Scheduling Parallel Machines With a Single Server

Frank Werner ${ }^{1}$

Keramat Hasani ${ }^{2}$ Svetlana A. Kravchenko ${ }^{2}$
Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg
2
United Institute of Informatics Problems, Minsk, Belarus

Outline of the Talk

- Introduction
- Makespan Problem
- MILP models
- Metaheuristics and heuristics
- Mean Flow Time Problem
- MILP models
- Metaheuristics

Problem Definition

The problem can be formulated in the following way:
> n jobs $J_{1}, J_{2}, \ldots, J_{n}$ have to be scheduled on two identical parallel machines without preemptions.
, Each machine can process at most one job at a time.
> For each job j, there are given:
p_{j} - processing time, \boldsymbol{S}_{j} - setup time
> Before processing any job, it has to be loaded on a machine and it takes S_{j} time unit.
> All setups have to be done by a single server which can handle at most one job at a time.

Maximum Completion Time Problem (cont'd)

| Authors | Year | Problem | Approaches |
| :--- | :--- | :--- | :--- | :--- |
| Hall et al. | $\mathbf{1 9 9 6}$ | $\mathbf{P 2 , S 1 \| \| C m a x}$ | - Unary NP-hardness proof |

Maximum Completion Time Problem (cont'd)

Authors	Year	Problem	approaches	
Zhang \& Wirth	2009	P2,S1 \| $\mathbf{C m a x}$	- Consideration of the online version	
Kim\&Lee	2012	P,S1 \|	Cmax	- Some heuristics for small-sized instances

Gan et al.	2012	P2,S1 \| ${ }^{\text {Cmax }}$	- Two MILP models - Two variants of a Branch and Price algorithm

Maximum Completion Time Problem (cont'd)

> Our approaches:
, Mixed integer programming models
, Setup sequence model
In this model, the loading order of the jobs is used.
, Block models
. In this model we consider the jobs as a set of blocks.
, Metaheuristics
, Simulated annealing algorithm (SA)
A composite neighborhood is used.
, Genetic algorithm (GA)
, Heuristics

- Algorithm Min-idle
, Algorithm Min-loadgap

Setup Sequence Model (M0)

- In the following model, the loading order of the jobs is used as in Gan et al. (2012).

$$
x_{i j}=\left\{\begin{array}{l}
1, \quad \text { if } J_{j} \text { is the } i-\text { th job to be setup }, \\
0, \\
\sum_{j=1}^{n} x_{i, j}=1 \quad \text { otherwise } .
\end{array} \quad \sum_{i=1}^{n} x_{i, j}=18\right.
$$

Let $S S_{i}$ be the loading time of the i th loading job and $p p_{i}$ be the processing time of the i th loading job, i.e., we have

$$
S s_{i}=\sum_{j=1}^{n} s_{j} x_{i, j} \quad p p_{i}=\sum_{j=1}^{n} p_{j} x_{i, j}
$$

Setup Sequence Model (M0) (cont'd)

Now for the first and the second loading jobs, we can introduce the inequality

$$
F_{1,2} \geq s s_{1}+s s_{2}
$$

If the processing part of the first loading job is large enough, then one can introduce the inequality

$$
L_{1,2} \geq p p_{1}-s s_{2}
$$

and to denote the time interval when only one machine is busy, one can introduce L_{2} with the inequalities

$$
L_{2} \geq L_{1,2}-p p_{2}, \quad L_{2} \geq p p_{2}-L_{1,2}
$$

Setup Sequence Model (M0) (cont'd)

let $\quad x_{j}=\left\{\begin{array}{lr}1, & \text { if } J_{j} \text { is finished last among the jobs } J_{1}, J_{2}, \ldots, J_{j}, \\ 0, & \text { otherwise } .\end{array}\right.$
To estimate the overlapping part for the first two jobs, we introduce the inequalities:

$$
\begin{gathered}
O F_{2} \geq L_{1,2}-M\left(1-x_{2}\right), O F_{2} \geq p p_{2}-M x_{2} \\
\text { where } M=\max _{j}\left\{p_{j}\right\}
\end{gathered}
$$

To know the earliest time when one of the machines is available, we introduce the inequality

$$
F_{2} \geq F_{1,2}+O F_{2}
$$

Setup sequence model (M0) (cont'd)

