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Abstract. A unit-time scheduling problem with makespan criterion may be interpreted as a
mixed graph coloring. This paper is devoted to an optimal coloring of a mixed graph G
which defines a schedule minimizing makespan for the unit-time job-shop problem denoted
by Jip;=1{Cunax. We developed three branch-and-bound algorithms for an optimal coloring of
a mixed graph G constructed for problem Jp;=1|Cy,a. These algorithms implemented in
C++ were tested on randomly generated mixed graphs G of the order n < 200. The aim is to
compare different bounds and branching schemes for coloring this type of mixed graphs.
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LPROBLEM SETTING AND NOTATIONS

Let G = (V, A, E) be a mixed graph with vertex set
V=Av, vy, ., v}, arc set A, and edge set E. A
mixed graph coloring  may be defined as follows
(see [1,3]). An integer-valued function vy : V — {1,
2, ...t} is a coloring of the mixed graph G = (V, A,
E) if w(vi) < y(v)) for each arc (v, vj)) € A and
Y(vp) # W(vy) for each edge [v,, v,] € E. The above
coloring  is optimal if it uses the minimum number
t = y(G) of colors, and such a () is called
chromatic number of mixed graph G.

The minimization of the maximum completion time
of n partially ordered operations V = {v, vy, ..., Vit
with unit (equal) processing times may be
interpreted as an optimal coloring of the mixed
graph (V, A, E), in which V is the given set of
operations, thc arc set A defines precedence
constraints, and the edge set E defines capacity
constraints, A coloring of such a mixed graph G
defines a feasible assignment of operations V to the
unit-time intervals: [0, 1], (1, 2], (2, 3]. ... (t-1, t].

To find an optimal coloring (i.e. one with minimal
number t = y{G) of colors) of the given mixed graph
(V, A, E) is an NP-hard problem even if A = & [2]. Let
(V, O, E,) denote a graph obtained from digraph (V,
A, @) by changing the set of arcs A by the set of edges
Ea= {[vi, v,] : (v, v}) € A}. In [1], O(n*)-algorithm has
been developed for an optimal coloring of a mixed
sraph G for which graph (V, &, E,) is a tree. In [3,4],
the chromatic polynomial and the chromatic number
have been studied for a mixed graph coloring ¢ for
which inclusion {vi, v)) € A implies the non-strict
inequality o(v;) < @(v)).

Let the mixed graph G correspond to a unit-time,
minimum-length, job-shop problem denoted by
Jpi=1|Cnax. Using graph terminology, one can note
that the mixed graph G = (V. A, E) has the following
two properties.

(i): The partition (V, &, E) = (V,, &, E)) U (V,, @, E;)
VoW (Vi &, Ey) holds, where each graph (V,, @,
E) is a clique for each i=1,2, ..., m, and V;n V, = &
fori#k.
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(ii); The partition (V, A, @) = (V'', A", @) v
(VO AP &y O ou (VDAY ) holds, where
each digraph (V, AV, &) is a path for each i = 1,
2, ., and VO A v = & for i k.

The above m and j denote the cardinality of the
machine set M = {M,. M,, ... M,] and the
cardinality of the job set J = {J,. J,, .., Jj},
respectively. Therefore, if v; € V|, ther operation v,
has to be processed by machine My € M. and vice
versa. On the other hand, if inclusion v; € v®
holds, then operation v; belongs to job J; & J, and
vice versa. Thus, there exists a one-to-one
correspondence between the mixed graph model G
and the scheduling problem Jjp=1|C,.. namely:
{vertex} «> {operation}, {path} <> {job}, {clicue}
<> {set of operations, which have to be processed
by the same machine}. The complexity status of an
optimal coloring of a mixed graph G with properties
(1) and (i1) has been investigated in [5].

2. DESCRIPTION OF ALGORITHMS

We use the illustrative example of a mixed graph G
presented in Fig. | to demonstrate the main ideas of
the algorithms  developed. This  example
corresponds to a problem J5in=4,p,=1|Cpax, in
which job I, has to be processed by machines M =
{M|, Ma, M3, My, Ms} in the order M, M,, M5, My,
M, Ms, job J, in the order Ms, Ms, M;, M,, M,, M,,
job J; in the order M;, M, M,, M,, M;, M,, and job
Jy in the order M, M, M; M, M, M;s. For
simplicity, all edges and redundant arcs are omitted
inFig. 1.

