Gascoigne
August 16, 2014
Thomas Richter
thomas.richter@iwr.uni-heidelberg.de
Contents

1 Introduction ... 5
 1.1 Installation .. 5
 1.2 A minimal example solving a partial differential equation 7

2 The parameter file ... 13

3 Description of the problem 15
 3.1 The right hand side 15
 3.2 Boundary Data ... 16
 3.2.1 Dirichlet boundary data 17
 3.2.2 Neumann conditions 18
 3.2.3 Robin conditions 19
 3.3 Definition of the partial differential equations 19
 3.3.1 Nonlinear equations 21
 3.3.2 Equations on the boundary & Robin boundary data 22
 3.4 Exact Solution and Evaluation of Errors 23
 3.5 Systems of partial differential equations 24
 3.5.1 Modification of the right hand side 24
 3.5.2 Modification of Dirichlet data 25
 3.5.3 Modification for the equation, form and matrix 25

4 Time dependent problems 27
 4.1 Time discretization of the heat equation 27
 4.2 Time dependent problem data 30
 4.3 Non standard time-discretizations 30

5 Mesh handling .. 33
 5.1 Definition of coarse meshes 33
 5.2 Curved boundaries 35
 5.3 Adaptive refinement of meshes 37
 5.3.1 Estimating the Energy-Error 37
 5.3.2 Picking Nodes for Refinement 38

6 Flow problems and stabilization 39
 6.1 The function point 39
 6.2 Stabilization of the Stokes system 39
 6.3 Stabilization of convective terms 40
 6.4 LPS Stabilization 41
1 Introduction

When referring to files, the following directories are used:

HOME Your home directory

GAS The base-directory of Gascoigne. For the workshop:

 FILE: /home/people/gascoigne/Software/src-neu/Gascoigne/

GAS/src The source- and include-files of Gascoigne. For the workshop:

 FILE: /home/people/gascoigne/Software/src-neu/Gascoigne/src

Gascoigne is a software-library written in C++. To solve a partial differential equation with Gascoigne, a small program has to be written using the routines provided by Gascoigne. All functionality is gathered in the library-file **FILE:** libGascoigneStd . This library is *linked* to every application.

1.1 Installation

In this section we explain the usage of Gascoigne as a library for own applications.

Gascoigne requires a configuration file:

FILE: HOME/.gascoignerc

Here, some setting like “where is Gascoigne”, “where are the libraries” are given. The minimal file looks like:

```
# Gascoigne Libraries & Binaries
SET(GASCOIGNE_LIBRARY_OUTPUT_PATH " /home/people/gascoigne/Software/x86_64/lib")
SET(GASCOIGNE_EXECUTABLE_OUTPUT_PATH ".")
```

You need a file like this in the home directory. To build an application using Gascoigne at least two files and directories are required:

FILE: TEST/bin/

FILE: TEST/src/main.cc
1 Introduction

FILE: TEST/src/CMakeLists.txt

The first directory will be used to store the executable file for this application. The other
two files are the source code of the application and a file to control the compilation of the
application. An example of it could look like:

FILE: TEST/src/CMakeLists.txt
1 INCLUDE($ENV{HOME}/.gascoignerc)
2 INCLUDE(${GASCOIGNE_STD}/CMakeGlobal.txt)
3 LINK_LIBRARIES(${GASCOIGNE_LIBS})
4 ADD_EXECUTABLE("Test" main.cc)

In the first line, the user's config file is read. The following two lines set global parameters for Gascoigne. The variable GASCOIGNE_STD is provided in the config-file, the variable GASCOIGNE_LIBS is given in a central Gascoigne-config file. The last line indicates the name of the application: Test, and lists all code-files to be compiled into the application.

A minimal example for a code-file (it does not really use Gascoigne) looks like this:

FILE: TEST/src/main.cc
1 #include <iostream>
2 #include "stdloop.h"
3
4 int main(int argc, char**argv)
5 {
6 std::cout << "Create a Gascoigne Loop!" << std::endl;
7 Gascoigne::StdLoop Loop;
8 }

For building the application we use the program cmake to generate Makefiles. In the directory TEST/bin/ type:
1 cmake ../src
2 make

The first line creates the FILE: TEST/bin/Makefile . It reads FILE: CMakeLists.txt to put everything together. The second command starts the compilation and linking of the application and if everything works out, FILE: TEST/bin/Test should be the executable file which then can be started.

The command cmake is only needed to create new Makefiles. This is necessary, if new code-files are added to the application. If only source code is changed, e.g. the file FILE: TEST/src/main.cc , you only need to call make in the directory TEST/bin.
1.2 A minimal example solving a partial differential equation

Assume there exists a directory \texttt{FIRSTEXAMPLE} with sub-dirs \texttt{FIRSTEXAMPLE/bin} and \texttt{FIRSTEXAMPLE/src}. In the src-directory you need the files \texttt{File: main.cc} and \texttt{File: CMakeLists.txt}. In the bin-directory you call \texttt{cmake ../src} for configuration and then \texttt{make} for compilation.

\begin{verbatim}
#include "stdloop.h"
#include "problemdescriptorbase.h"
#include "constantrighthandside.h"
#include "zerodirichletdata.h"
#include "laplace2d.h"

using namespace Gascoigne;

class Problem : public ProblemDescriptorBase
{
public:
 std::string GetName() const { return "FirstProblem"; }
 void BasicInit(const ParamFile* paramfile)
 {
 GetEquationPointer() = new Laplace2d;
 GetRightHandSidePointer() = new OneRightHandSideData(1);
 GetDirichletDataPointer() = new ZeroDirichletData;

 ProblemDescriptorBase::BasicInit(paramfile);
 }
};

int main(int argc, char **argv)
{
 ParamFile paramfile("first.param");
 if (argc >1) paramfile.SetName(argv[1]);

 Problem PD;
 PD.BasicInit(¶mfile);

 ProblemContainer PC;
 PC.AddProblem("laplace", &PD);

 StdLoop loop;
 loop.BasicInit(¶mfile, &PC);
 loop.run("laplace");
}
\end{verbatim}
1 Introduction

The Problem

Here, the problem to be solved is defined. The Problem gathers all information on the problem to be solved. This is: which pde, what kind of boundary data, what is the right hand side, and so on.