For $j=2, \ldots, n-1$ we have the following inequalities:

$$
\begin{aligned}
& F_{j, j+1} \geq F_{j}+s s_{j+1} \\
& L_{j, j+1} \geq L_{j}-s s_{j+1}, \\
& L_{j+1} \geq L_{j, j+1}-p p_{j+1}, \quad C_{\max }(s)=F_{n}+L_{n} \\
& L_{j+1} \geq p p_{j+1}-L_{j, j+1} \\
& O F_{j+1} \geq L_{j, j+1}-M\left(1-x_{j+1}\right), \\
& O F_{j+1} \geq p p_{j+1}-M x_{j+1} \\
& F_{j+1} \geq F_{j, j+1}+O F_{j+1} .
\end{aligned}
$$

Block Models (M1,M2)

> The problem $P 2, S 1 \| C_{\max }$ can be considered as a unit of blocks B_{1}, \ldots, B_{z}, where $z \leq n$.
, Each block B_{k} can be completely defined by the first level job J_{a} and a set of second level jobs $\left\{J_{a 1}, \ldots, J_{a k}\right\}$, where inequality $p_{a} \geq s_{a 1}+\ldots+s_{a k}+p_{a 1}+\ldots+p_{a k}$ holds.

Block Models (cont'd)

The variable $B_{k, f, j}$ is used for a block, $k=1, \ldots, n$, $j=1, \ldots, n$:
$\begin{aligned} B_{k, f, j} & = \begin{cases}1, & \text { if job } J_{j} \text { is scheduled in level } f \text { in the } k \text {-th block, } \\ 0, & \text { otherwise. }\end{cases} \\ f & = \begin{cases}1, & \text { if the level is the first one, } \\ 2, & \text { if the level is the second one. }\end{cases} \end{aligned}$

Block Models (cont'd)

Each job belongs to some block, i.e., for $j=1, \ldots, n$, we have

$$
\sum_{k=1}^{n} \sum_{y=1}^{2} B_{k, y, j}=1
$$

There is only one job of the first level for each block:

$$
\sum_{j=1}^{n} B_{k, 1, j} \leq 1
$$

The loading part of the block B_{k} has the length $S T_{k} \geq 0$,

$$
S T_{k} \geq \sum_{j=1}^{n} s_{j} B_{k, 1, j}
$$

The objective part of the block B_{k} has the length

$$
\sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{k, 2, j}
$$

Block Models (cont'd)

The processing part of the block has the length $P T_{k} \geq 0$,

$$
\begin{gathered}
P T_{k} \geq \sum_{j=1}^{n} p_{j} B_{k, 1, j}-\sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{k, 2, j} \\
s t_{j}+S T_{j} \leq s t_{j+1} \\
s t_{j}+S T_{j}+P T_{j} \leq s t_{j+2}
\end{gathered}
$$

We denote by F the total length of the modified schedule:

$$
\begin{gathered}
F \geq s t_{n}+S T_{n}+P T_{n} \\
F \geq s t_{n-1}+S T_{n-1}+P T_{n-1}
\end{gathered}
$$

$\operatorname{ch}[j]$ denotes the maximal number of second level jobs for the same block (only in model M1):

$$
(a) B_{x, 2,1}+\ldots+B_{x, 2, n} \leq \operatorname{ch}[1] B_{x, 1,1}+\ldots+\operatorname{ch}[n] B_{x, 1, n}
$$

Block Models (cont'd)

> M1 contains all constraints.
> M2 contains all except (a).
$>$ The objective function is :

$$
C_{\max }(s)=F+\sum_{x=1}^{n} \sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{x, 2, j}
$$

Metaheuristics (SA)

> A composite neighborhood has been selected which includes three operators: Swap, Insert, Block.
> Several neighbors are randomly generated. Then the neighbor with the best makespan value among them is taken as generated neighbor.
> Number of neighbors =
1 Swap +1 Insert + ไ $\left.\frac{n}{2}\right\rfloor-1$ Blocks.

Metaheuristics (GA)

Parameters:

$>$ Initialization of the population

- Population size (PS) = 15 .
- Initial population contains only randomly generated job sequences (to have a sufficient large diversity)
>Evaluation of the population
- An individual with smaller objective function value has a higher fitness.
>Selection of individuals
- Tournament selection
- This process is done PS - 1 times.