M, M, M, M, M, M
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Fig. 1. An example of a mixed graph G (here edges
are omitted).

The branch-and-bound algorithms  will  be
determined via the description of a solurion tree, the
branching procedure, lower and upper bounds. For
brevity, these elements of the algorithms are given
using the above example of  problem
J5in=4,p;i=1|Cprax. E.g., the solution tree for the first
branching scheme is presented in Fig. 2 for the
example J5in=4,p;=1|Cpay.
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Fig. 2. Solution tree of algorithm GLOBAL.1.

Each vertex w’e W of a solution tree T=(W,R) is a
column with j elements. The first element w,"Y of the
vertex we W corresponds to job Jel, the second
element w,"” to job J,, and so on, the last element w,"
to job J;

At the first iteration, each of all three algorithms tries
to color a maximal possible number of operations from
the set V" =V V2 vy } by the same

minimal color 1, provided that this coloring does not
cause any conflict due to possible edges existing in the
mixed graph G

For the example under consideration, the first
operations of job J; and job J; cannot be colored by the
same color 1 simultaneously, since these operations are
connected by an edge (they have to be processed by the
same machine M,). Therefore, we construct two

~vertices w' and w'¥ of the solution tree (it is a

branching)- in the first vertex w''’ the first operations of
jobs Jy, J, and J; are colored by color 1, in the second
vertex w? the first operations of jobs J», J; and J, are
colored by color 1. The positions of the first operations
of job J; in column’ w? and job J; 1n column wi,
which are not colored at the first iteration of the
algorithm, are marked by -1 to indicate that the
operation of stage 1 is not colored for these jobs. (See
Fig. 2, where order numbers i of vertices w" are
indicated at the left of the vertices.)

In general, each ¢lement w, "’ of the column
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W




from the solution tree T is either equal to the order
number of operation (i.e. to the order number of
stage k) of job J; which is colored at this iteration of
the algorithm, or element w, 7 is equal to -k in the
case when at this iteration no operation of the job J;
is colored. The arc (W', w*)eR of a solution tree
T=(W,R) connects vertex w with veriex w® if w®
was generated from w'” and for colunn w® color ¢
was used, while for column w™ color ¢+1 was used.
InFig. 2, the corresponding colors ¢ used are shown
at the top.

To overcome the conflict {when some vertices
cannot be colored simultaneously by the same color
due to the existence of a corresponding edge in the
mixed graph), the algorithm uses branching of the
set of possible colorings, ie. the algorithm
generates more than one vertex (instead of one
vertex when there are no edges between operations
which is ready to be colored and can be colored at
this iteration). In general, the number of vertices
generated in the solution tree T from the vertex w,
€W is equal to the product of the cardinalities of
the sets of operations, where cach set contains all
operations, which may be colored at this iteration,
but which cannot be colored simultaneo.sly since
they need the same machine to be processed. The
terminal vertex of the solution tree T are sither that
which defines a coloring of all vertices of the mixed
graph G or that for which the lower bound of the
chromatic number ¥(G) is not less than the upper
bound (UB) of the chromatic number ¥(G) being
calculated earlier.

Note that in Fig. 2 vertex w® (and vertex w%)
have only one non-empty element (orily three non-
cmpty  elements, respectively) while the other
elements of these columns are empty. Such
situations hold since at the previous iterations of the
algorithm all operations of sets V@ | V& and v of
the jobs J,, J; and J, (all operations of set V¢V of job
Ji, respectively) have been colored.

Two lower bounds (a global LB, and a local LB>)
of the chromatic number ¥(G) have been tested in
the experiments. The global lower bound is based
on fixing the machine M,eM and calculating the
sum of the cardinality of the set Vi and the
minimem number hdk (the minimum number t"k) of
operations before the first operation (after the last
operation), which needs machine My

y((r') > LBy = max {min hf +’V,‘.f+ min {I‘j (D
Mg [ el Jged

N

The local lower bound LB, is very simple: it is
equal to the maximum of the sums k, + }; calculated
for each job J; € J, where k; denotes the stage of job
Ji whose operation is not colored yet but is ready for

coloring at the current iteration (i-e., the operation of .
Jjob J; at stage k; — 1 was colored at one of the previous
iteration) and |, denotes the number of colors which
were omitted for the operations of job J; at the previous
iterations. Thus we have

1(G) 2 LBy = max {k, +1,}. (2)

Jied

At the initia] iteration, the algorithms use the trivial
J

upper bound UBg =3 |V,[. The number of colors
i=1

used in the record coloring (i.e. in the best coloring)
currently constructed is used as an upper bound UB of
the chromatic number ¥(G). We coded three branch-
and-bound algorithms depending on the lower bound
used and on the selection of a vertex from the solution
tree T for branching.