By PD.BasicInit() we initialize the problem (will be described later on). This problem is then added to another class, the ProblemContainer. Here, we can gather different problems, each together with a keyword, which is laplace in this case. There are possible applications where it is necessary to switch between different problems in the same program.

The problem sets pointers to a large variety of classes. Here, we define the equation to be of type Laplace2d, an implementation of the two dimensional Laplace equation. For right hand side and Dirichlet data we define self written classes (will be explained later). In GASCOIGNE a very large set of parameters can be set for a problem, all in form of pointers. However these three classes, Equation, RightHandSide and DirichletData are necessary for every instance of GASCOIGNE. The class Problem is derived from the base-class ProblemDescriptorBase.

FILE: GAS/src/Problem/problemdescriptorbase.h

The equation Laplace2d is part of the Gascoigne-Library:

FILE: GAS/src/Problem/laplace2d.h

This is explained in detail in Section 3.

The Loop

Then, a Loop is specified, the loop is the class controlling what is happening at run-time. and what GASCOIGNE is doing: this is usually a sequence like: initialize, solve a pde, write the solution to the disk, evaluate functionals, compute errors, refine the mesh and start over. In BasicInit() we initialize the most basic structure and read data from parameter files. Here we also pass the ProblemContainer to the different instances.

We start the solving by calling loop.run("laplace"), where the keyword laplace indicates what problem so solve.

FILE: FIRSTEXAMPLE/src/loop.cc

First, in run(), we define two vectors u, f for storing the solution and the right hand side. Then, in the for-loop we initialize the problem, solve the problem, write out the solution and refine the mesh. This is very typical for every program run, since for a reliable simulation it is necessary to observe the convergence of the solution on a sequence of meshes. Next, we have a closer look at every step of the inner loop:

1. GetMultiLevelSolver() -> ReInit(problemlabel);
2. GetMultiLevelSolver() -> ReInitVector(u);
3. GetMultiLevelSolver() -> ReInitVector(f);
4. GetSolverInfos() -> GetNLInfo().control().matrixmustbebuild() = 1;
1.2 A minimal example solving a partial differential equation

The first line initializes the basic ingredients of Gascoigne. In particular, we pass the equation to be solved and all the necessary data to different parts like “Solver”, “Discretization”. Then, by `GetMultiLevelSolver() -> ReInitVector(u)` we initialize the vector on the current mesh. This basically means that we resize the vector to match the number of degrees of freedom (which changes with the mesh-size).

Finally, in the last line we tell Gascoigne to assemble the system matrix. This is necessary whenever the system matrix changes, which is the case if we have a new mesh, or if the matrix depends on the solution u itself. This will be discussed when dealing with nonlinear problems.

FILE: Template1/src/loop.cc

```cpp
1 Solve(u, f, "Results/u");
2 GetMeshAgent() -> global_refine();
```

By calling `Solve(u, f)` we solve the PDE. The subsequent line refines the mesh.

FILE: Template1/src/loop.cc

```cpp
1 string Loop::Solve(VectorInterface& u, VectorInterface& f, string name)
2 {
3    GetMultiLevelSolver() -> GetSolver() -> Zero(f);
4    GetMultiLevelSolver() -> GetSolver() -> Rhs(f);
5    GetMultiLevelSolver() -> GetSolver() -> SetBoundaryVector(f);
6    GetMultiLevelSolver() -> GetSolver() -> SetBoundaryVector(u);
7    string status = GetMultiLevelSolver() ->
8        Solve(u, f, GetSolverInfos() -> GetNLInfo());
9    Output(u, name);
10 }
```

Here, we first assemble the right hand side f of our problem. Then, we need to initialize Dirichlet boundary values. Finally, we tell the multigrid solver to solve the equation.

In the last line, we write the solution into a file for visualization.

Output of Gascoigne

After starting the code, Gascoigne first prints out some information on the current mesh, solver, Discretization and problem data.

Then, for every iteration of the inner loop the output looks like:
In the first line the current iteration count (2), the number of mesh-refinement levels (5), the number of mesh nodes (1089) and the number of mesh elements (quads) (1024) is given.

Then, Gascoigne prints control and static data for the solution of the algebraic systems. Gascoigne solves every equation with a Newton-method, even linear ones. This is for reasons of simplicity as well as having a defect correction method for a better treatment of roundoff errors. On the left side of the output the convergence history of the Newton method is printed. Here we only need one Newton step. Before this step, the residual of the equation was 9.77×10^{-4}, after this one step the residual was reduced to 7.73×10^{-9}. The letter M indicates that Gascoigne assembled a new system matrix in this step. The following two numbers $[0.00 \ 0.00]$ indicate the convergence rates of the Newton iteration by printing the factor, by which the residual was reduced. We only print the first 2 digits, hence Gascoigne gives a 0. The first number is the reduction rate in the current step, the second number is the average reduction rate over all Newton steps.

On the right side, the convergence history of the linear multigrid solver is printed. Here, the values indicate that in Newton step 1 we needed 3 iteration of the multigrid solver. In every of these three steps the error was reduced by a factor of $[0.012]$ and after these three steps the residual had the value 6.26×10^{-8}.

Finally Gascoigne prints the name of the output file. You can visualize it by calling `visusimple u.00002.vtk` in the terminal window.

Configuration and Compilation

For configuration and compilation you need to specify the cmake-file `File: FIRSTEXAMPLE/src/CMakeLists.txt:

```cmake
1  INCLUDE($ENV{HOME}/.gascoignerc)
2  INCLUDE(${GASCOIGNE_STD}/CMakeGlobal.txt)
3  LINK_LIBRARIES(${GASCOIGNE_LIBS})
4  ADD_EXECUTABLE("FirstExample" main.cc)
```

We tell cmake to produce an executable named `File: FirstExample` which includes all the code from `File: main.cc`. Further, we link all functionality from the libraries specified in `${GASCOIGNE_LIBS}`.
1.2 A minimal example solving a partial differential equation

In the directory FIRSTEXAMPLE/bin you need to call `cmake ../src` for the first time and then `make` every time you need to recompile. The program is started by calling `../bin/FirstExample first.param` in the directory FIRSTEXAMPLE/src.

