Complexity At each iteration, we have to calculate the R maximum of

𝐶𝑗 = 𝐶
𝑛𝑗,𝑆

3 · 𝐶𝑛𝑗,𝑂

3−𝑛𝑗,𝑆
· 𝐶𝑛𝑗,𝑈

3−𝑛𝑗,𝑆−𝑛𝑗,𝑂
= 6

times with 𝑛𝑗,𝑆 = 𝑛𝑗,𝑂 = 𝑛𝑗,𝑆 = 1.
Due to this fact, if there are 𝑛 onboard complexes, the number of opera-

tions is equal to 𝑂(𝑛).

4.2 Partition algorithm

Consider the model 4.

4.2.1 𝒩𝒫-completeness

The first goal in the analysis is an 𝒩𝒫-completeness proof for the problem
with the criterion (14) subject to (12). Obviously, the problem is 𝒩𝒫-hard.
By a local replacement [5], it is possible to show that the problem is also
𝒩𝒫-complete. Suppose that all cosmonauts have an equal training time
for every job. Then the problem reduces to the multiway-partition problem
which is indeed 𝒩𝒫-complete. So, the cosmonaut assignment problem is
𝒩𝒫-complete as well.

4.2.2 Algorithms

Heuristic algorithm As a first approximation, a greedy algorithm based
on heuristic considerations can be used. At each step, the algorithm fixes a
job and makes an assignment to the cosmonaut, which will have the min-
imum objective function value (14). The complexity of such an algorithm
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is 𝑂(𝑚2𝑛), where 𝑚 is the number of cosmonauts and 𝑛 is the number of jobs.

Example (Tables 1-4)

Table 1: Initialization
Job → First Second Third

Commander 1 2 3
Engineer 2 4 6

User 2 1 2

Table 2: Assignment of the first job
Job → First Second Third

Commander 1 2 3
Engineer 2 4 6

User 2 1 2

Table 3: Assignment of the second job
Job → First Second Third

Commander 1 2 3
Engineer 2 4 6

User 2 1 2

Table 4: Assignment of the third job
Job → First Second Third

Commander 1 2 3
Engineer 2 4 6

User 2 1 2

Here we have 𝛿 = 3, while the optimal objective function value is 0.

Observation It is possible to find an instance which will have an arbitrary
error as it is shown in Table 5.
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Table 5: "Bad" instance
[h] Job → First Second Third

Commander 0 A A
Engineer A A A

User A A A

Here A is a random number. So the error of the heuristic algorithm will
be equal to A, but the optimal objective function value is equal to 0.

According to the proposed algorithm, a program was written and tests
were carried out on real data provided by the Yu. A. Gagarin research & test
cosmonaut training center. In spite of the above observation, the error of the
greedy algorithm does not exceed 10% of the optimum value.

Exact algorithm Assume that we have found an optimal solution. Then
any permutation of the work of one cosmonaut would lead to the fact that the
objective function will increase or remain the same. If there is a permutation,
leading to a decrease in the objective function, it can be argued that the
chosen solution is not optimal. Let a solution be obtained, for example by
using the heuristic algorithm described earlier. Then we can find out whether
it is optimal using the following lemma.

Lemma 4.1. Let 𝒥 ′
𝑘 = {𝒥 ′

1, . . . ,𝒥 ′
𝑚} be the feasible subsets of the set 𝒥 .

Moreover, let all cosmonauts be sorted in non-increasing order of the keys
𝑦𝑘. Then it is possible to check whether an optimal solution is obtained with
𝑂(|𝒥 ′

1|(𝑚 +
∑︀

2≤𝑠≤𝑚

|𝒥 ′
𝑠 |)) operations in the worst case.

Proof An exhaustive search can be avoided if we consider that the objec-
tive function can only increase or remain the same, if the cosmonauts with
maximum or minimum time of the training are not involved into the permu-
tation.

Algorithm

1. Find a solution by the heuristic algorithm.

2. Sort the cosmonauts in non-increasing order of the keys 𝑦𝑘.

3. Check whether the solution is optimal using Lemma 4.1.
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4. If the solution is not optimal, apply a permutation that leads to a
decrease of 𝛿.

5. Repeat step 2.

4.3 Integer programming

The software package CPLEX has been used for the solution of the prob-
lem.

1. The integer constraints were relaxed, and then the linear programming
problem was solved.

2. The original problem was solved by the branch-and-bound method us-
ing the solution of the relaxed problem as a lower bound.

3. Constraints on the one of the variables were added, and then the algo-
rithm iterates again.

5 Comparison of the algorithms
The two proposed algorithms were tested on real data and compared

with an integer programming technique. All results are shown in Table 6.
The running time of the exact branch-and-bound method, implemented on
CPLEX, was limited to 15 minutes.

Table 6: Numerical Experiments
Sample Experience Alg.-3.0 Partition alg. Integer Progr.(CPLEX)

max min 𝛿 max min 𝛿 max min 𝛿

min
SQRM

3 Inexperienced 883.25 881.00 2.25 887.8 886.75 1.05 888.05 887.75 0.3
3 Experienced 570.00 568.50 1.5 570.5 569 1.5 570 569.5 0.5
1 Exp 2 Inexp 697.25 695.25 2
2 Exp 1 Inexp 616.5 612.75 3.75

6
months

3 Inexperienced 266.25 265 1.25 265.75 265.2 0.55
3 Experienced 234.2 233 1.2 233.75 233.25 0.5
1 Exp 2 Inexp 244.45 244 0.45
2 Exp 1 Inexp 233.75 233.25 0.5

2
years

3 Inexperienced 661.25 657.5 3.75 659.85 659.75 0.1
3 Experienced 353.5 353.05 0.45 353.5 353 0.5
1 Exp 2 Inexp 484.05 481.75 2.3
2 Exp 1 Inexp 393.5 382.5 1

STFL

3 Inexperienced 925.75 922.25 3.5 925 924.8 0.2
3 Experienced 587 586.5 0.5 587 586.5 0.5
1 Exp 2 Inexp 731.5 730.75 0.75
2 Exp 1 Inexp 628.75 628 0.75
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It can be observed that the third algorithm based on integer program-
ming techniques has the best accuracy, but it still cannot be guaranteed that
the values obtained are indeed optimal. For example, it can be seen when
compared with the second algorithm for the data "2 years" for three experi-
enced cosmonauts. In this case, the greedy algorithm gives a better solution.
However, among all data, this is the only case.

The essential difference between the first and second algorithms on one
side and the third algorithm on the other side is that two qualification levels
with the highest training time would be assigned to two different cosmonauts,
whereas this is not mandatory in the third algorithm. It can be found that
obvious correlations in the distribution of the work with medium and small
durations in the second and third algorithms cannot be observed.

From our experiments, it can be seen that the solution quality of the first
two algorithms is similar.

6 Conclusion
This article described the process of the training of cosmonauts and the

relevance of the planning phase. Some models and methods for solving the
training scheduling problem were suggested. For the problem of volume
planning, several models and three algorithms were presented. To solve the
calendar problem, integer programming methods problems and RCPSP al-
gorithms will be used. In the future, we plan to develop an automated work-
place (AWP), which allows to automate the process of planning the training
of the ISS crews.
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