The depth-first search strategy was used in all three
algorithms. The first and the second algorithms use the
global lower bound LB, (see (1)). In the first algorithm
(we call it GLOBALI), the vertex weW is selected
from the set W* of all vertices generated at the current
iteration if for this vertex w(” the lower bound of v(G)
has the minimum value among all the other vertices
from the set W If vertex w defines a coloring of all
the vertices V of the mixed graph G, then the algorithm
selects vertex w for the next branching, which has the
minimum value of LB,. If such a vertex w® is not
uniquely determined, then one with the largest order
number is selected from the whole set W for the next
branching. The solution tree of algorithm GLOBAL]
for the example under consideration is presented in
Fig. 2.

The second algorithm (we cali it GLOBAL2) works as
follows. If there are no terminal vertices in the solution
tree among the vertices W* just generated, algorithm
GLOBAL? selects the vertex with minimal LB, among
vertices W', If such a vertex w'” is not uniquely
determined, then one with the largest range (with the
longest path from the root vertex to the veriex w'y is
selected for the next branching. If there exists a
terminal vertex among the vertices W’ just generated,
algorithm GLOBAL2 selects the vertex with minimal
lower bound less than UB; The solution tree of
algorithm GLOBAL2 for the example under
consideration is given in Fig. 3.

The third algerithm (we call it LOCAL) uses only LB,
(see (2)) which is very fast for calculating, but usually
worse than LB,. Algorithm LOCAL uses the same rule
as algorithm GLOBAL?2 for selecting a vertex from the
solution tree for branching. The solution tree of
algorithm LOCAL for the example under consideration
is given in Fig. 4. An optimal coloring for this example
constructed by algorithm GLOBAL] is given in Fig. S.
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Fig. 3. Solution tree of algorithm (JLOHAL’)
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Fig. 4. Solution tree of algorithm LOCAL.

3. COMPUTATIONAL RESULTS

The above branch-and-bound algorithms have been
implemented in C++ and tested on a PC Pentium 1I-
350 with 133 MB RAM. In Tables 1 — 4, the
computational results obtained for ar optimal

8

coloring of mixed graphs with properties (i) and (ii) are
reported.
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Fig. 5 An optimal coloring constructed by algorithm
GLOBALL.

The running times in seconds are presented in the Jast
column of Tables 1, 2, 3 and 4 for pseudo-random
mixed graphs G of orders n=120, n=150, n=180 and n=
200, respectively. The first column in each table
denotes the main parameters of the mixed graphs:
number of cliques (the number of machines m), the
number of paths (the number of jobs j), the length of
each path (the number of stages n, per job J), the
number |A| of arcs, and the number E| of edges.

Each row in Tables 1 - 4 represents the results for 10
pseudo-random instances of series of mixed graphs
with the same parameters m, j, n,, |A| and [Ej, the
number n, of stages being the same for all jobs in an
instance. The last column of the tables contains the
average value of the running time for all 10 instances
in the corresponding series. The second column
contains the average first lower bound of the chromatic
number constructed. The third column contains the
average value of the chromatic number. The fourth
column is equal to the percentage of problems for
which the record coloring was proven to be optimal.

Table 1. Coloring of mixed graphs of order 120

m, j, UB
n |Al, LB | y(G) | % - CPU
| LB
10,10, 1195]197] 1004 0O 5.764
12,110, {195]1971 100 O 5.453
772 1951199 80 1 74.018
11,10, | 178 18 J 100 ] O 6.490
12,110, | 178 18 {100 | O 0.894
649 1781 18 1100} 0 6.975
12,10, [ 173176 ] 100 | 0 1.363
12,110, { 1731176 {100 | 0O 1.518
601 17311761100 0 22.747
13,10, {163 17 {100 | 0 3.098
12,110, {163 ] 17 | 100 { © 3.070
545 16341 17 {100] 0 8.996
14,10, [164]168 [ 100 O© 0313
12,110, [ 164 ]16.8| 100 ] 0 0.553
516 1641168100 | 0 0.859