The parameter file

In this directory you can also specify the parameter-file

FILE: FIRSTEXAMPLE/src/first.param

```plaintext
// Block Loop
niter 5

// Block Mesh
dimension 2
gridname square.inp
prerefine 3

// Block BoundaryManager
dirichlet 4 1 2 3 4
dirichletcomp 1 1 0
dirichletcomp 2 1 0
dirichletcomp 3 1 0
dirichletcomp 4 1 0

// Block Nix
```

This minimal example tells Gascoigne the dimension of the problem, which domain to use, where to apply boundary data.

When starting the program, Gascoigne reads in a parameter file. Here, different parameters controlling the behaviour of the code can be supplied. For instance in `//Block Loop` of this file you can change the values of `niter`, which tells, how many times Gascoigne should solve the equation and refine the mesh.

In `//Block Mesh` we supply the mesh file as well as the number of refinements steps which are performed before solving the first problem. You can change this parameter in `prerefine`.
2 The parameter file

Gascoigne can process a parameter file during runtime. See File: TEST/src/test.param. Here some parameters and settings are stored which can be changed at run-time without need for recompilation of the program. For the file to be processed, go to the directory containing the parameter file (that is TEST/src here) and call

1../bin/Test test.param

The data in the param-file is organized in blocks which are read at different points of the code. A sample parameter file could look like: File: TEST/src/test.param

1// Block Settings
2 month 10
3 year 2009
4 name FirstTestOfGascoigne
5
6// Block Solver
7...
8
9// Block Nix

Each block has to be initialized by the line

1// Block <blockname>

Note that the slashes in front of the blocks are not treated as a comment here. The parameter file has to end with a dummy-block, e.g. //Block Nix.

In Gascoigne, the parameter file is stored in the class ParamFile. Reading values from the parameter-file is done using the classes FileScanner and DataFormatHandler. These classes are declared in the header File: filescanner.h. Here is a modified File: main.cc reading values from the parameter file:

File: TEST/src/main.cc

1#include <iostream>
2#include "stdloop.h"
3#include "filescanner.h"
4#include "paramfile.h"
5
6using namespace Gascoigne;
7using namespace std;
int main(int argc, char**argv) {
 if (argc < 2) {
 cerr << "call: " << argv[0] << "!!" << endl;
 abort();
 }
 ParamFile paramfile;
 paramfile.SetName(argv[1]);
 int month, year;
 string name;
 DataFormatHandler DFH;
 DFH.insert("month", &month);
 DFH.insert("year", &year, 2009);
 DFH.insert("name", &name, "test");
 FileScanner FS(DFH, ¶mfile, "Settings");
 cout << month << "/" << year << "/t" << name << endl;
}

To read in one block, we first initialize a DataFormatHandler (line 19). Next, we tell the DataFormatHandler which keywords to look for using the function insert. The first argument of the insert function is the keyword we are searching, the second argument the variable that its value will be written to. Optionally, we can specify a default value as a third argument which is used if the keyword is not present in the parameter file. Finally, we initialize an object FileScanner passing the DataFormatHandler, a parameter file and the block to be read. Note that only this block is read!
3 Description of the problem

FILE: GAS/src/Problem/problemdescriptorbase.h

The class ProblemDescriptor provides all information necessary to set up an application. This includes all problem data like: equation, boundary data, right hand side, initial condition, etc. Most important function is ProblemDescriptor::BasicInit(), where the problem is defined by setting pointers to the describing classes. A minimal example:

```cpp
void LocalProblemDescriptor::BasicInit(const ParamFile* pf)
{
    GetEquationPointer() = new LocalEquation;
    GetRightHandSidePointer() = new LocalRightHandSide;
    GetDirichletDataPointer() = new LocalDirichletData;

    ProblemDescriptorBase::BasicInit(pf);
}
```

For an problem to be well defined, at least the equation and the Dirichlet data have to be specified. All possible pointers to be set are listed in FILE: GAS/src/Problem/problemdescriptorbase.h

In the following we describe the classes needed to specify the most common ingredients of a problem.

3.1 The right hand side

FILE: GAS/src/Interface/domainrighthandside.h

The interface class to specify a function \(f : \Omega \rightarrow \mathbb{R} \) as right hand side for the problem is DomainRightHandSide. Let \(f(x,y) = \sin(x) \cos(y) \) be the right hand side:

```cpp
class LocalRightHandSide : public DomainRightHandSide
{
    public:
        int GetNcomp() const { return 1; }
        std::string GetName() const { return "Local Right Hand Side"; }
        double operator()(int c, const Vertex2d& v) const
        {
```
3 Description of the problem

Most important function of this class is \texttt{double operator()}(int \texttt{c}, const \texttt{Vertex2d}\& \texttt{v}) \texttt{const}, here, the value of the right hand side function \(f \) at point \(v \in \Omega \) is returned. The class \texttt{Vertex2d} is explained in \texttt{FILE: GAS/src/Common/vertex.h}. For three dimensional problems the operator \texttt{double operator()}(int \texttt{c}, const \texttt{Vertex3d}\& \texttt{v}) \texttt{const} has to be written.

The second parameter \texttt{int c} as well as the function \texttt{int GetNcomp() const} will be explained in Section 3.5 and can be ignored here.

A function called \texttt{GetName()} is necessary in every class used in the \texttt{ProblemDescriptor}. It just needs to be declared to provide a label.

3.2 Boundary Data

Every boundary part of the mesh is given a certain color, see Section 5. You can visualize meshes (inp-files) with the program \texttt{visusimple}. Here you can also look at the boundary data, use \texttt{Select->Scalar}. In the parameter file it is specified, whether a boundary color is used for Dirichlet boundary values or for Neumann (or Robin) boundary values. If different parts of the boundary shall have different boundary type, multiple boundary colors have to be used.

To assign Dirichlet boundary condition to a certain boundary color, the parameter file has to contain:

1. // Block BoundaryManager
2. \texttt{dirichlet 2 4 8}
3. \texttt{dirichletcomp 4 1 0}
4. \texttt{dirichletcomp 8 1 0}

This definition lets the boundaries with colors 4 and 8 have Dirichlet condition. The parameter \texttt{dirichlet} is given as a vector: the first value is the number of Dirichlet colors, then the colors follow. If only the color 4 is picked for Dirichlet it would look like:

1. // Block BoundaryManager
2. \texttt{dirichlet 1 4}
3. \texttt{dirichletcomp 4 1 0}

The second parameter \texttt{dirichletcomp} needs to be given for every boundary color used with Dirichlet values. For every color we choose the solution components to be used for Dirichlet colors. These values are again given as vectors: First the color is specified, then the number of solution components that have Dirichlet values on this color. Finally the solution components are listed. For scalar equations with only one component, the last
two values are always 1.0. See Section 3.5 for using Dirichlet colors for systems of partial differential equations with more than one solution component.