Crossover

- One-point crossover
>Mutation
- 1 Swap + 1 Insert + 1 Block.
$>$ Formation of new population
- The elitist strategy was considered.

Lower Bound

To evaluate the results obtained, we use

 the known lower bound:$$
\begin{gathered}
L B=\max \left\{L B_{1}, L B_{2}\right\}, \\
L B_{1}=\frac{1}{2}\left(\sum_{i \in J}\left(s_{i}+p_{i}\right)+\min _{i \in J}\left\{s_{i}\right\}\right), \\
L B_{2}=\sum_{i \in J} s_{i}+\min _{i \in J}\left\{p_{i}\right\},
\end{gathered}
$$

Two Heuristics for Very Large

Instances

> Algorithm Min-idle
> tries to minimize the gap between completing a job and starting the next job (corresponds to $L B_{1}$), for instances with $L=\{0.1,0.5,0.8,1\}$. The complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
> Algorithm Min-loadgap
> tries to minimize the gap between the completion time of the loading of a job and the start of the loading of the next job (corresponds to L_{2}), for instances with $L=\{1,1.5,1.8,2\}$. The complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Computational Results

Generation of instances

> The performance of the models M0, M1 and MP was tested on the data generated in the same way as it is described in Abdekhodaee and Wirth (2002) and Gan et al. (2012).
$>$ For $n \in\{8,10,14,16,18,20\}, 10$ instances were generated for $L \in\{0.1,0.5,08,1,1.5,1.8,2.0\}$, and 5 instances for larger problems were generated for $L \in\{0.1,0.5,0.8,1,1.5,1.8,2.0\}$.

$$
\begin{aligned}
& p_{j}=U(0,100) \\
& s_{j}=U(0,100 L)
\end{aligned}
$$

Computational Results (cont'd)

M0 (Setup sequence model),
MP (MILP model from Gan et al. 2012)

Computational Results (cont'd)

For the Model M2 we obtained the following results:
The average and the maximal gaps for $n=200$

\mathbf{L}	$\mathbf{0 . 1}$	$\mathbf{0 . 5}$	$\mathbf{0 . 8}$	$\mathbf{1 . 0}$	$\mathbf{1 . 5}$	$\mathbf{1 . 8}$	$\mathbf{2 . 0}$
$\operatorname{Avg}(\mathbf{C m a x} / \mathbf{L B})$	1.01	1.04	1.07	1.09	1.01	1.00	1.00
$\operatorname{Max}($ Cmax/LB $)$	1.01	1.08	1.10	1.12	1.02	1.01	1.01

The average and the maximal gaps for $n=250$

\mathbf{L}	$\mathbf{0 . 1}$	$\mathbf{0 . 5}$	$\mathbf{0 . 8}$	$\mathbf{1 . 0}$	$\mathbf{1 . 5}$	$\mathbf{1 . 8}$	$\mathbf{2 . 0}$
$\operatorname{Avg}($ Cmax/LB $)$	1.02	1.07	1.10	1.10	1.02	1.00	1.00
$\operatorname{Max}($ Cmax/LB $)$	1.03	1.09	1.11	1.12	1.04	1.00	1.01

Computational Results (cont'd)

Average values of the relation of Cmax/LB for all instances over all values of L from 0.1 to 2
*The exact algorithms have been run with the same time

- Abd : Genetic algorithm from Abdekhodaee et al. (2006)
- Gan: The best obtained results from two MILP models and two Branch and price algorithms from Gan et al. (2012)

Computational Results (cont'd)

Average values of the relation of $C m a x / L B$ for all instances over all values of L from 0.1 to 2

Computational Results (cont'd)

Comparison of the average values of the relation Cmax/LB of Algorithms Min-idle and Min-loadgap with Algorithms SA and GA.

Computational Results (cont'd)

Average values of the relation of Cmax/LB for all instances over all values of L from 0.1 to 2 .

Mean Flow Time Problem

Approaches:

, MILP model:
> The model is constructed to find an optimal schedule, where all jobs from the list have to be scheduled in a staggered order
> Simulated annealing (SA)
> requires a substantially different calibration.
> Hybridization of Harmony Search and Simulated Annealing(HHS).
> SA is used to generate new solutions out of the harmony memory.

Computational Results

Thank you for your attention

QUESTIONS AND SUGGESTIONS