Table 1 (continuation) Table 2 (continuation)
15,10, [ 157) 16 100 | 0 3262 14,15, [ 175{175]100] 0 30.182
12,110, [157] 16 [ 100 | 0 3.174 10,135, {1751175{ 100 | 0 | 29.919
475 1571 16 [ 100 | © 8.320 791 17511811 50 | 1.2 [ 70.000
10,12, {183 [185| 100 0 0.238 15,15, 171 11711100 | 0 8.820
10,108, | 183|185 ] t00 | 0 0.233 10,135, [ 171 [17.1.] 100 | © 8.688
711 183188 80 2 33.907 747 17111741 80 | 1.5 [ 26.035
11,12, 17 11721 100] © 0.328
10, 108, 17 11721 100 0 0.327 Table 3. Coloring of mixed graphs of order 180
654 17 [ 174 80 | 1.5 | 54.564 m, j, UB
12,12, (16211641100 0 | 94765 n (AL | LB | y(G) | % - CPU
10,108, 1162164100 | 0 | 93983 E| LB
590 6211671 70 117795 10,12, | 263 (266 80 1 |2040.980
1312 11621163 00 1 o 0873 15,168, | 263 {266 80 1 11728.010
10,108, [ 162163 ] 100 | 0 | 0.894 1630 126312761 40 [2.17] 71044
559 162 | 164 90 ] 36.925 11, '{2, 2421243 100 0 63.250
212 11541157 100 TG 0343 15,168, [ 2421243 [ 100 ] 0 63.812
10,108, [ 154 [ 1571 100 | 0 | 0346 1472 124212571 10 ] 1.67[ 165704
510 154 1571 1001 0 8085 12,12, 2321234100 o0 76.192
5.02 (1481 15 Ti00 1 0 0311 15,168, | 232 (2341100 ] 0 79.425
10,108, [148 15 [ 100 ] 0 | 0205 1339 123212411 50 | 18 [ 86724
473 14.8 15 100 0 9.078 13,12, 21.9 1225 100 0 350.082
15,168, [219[225( 100 | 0 | 348.606
Table 2. Coloring of mixed graphs of order 150 1242 121.91235] 40 | 2.5 [ 239.662
m.J. UB 14,12, 12031214 | 90 1 533,729
n AL LB | G)| % . CPU 15,168, [ 203214 90 ! 544346
IE| LB 1132 12037218 40 [1.83] 317274
10,10, 219222100 | 0 1573013 15,12, {206 121,11 100 0 | 680937
15,140, {219 (2221100 | 0 1559898 15,168, | 206 {21.1 1001 0 | 927587
1103 2191231 50 2 1131.793 1065 206 12161 60 | 1.75| 122.328
1,10, {2181223100] 0 16.568 10,15, (2591 26 | 90 1 826.972
15,140, | 218 2231 100 | © 311201 12,165, {2591 26 | 90 ] 812.931
1025 121812271 60 | 1.75 1215659 1618 12591263 70 [ 133] 27988
12,10, [206]21.3| 90 1 1617.460 11,15, 1239|241 80 1 855.919
15,140, {206 213 90 1 1619555 12,165, 12391242 | 80 | 1.5 | 446.619
925 2061215 80 2 1198.860 1482 23912541 20 | 1.88 65.840
13,10, | 20 [206] 100 | o 6.749 12,15, {214 214|100 | 0 98.198
15,140, { 20 {206 ] 100 | © (1.068 12,165, [ 214 [ 214 ] 100 | O 102.636
858 20 {208 | 90 31 42.856 1340 1214 [ 228 30 2 70.875
14,10, 1196 [205] 100 0O 1.322 13,15, | 22 | 22 [ 100 0 5.764
15,140, 1196 [ 205 100 | 0 1.439 12,165, [ 22 | 22 T100] o 6.048
799 19.6 207 ] 90 | 2 | 34467 1243 22 12241 70 | 133 ] 28948
15, 10, 196 | 204 | 100 t] 1.807 14,15, 214 121.5{ 90 1 912.75
15,140, 1196204 | 100 [ © 6.740 12,165, [ 214 | 215 ] 90 1 923,122
749 19.6 [204 | ic0 | 0 29.970 1180 21412211 60 | 1.75 39.527
10,15, (209 (209 100 | 0 | 33.529 15,15, (1961961 100 | 0 81.585
10,135, 1209 12091100 0 | 32902 12,165, 1196 [ 196 [ 100 | 0 30.990
1109 1209 (215] 60 [ 1.5 | 42010 1081 19.6 1204 | 40 [ 1331 73548
s, f2ra 211100 o 1.850 13,15, 1206|206 100 0 59.926
10,135, [210 1211100 | © 1.796 12,165, 1206|206 100 ] 0 60.274
1015 12102137 80 ] 20.474 1233 206 {218 40 2 62.619
12,15, 120212021 100 | o 1.661 14,15, 1204|205 90 [ 894,761
10,135, 1202202 ] 100 | © 1.547 12,165, | 204 {205 90 1 £90.773
949 202 1206 80 2 29943 1149 204 12121 30 1.6 63.110
3,15, 11771178 100 | 0 |132.523 15,15, | 1921192100 0 18.142
10,135, 117711781100 | 0 |130.620 12,165, {192 11921100 ] 0 19.365
849 177 1186 | 50 | 1.8 | 50.392 1077 192 11991 40 {1.67 | 203.550
7 3ax, 24 a7