Every boundary color, that is not listed as Dirichlet boundary uses natural boundary conditions given due to integration by parts. For the Laplace Equation

\[(-\Delta u, \phi)_\Omega + (\partial_n u, \phi)_\Gamma = (\nabla u, \nabla \phi)_\Omega, \]

this is the homogeneous Neumann condition \(\partial_n u = 0 \). How to use non-homogeneous Neumann is explained in Section 3.2.2 and details on Robin-boundary conditions are given in Section 3.2.3.

3.2.1 Dirichlet boundary data

FILE: src/Problem/dirichltdata.h

Assume, that the colors 4 and 8 are picked as Dirichlet boundary colors in the parameter file.

The Dirichlet values to be used for the boundaries with colors specified in the parameter file are described in the class `DirichletData`, see File: GAS/src/Interface/dirichltdata.h

```cpp
#include "dirichltdata.h"

class LocalDirichletData : public DirichletData
{
public:
    std::string GetName() const { return "Local Dirichlet Data;" }
    void operator()(DoubleVector& b, const Vertex2d& v, int col) const
    {
        b.zero();
        if (col==4) b[0] = 0.0;
        if (col==8) b[0] = v.x() + v.y();
    }
}
```

This example sets the boundary value to zero on the boundary with color 4 and to the function \(g(x,y) = x + y \) on color 8. The values are not returned as in the case of the right hand side, but written in the vector \(b[\text{comp}] \). \text{comp} is the number of the equation (if dealing with systems). For scalar pde's this is always \(b[0] \). The parameter `Vertex2d& v` gives the coordinate and the parameter `col` gives the color of the node to set Dirichlet values. In three dimensions, the same operator exists using a `Vertex3d& v` to indicate the coordinate. In the `ProblemDescriptor` we need to set a pointer to this new class:**FILE: TEST/src/problem.h**

```cpp
class ProblemDescriptor : public ProblemDescriptorBase
{
    // ...
}
```
void BasicInit(const ParamFile* paramfile)
{
 // ...
 GetDirichletDataPointer() =
 new LocalDirichletData;
 // ...
};

3.2.2 Neumann conditions

Non homogenous Neumann conditions of the type
\[\langle \partial_n u, \phi \rangle_{\Gamma_N} = \langle g^N, \phi \rangle_{\Gamma_N}, \]
require some additional right hand side data. In Gascoigne, this Neumann right hand side is
derived from the class BoundaryRightHandSide specified in File: GAS/src/Interface/boundaryrighthandside.h.
An example for a 2d scalar problem is given by

```c++
#include "boundaryrighthandside.h"

class LocalBoundaryRightHandSide : public BoundaryRightHandSide
{
    public:
        int GetNcomp() const { return 1; }
        string GetName() const { return "Local_B-RHS"; }
        double operator()(int c, const Vertex2d& v, const Vertex2d& n,
            int color) const
        {
            if (color==0) return 1.0;
            if (color==1) return v.x() * n.x() + v.y() * n.y();
        }
};
```

Here we define Neumann data on two different parts of the boundary with colors 0 and 1:
\[g_0(x) = 1, \quad g_1(x) = n(x) \cdot x, \]
where \(n(x) \) is the outward unit-normal vector in the point \(x \).

Boundary right hand sides need to be specified in the parameter file in //Block BoundaryManager.
Otherwise these boundary terms are not taken into account:

FILE: TEST/src/test.param
3.3 Definition of the partial differential equations

The new parameter `righthandside` specifies a vector. Here it tells Gascoigne that 2 boundary colors have Neumann data. These are the colors 0 and 1. In the `ProblemDescriptor` we need to set a pointer to this new class: File: `TEST/src/problem.h`

```cpp
class ProblemDescriptor : public ProblemDescriptorBase
{
    // ...
    void BasicInit( const ParamFile* paramfile )
    {
        // ...
        GetBoundaryRightHandSidePointer() =
            new LocalBoundaryRightHandSide;
    }
    // ...
};
```

3.2.3 Robin conditions

Robin boundary data includes very general conditions to be fulfilled on the boundary of the domain. We can have:

\[(G(u), \phi)_{\Gamma_R} = 0, \]

where \(G(\cdot) \) can be some operator, e.g. \(G(u) = \partial_n u + u^2 \). Hence, Robin boundary data means that we have an additional equation that is valid on the boundary. We will explain this concept in detail after explaining how to specify equations. See Section 3.3.2.

3.3 Definition of the partial differential equations

File: `GAS/src/Interface/equation.h`

The pde to be solved is given in the weak formulation

\[a(u)(\phi) = (f, \phi) \quad \forall \phi, \]

where \(a(\cdot)(\cdot) \) is a semi-linear form, linear in the second argument. Gascoigne solves every problem with a Newton method (also linear problems). With an initial guess \(u^0 \) updates

\[a'(u^k)(w^k, \phi) = (f, \phi) - a(u^k)(\phi) \quad \forall \phi, \quad u^{k+1} := u^k + w^k, \]
are searched. The Jacobi matrix is the matrix of the directional derivatives of \(a(\cdot)(\cdot) \) in the point \(u^k \) and defines as

\[
a'(u)(w, \phi) := \left. \frac{d}{ds} a(u + sw)(\phi) \right|_{s=0}.
\]

For linear problems, this is

\[
a(u)(w, \phi) = a(w)(\phi).
\]

To solve, Gascoigne needs to know about the right hand side \((f, \phi)\) (see Section 3.1), the form \(a(u^k)(\phi) \) and its derivative \(a'(u^k)(w^k, \phi) \). Form and derivative are given in the class `Equation`:

```cpp
class LocalEquation : public Equation
{
    public:

    int GetNcomp() const;
    string GetName() const;

    void point(double h, const Vertex2d& v) const;
    void point(double h, const Vertex3d& v) const;

    void Form(VectorIterator b, const FemFunction& U,
               TestFunction& N) const;
    void Matrix(EntryMatrix& A, const FemFunction& U,
                const TestFunction& M, const TestFunction& N) const;
};
```

The first function `GetNcomp()` returns the number of solution unknowns for systems of partial differential equations. For scalar equations, this function returns 1. `GetName()` is a label for the equation. The most important functions are `Form(b, U, N)`, which defines \(a(u)(\phi) \) and `Matrix(A, U, M, N)` which gives the derivative \(a'(u)(w, \phi) \). The parameters \(b \) and \(A \) are the return values, \(U \) is the last approximation \(u \), \(N \) is the test-function \(\phi \) and \(M \) is the direction \(w \). The function `point()` is meant to set parameters depending on the mesh size \(h \) or on the coordinate \(v \). `point` is called before each call of `Form()` or `Matrix()` and can be used to set local variables.

For the Laplace equation, the implementation is given by

```cpp
void Form(VectorIterator b, const FemFunction& U,
          const , TestFunction& N) const
{
    b[0] += U[0].x() * N.x() + U[0].y() * N.y();
}

void Matrix(EntryMatrix& A, const FemFunction& U,
            const TestFunction& M, const TestFunction& N) const
```
3.3 Definition of the partial differential equations

\[A(0,0) \leftarrow M.\times() \ast N.\times() + M.\times() \ast N.\times(); \]

The class \texttt{TestFunction} describes the values and derivatives of a discrete function in a certain point. By \texttt{N.m()} the value is accessed, by \texttt{N.x()}, \texttt{N.y()} and \texttt{N.z()} the directional derivatives. The class \texttt{FemFunction} is a vector of \texttt{TestFunction} and used for the solution function \(u_h \). For systems of partial differential equations, the index gives the number of the solution component. For scalar equations, it is always \(U[0].m() \).

3.3.1 Nonlinear equations

As example we now consider the nonlinear partial differential equation given by

\[a(u)(\phi) = (\nabla u, \nabla \phi) + (\langle \nabla u, \nabla u \rangle, \phi), \quad \langle x, y \rangle := \sum x_i y_i. \]

The form is given by

```cpp
1 void Form( VectorIterator b, const FemFunction& U, const TestFunction& N) const
2 {
3     b[0] += U[0].x() \ast N.x() + U[0].y() \ast N.y()
4         + (U[0].x() \ast U[0].x() + U[0].y() \ast U[0].y()) \ast N.m();
5 }
```

To define the matrix we first build the derivative:

\[
a'(u)(w, \phi) = \left. \frac{d}{ds} a(u + sw)(\phi) \right|_{s=0}
= \left(\frac{d}{ds} \nabla(u + sw), \nabla \phi \right) + \left(\frac{d}{ds} \langle \nabla(u + sw), \nabla(u + sw) \rangle, \phi \right) \big|_{s=0}
= (\nabla w, \nabla \phi) + (\langle \nabla(u + sw), \nabla w \rangle, \phi) + (\langle \nabla w, \nabla(u + sw) \rangle, \phi) \big|_{s=0}
= (\nabla w, \nabla \phi) + 2(\langle \nabla u, \nabla w \rangle, \phi).
\]

The matrix function is then given by

```cpp
1 void Matrix(EntryMatrix& A, const FemFunction& U, const TestFunction& M, const TestFunction& N) const
2 {
3     A(0,0) += M.\times() \ast N.\times() + M.\times() \ast N.\times();
4     A(0,0) += 2.0 \ast (U[0].x() \ast M.\times() + U[0].y() \ast M.\times()) \ast N.m();
5 }
```
3 Description of the problem

3.3.2 Equations on the boundary & Robin boundary data

Robin boundary data is realized by setting an equation on the boundary. First, we need to tell Gascoigne to include boundary equations. Herefore, section //Block BoundaryManager of the parameter file needs to know on what boundary colors to have an equation: File: TEST/src/test.param

```
// Block BoundaryManager
...
./ ./ stuff for Dirichlet boundary
...
equation 1 1
```

Here we tell Gascoigne to use the equation on 1 color, the color 1. The actual equation is of type BoundaryEquation defined in the File: GAS/src/Interface/boundaryequation.h The boundary equation is declared as the equation: you need to specify the Form and the Matrix. Major difference is that these two function get the outward unit normal vector and the color of the boundary line in addition. Boundary equations are then defined in the ProblemDescriptor by setting: FILE: TEST/src/problem.h

```
class ProblemDescriptor : public ProblemDescriptorBase
{
    // ...
    void BasicInit( const ParamFile* paramfile )
    {
        // ...
        GetBoundaryEquationPointer() =
            new LocalBoundaryEquation;
    }
    // ...
};
```

We next give an easy example of a boundary equation which will realize the Robin data as described in Section 3.2.3: File: TEST/src/problem.h

```
#include "boundaryequation.h"

class LocalBoundaryEquation : public BoundaryEquation
{
    public:
        int GetNcomp() const { return 1; }
        string GetName() const { return "LocalB-EQ"; }
        void pointboundary( double h, const Vertex2d& v, const Vertex2d& n )
        const
        {
        }
```
3.4 Exact Solution and Evaluation of Errors

If an analytic solution is known it can be added to the ProblemDescriptor and then be used for evaluating the error in the L^2, H^1 and L^∞ norms. The operator in the class ExactSolution is used to define the solution function. The parameter int c specifies the solution component for systems of pde's.