Table 4. Coloring of mixed graphs of order 200

Table 4 (continuation)

e Nee—

m, j, UB 21,20, {173 (1744100 0 118.445

ny |A|, LB {y(G)Y| % - CpU 10, 180, [ 17.3 {174 100 0 114.412
E] LB 959 1173 ]182] 40 | 1.5 | 66914

15,10, {242 | 26 | 100 0 | 629.115 22,20, 16 11621 90 1 | 1702220
20,190, [ 242 | 26 | 100 0 | 695.588 10, 180, 16 11621 90 1 11699.300

1320 | 242 (266 20 | 2.7 | 422.098 912 16 | 17.1] 40 | 1.83] 72017
16, 10, 242 1259} 80 1 727.111 23,20, 16 | 16.1} 100 0 13.023
20,190, 12421259 ] 80 1 923.124 10, 180, 16 {16.1 | 100 0 13.828

1237 242 12651 40 |2.67 | 231.091 868 16 1164 70 | 1.33 | 49.027
17,10, |24.1]256] 9 | 2 [424.019 24,20, | 15.7]158[100 ] 0 48.133
20,190, | 24.1 1256 90 2 | 435.608 10,180, | 157 { 15.8 | 100 0 47.476

1188 12411257 90 | 3 | 105709 819 1571163 ] 60 | 1.25] 75626
18,10, |[23.83 {251 100 0 35412 25,20, [17.1}117.1] 100 0 11549.960
20,190, | 23.8 {25.1 ] 100 0 36.667 10, 180, { 17.1 | 17.1 ] 100 0 |1527.750

1l 23812521 90 | 3 87.938 813 1711174 80 | 15 33.917
19,10, {22.81242] 100 0 18.205
20,190, 12282421100 0 12.356 Each instance was solved by all three algorithms. The

1041 228 1242 | 100 0 | 19221 computational results for algorithm GLOBAL2 are
20,10, |23.5]24.6] 100 0 4.701 represented in the first row of the three-row block, for
20,190, | 235|246 100 | 0 8812 algorithm GLOBALL in the second row, for algorithm

983 235 | 246 | 100 0 20.639 LOCAL in the third row. If the fourth column is not
21, 10, 73 24 1 100 0 5318 equal to 100, it means th‘at for ‘at least one lrlstanc§ in
20, 190, 23 54 | 100 0 1198 thlS‘ series, the upper ll‘mxt L of the number of‘v.crtlces

936 3 24 100 0 8014 Wina solunqn tr«;e 1 = (W, R) was 4not sufficient to
23,10, 23 12251 100 0 5704 i)rove the optxrxlalxty of the b_est‘ colormgi:onstructed
20, 190, > 1242 1 100 5 724 n the expf:nms:nts reported, limit L. was as::ume.d to be

905 R EYVREN 3 74038 equal to ,:IO;I)()(),()()O The fifth column c'ontams tf}e

: : average differences UB — LB for the 10 instances in
’23’ 10, 1231239100 | 0 3.992 the series. 1f for all 10 instances optimal colorings
20,190, 123.1 1239 | 100 0 4.020 were constructed, then UB ~ LB = 0.

860 23.1 12391 100 0 7.789
24,10, (22412371 100 0 1.509 Acknowledgments. The authors acknowledge
20,190, | 224 1237 | 100 0 1.243 G.V.Andreev for the help in coding and testing the

829 1224237100 0 2.654 algorithms. This research was supported by INTAS
25, 10, 231 [ 24.1 1 100 0 3964 (Project 96-0820) and ISTC (Project B-104-98).
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