File: ../src/problem.h

```c++
#include "exactsolution.h"

class MyExactSolution : public ExactSolution
{
  public:
    std::string GetName() const {return "My_exact_solution";}
    double operator()(int c, const Vertex2d& v)const
    {
      return v.x()*v.y();
    }
};

class Problem : public ProblemDescriptorBase
{
  ...

  public:
    void BasicInit(const ParamFile* pf)
    {
      ...
      GetExactSolutionPointer() = new MyExactSolution;
    }
};
```
The function to evaluate the error is to be called in the Loop after solving the equation with:

```
FILE: ../src/myloop.cc
...
Solve(u, f);
ComputeGlobalErrors(u);
...
```

3.5 Systems of partial differential equations

One of the main purposes of Gascoigne is the efficient solution of large systems of partial differential equations. We call the number of equations in a system (and thus the number of solution variables) the *number of components*, denoted by `ncomp` in Gascoigne. Nearly all classes have the number of components as member. As example we discuss the two-equation system in Ω:

\[
\begin{align*}
(\nabla u_0, \nabla \phi_0) + (u_0 u_1, \phi_0) &= (f_0, \phi_0), \\
(\nabla u_1, \nabla \phi_1) + (u_0 \sin(u_1), \phi_1) &= (f_1, \phi_1),
\end{align*}
\]

\[
\begin{align*}
u_0 &= 0 \quad \text{on } \Gamma_4 \cup \Gamma_8, \\
u_1 &= 1 \quad \text{on } \Gamma_4, \\
\partial_n u_1 &= 0 \quad \text{on } \Gamma_8.
\end{align*}
\]

Several modifications are necessary:

3.5.1 Modification of the right hand side

See 3.1 for comparison. The right hand side has to know the number of equations, in this case:

```cpp
int GetNcomp() const { return 2; }
```

The operator for specifying the functions f_0 and f_1 gets the current component as first argument. Thus, if $f_0(x, y) = 5$ and $f_1(x, y) = xy$:

```cpp
double operator()(int c, const Vertex2d& v) const
{
    if (c==0) return 5;
    if (c==1) return v.x() * v.y();
    return 0.0;
}
```

Don’t forget to return a default value in the last line if you do not check for all components, since otherwise a random value is set.
3.5 Systems of partial differential equations

3.5.2 Modification of Dirichlet data

For Dirichlet data two separate issues have to be considered: first the declaration in the parameter file has to be adjusted. Second, the function specifying the Dirichlet data has to be altered. In this example, where the component \(u_0 \) has Dirichlet data on both and \(u_1 \) just on one boundary color, it would be:

```plaintext
// Block BoundaryManager
dirichlet 2 4 8
dirichletcomp 4 2 0 1
dirichletcomp 8 1 0
```

This is to be read as: there are 2 dirichlet colors, the colors 4 and 8. Dirichlet color 4 is applied to 2 components, components 0 and 1. And so on. Gascoigne uses 0 as index for the first component. The implementation of the boundary data is as follows:

```cpp
class LocalDirichletData : public DirichletData {

  public:
    std::string GetName() const { return "Local Dirichlet Data;" }
    void operator() (DoubleVector& b, const Vertex2d& v, int col) const {
      b.zero();
      if (col==4) b[0] = 0.0;
      if (col==4) b[1] = 1.0;
      if (col==8) b[0] = 0.0;
    }
};
```

Here, the values are sorted into a vector with respect to the solution component.

3.5.3 Modification for the equation, form and matrix

Like the right hand side, the equation needs to know about the number of solution components given in the header file as

```plaintext
int GetNcomp() const { return 2; }
```

In both functions, Form and Matrix the last approximate solution \(U \) is given as a parameter. This parameter is a vector and \(U[c] \) specifies component \(c \) of the solution. The modifications necessary for the Form are easy, the values are sorted in to the result vector \(b[e] \), where \(e \) is the equation. The test function \(N \) is the same for all equations. The separation is done by using different result values in the vector \(b[e] \). This example is implemented as:

```cpp
void Form(VectorIterator& b, const FemFunction& U,
   const TestFunction& N) const {
```
The **Matrix** works in a similar way. We assemble a local matrix of size \(n \times n \), where \(A(e,c) \) specifies the derivative of equation \(e \) with respect to \(U[c] \). Thus for example:

\[
A_{00} = \frac{d}{ds}(\nabla(u_0 + sw), \nabla\phi_0) + ((u_0 + sw)u_1, \phi_0)|_{s=0} = (\nabla w, \nabla\phi_0) + (wu_1, \phi_0).
\]

\[
A_{01} = \frac{d}{ds}(\nabla u_0, \nabla\phi_0) + (u_0(u_1 + sw), \phi_0)|_{s=0} = (u_0 w, \phi_0)
\]

\[
A_{10} = \frac{d}{ds}(\nabla u_1, \nabla\phi_1) + ((u_0 + sw)\sin(u_1), \phi_1) = (w \sin(u_1), \phi_1),
\]

\[
A_{11} = \frac{d}{ds}(\nabla u_1, \nabla\phi_1) + (u_0 \sin(u_1 + sw), \phi_1) = (\nabla w, \nabla\phi_1) + (u_0 \cos(u_1)w, \phi_1),
\]

and the implementation:

```cpp
    A(0,0) += M.x() * N.x() + M.y() * N.y();
    A(0,0) += M.m() * U[1].m() * N.m();
    A(0,1) += U[0].m() * M.m() * N.m();
    A(1,0) += M.m() * sin(U[0].m()) * N.m();
    A(1,0) += M.x() * N.x() + M.y() * N.y();
    A(1,1) += U[0].m() * cos(U[1].m()) * M.m() * N.m();
}
```
4 Time dependent problems

Gascoigne provides a simple technique for the modeling of time-dependent partial differential equations like
\[\partial_t u + A(u) = f \text{ in } [0,T] \times \Omega, \]
with a spatial differential operator \(A(u) \). Time-discretization is accomplished with Rothe’s method by first discretizing in time with simple time-stepping methods. For time-dependent problems, we must provide some additional information:

- We must supply an initial value \(u(x,0) = u^0(x) \).
- All problem data like the right hand side, boundary values and differential operator can depend on the time \(t \in [0,T] \).
- We must describe the time-stepping scheme and choose a time-step size.

4.1 Time discretization of the heat equation

Here, we examplarily demonstrate the time-discretization of the heat-equation
\[\partial_t u - \Delta u = f \text{ in } [0,T] \times \Omega, \]
with Dirichlet boundary
\[u = g \text{ on } [0,T] \times \Omega, \]
and with an initial value
\[u(\cdot,0) = u^0(\cdot) \text{ for } t = 0 \text{ on } \Omega. \]

In Gascoigne, time-discretization is based on the general \(\theta \)-scheme
\[\frac{1}{\theta k}(u^m, \phi) + a(u^m, \phi) = (f(t_m), \phi) + \frac{1 - \theta}{\theta}(f(t_{m-1}), \phi) + \frac{1}{\theta k}(u^{m-1}, \phi) - \frac{1 - \theta}{\theta}a(u^{m-1}, \phi), \]
where \(\theta \in (0,1] \). For \(\theta = \frac{1}{2} \), this scheme corresponds to the Crank-Nicolson method, for \(\theta = 1 \) to the implicit Euler.

The class \texttt{StdTimeLoop} includes a simple loop for time-stepping problems and replaces the \texttt{StdLoop}:
void StdTimeLoop::run(const std::string& probelm_label)
{
 [...]
 for (_iter = 1; _iter <= niter; _iter++)
 {
 [...]
 _timeinfo.SpecifyScheme(_iter);
 TimeInfoBroadcast();
 // RHS
 GetMultiLevelSolver()->GetSolver()->GetGV(f).zero();
 GetMultiLevelSolver()->GetSolver()->TimeRhsOperator(f, u);
 GetMultiLevelSolver()->GetSolver()->TimeRhs(1, f);
 _timeinfo.iteration(_iter);
 TimeInfoBroadcast();
 GetMultiLevelSolver()->GetSolver()->TimeRhs(2, f);
 // SOLVE
 SolveTimePrimal(u, f);
 [...]
 }
}

Every time-step is treated as a stationary problem. Hence, assembling of the right hand side
no includes the right hand side f itself as well as the differential operator evaluated at the
old time-step, if $\theta < 1$. The function TimeInfoBroadcast() announces the current time t
and the time-step k.

Gascoigne itself takes care of the matrix and the residual. The class StdTimeSolver is a
replacement for the StdSolver and it will be invoked, by the option solver instat in
block //Block MultiLevelSolver. Regarding the matrix, Gascoigne assembles the time-
dependent matrix

$$\frac{1}{\theta k}M + A,$$

where M is the mass-matrix and A the stiffness matrix by

void StdTimeSolver::AssembleMatrix(const VectorInterface& gu, double d)
{
 StdSolver::AssembleMatrix(gu, d);
 double scale = d / (_dt * _theta);
 GetMatrix()->AddMassWithDifferentStencil(GetMassMatrix(),
 GetTimePattern(), scale);
}
First, the main part regarding $a(\cdot, \cdot)$ is assembled, then, the part regarding the time-derivative is added with the proper scaling depending on the time-step k and parameter θ. The parameters θ and the time-step k are provided in the parameter file within the //Block Loop

```cpp
//Block Loop
scheme Theta
dt 0.01
theta 0.5
neuler 0
```

The option `neuler` indicated a number of initial steps with the implicit Euler scheme, that can be necessary for reasons of stability. By setting `neuler 0`, no Euler steps are used and the loop directly starts with the θ-time-stepping scheme.

The function `GetTimePattern()` tells Gascoigne, on which solution component the mass-matrix will act. This `TimePattern` is specified in the Equation by a further function:

```cpp
void HeatEquation::SetTimePattern(TimePattern& TP) const
{
    TP(0,0) = 1.;
}
```

The variable `TimePattern TP` is a matrix of size $ncomp$ times $ncomp$. Usually, this matrix is the diagonal unit-matrix. See Section 4.3 for special choices of the `TimePattern`.

Time dependent problems usually are initial-boundary value problems and require some initial data, like

$$u(x,0) = u^0(x),$$

at time $t = 0$. For providing such initial data, the class `ProblemDescriptor` has the function `GetInitialConditionPointer()`. Here, we can provide usual initial conditions of the type `InitialCondition`, which act the same way as a right hand side:

```cpp
class MyInitial : public DomainRightHandSide
{
    public:
        std::string GetName() const { return "Initial Condition"; }
        int GetNcomp() const { return 1; }

        double operator()(int c, const Vertex2d& v) const
        {
            return v.x() * v.y();
        }
};
```

```cpp
class ProblemDescriptor : public ProblemDescriptorBase
{
```
4 Time dependent problems

```cpp
public:
    std::string GetName() const { return "Time-Dependent"; }
    void BasicInit(const ParamFile* pf)
    {
        [...]    
        GetInitialConditionPointer() = new MyInitial;
        ProblemDescriptorBase::BasicInit(pf);
    }
};
```

4.2 Time dependent problem data

The problem data like boundary data and right hand side can depend on the time. For example, we consider the right hand side function

\[
f(x,t) = \sin(\pi t) * (1 - x^2)(1 - y^2).
\]

All data classes like `DomainRightHandSide`, `DirichletData` or `Equation` are derived from the class `Application`. This class has the functions `double GetTime() const` and `double GetTimeStep() const`. Using this access to the time-step, the right hand side given above is implemented as

```cpp
class RHS : public DomainRightHandSide
{
    public:
        int GetNcomp() const { return 1; }
        string GetName() const { return "RHS"; }
        double operator()(int c, const Vertex2d& v) const
        {
            double t = GetTime();
            return sin(M_PI * t) * (1.0 - v.x() * v.x()) * (1.0 - v.y() * v.y());
        }
};
```

4.3 Non standard time-discretizations

As example for a non-standard time-depending problem we consider the following system of partial differential equations

\[
\begin{align*}
\frac{\partial}{\partial t} u_1 + \frac{\partial}{\partial x} u_2 - \Delta u_1 &= f_1 \\
\frac{\partial}{\partial t} u_2 + u_1 - \Delta u_2 &= f_2
\end{align*}
\]

For the implementation of this system, `Matrix`, `Form` and `SetTimePattern` must be given as:
void EQ::Form(...)
{
 b[0] += U[0].x() * N.x() + U[0].y() * N.y();
 b[1] += U[0].m() * N.m();
 b[1] += U[1].x() * N.x() + U[1].y() * N.y();
}

void EQ::Matrix(...)
{
 A(0,0) += M.x() * N.x() + M.y() * N.y();
 A(1,0) += M.m() * N.m();
 A(1,1) += M.x() * N.x() + M.y() * N.y();
}

void EQ::SetTimePattern(TimePattern& TP) const
{
 TP(0,0) = 1.;
 TP(0,1) = 1.;
 TP(1,1) = 1.;
}
4 Time dependent problems
5 Mesh handling

Mesh handling includes definition of the domain Ω, refinement of meshes, managing of curved boundaries, input and output of meshes.

The mesh to be used in the calculation is indicated in the parameter file. In the Section //Block Mesh the mesh to be read is specified:

```
// Block Mesh

dimension 2
gridname mesh.inp
prerefine 3
```

Gascoigne distinguishes two types of meshes: inp-files are coarse meshes describing the domain Ω. They are user-specified and the file format is explained in Section 5.1. These meshes are usually as coarse as possible. Refinement is applied during run-time. The parameter prerefine declares global refinements to be executed before the first solution cycle. It is also possible to write out and read in locally refines meshes. These meshes are given in the gup-format:

```
// Block Mesh

dimension 2
gridname mesh.gup
prerefine 0
```

During run-time all mesh handling like I/O and refinement is done by the class MeshAgent. The MeshAgent is a member of the class Loop and is created in the Loop::BasicInit. The MeshAgent takes care of the mesh refinement hierarchy HierarchicalMesh, it creates the sequence of multigrid meshes GascoigneMultigridMesh and it finally provides the meshes on every level used for the computation, the GascoigneMeshes. See the files with the same names in File: GAS/src/Mesh/*.

If domains with curved boundaries are used, the shape definition is also done in the class MeshAgent.

5.1 Definition of coarse meshes

Coarse meshes are specified in the inp-format. We indicate the nodes of the mesh, the elements (that are quadrilaterals in two and hexahedrals in three dimensions) and finally
the boundary elements. In two dimensions, these are the lines of quadrilaterals that touch
the boundary, in three dimensions we lists the quadrilaterals that are boundaries of the
domain and of elements. We never list interior lines (or quadrilaterals in three dimensions).

The following example is the coarse mesh for the L-shaped domain:

```
8 11 0 0 0
0 0 -1 0
1 1 -1 0
2 -1 0 0
3 0 0 0
4 1 0 0
5 -1 1 0
6 0 1 0
7 1 1 0
0 1 quad 0 1 4 3
1 1 quad 2 3 6 5
2 1 quad 3 4 7 6
0 4 line 0 1
1 4 line 1 4
2 4 line 4 7
3 4 line 0 3
4 2 line 2 3
5 2 line 2 5
6 8 line 5 6
7 8 line 6 7
```

The file format is very simple: in the row, first the number of nodes in the coarse mesh is
given, followed by the sum of mesh elements plus elements on the boundary. The last three
values are always zero. This example has 8 nodes, 3 quads and 8 lines on the boundary.
Note, that line inside the mesh, like the line between nodes 3 and 4 are not listed in the
mesh description.

After the header line all nodes of the mesh are declared in the format:

```
 n  x  y  z
```

where n is the index of the node (starting with zero) and x y z are the coordinates. We
always have to give all three coordinates (also in two dimensions).

The nodes are followed by the mesh elements. In two dimensions the format is:

```
 n  0  quad  n0  n1  n2  n3
```

where n is a consecutive index starting with 0. The second parameter is not used, thus
always 0. The mesh element, always quad is indicated by the third entry. The last four
values give the nodes describing the quadrilateral in counter-clockwise sense.

In three spatial dimension, the format is:
5.2 Curved boundaries

Here, first the nodes \(n_0 \) to \(n_3 \) in the front are given in counter-clock wise sense followed by the nodes in the back.

Finally, all the boundary elements are given. In two dimensional meshes, these are all lines, where both nodes are on the boundary. Lines inside the mesh may not be specified in the *inp*-file. In three dimensions the boundary elements are all quads with four nodes on the boundary. The format is:

\[
\begin{align*}
n & \quad c & \quad \text{line} & \quad n_0 & \quad n_1 \\
\text{n} & \quad \text{c} & \quad \text{quad} & \quad n_0 & \quad n_1 & \quad n_2 & \quad n_3
\end{align*}
\]

in two dimensions and

\[
\begin{align*}
n & \quad c & \quad \text{line} & \quad n_0 & \quad n_1 & \quad n_2 & \quad n_3
\end{align*}
\]

in three dimensions. \(n \) is again an iteration index. This index starts with 0. The value \(c \) defines a *color* for the boundary element. These colors are necessary to distinguish between different types of boundary conditions, Dirichlet or Neumann in Gascoigne. See Sections 3.2.1 and 3.2.2. In two dimensions, the order of the two nodes \(n_0, n_1 \) is arbitrary. In three dimensions however the four nodes have to be given in a counter clock-wise sense seen from the outside of the domain! This is necessary to get a unique definition of the normal vectors on the boundary. Thus, for the hex shown in Picture above, the *inp*-file would be:

\[
\begin{align*}
8 & \quad 7 & \quad 0 & \quad \text{hex} & \quad 0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 \\
0 & \quad \text{quad} & \quad 0 & \quad 1 & \quad 2 & \quad 3 \\
1 & \quad 1 & \quad 0 & \quad 0 & \quad 1 & \quad 4 & \quad \text{quad} & \quad 1 & \quad 5 & \quad 6 & \quad 2 \\
2 & \quad 1 & \quad 1 & \quad 0 & \quad 2 & \quad 4 & \quad \text{quad} & \quad 3 & \quad 2 & \quad 6 & \quad 7 \\
3 & \quad 0 & \quad 1 & \quad 0 & \quad 3 & \quad 4 & \quad \text{quad} & \quad 4 & \quad 0 & \quad 3 & \quad 7 \\
4 & \quad 0 & \quad 0 & \quad 1 & \quad 4 & \quad 4 & \quad \text{quad} & \quad 5 & \quad 4 & \quad 7 & \quad 6 \\
5 & \quad 1 & \quad 0 & \quad 1 & \quad 5 & \quad 4 & \quad \text{quad} & \quad 4 & \quad 5 & \quad 1 & \quad 0 \\
6 & \quad 1 & \quad 1 & \quad 1 & \quad 6 & \quad 1 & \quad 1 & \quad 7 & \quad 0 & \quad 1 & \quad 1 \\
7 & \quad 0 & \quad 1 & \quad 1 & \quad 7 & \quad 0 & \quad 1 & \quad 1 & \quad 7 & \quad 0 & \quad 1 & \quad 1
\end{align*}
\]

5.2 Curved boundaries

A part of the boundary can be assigned a curved boundary function. The idea is easy: Let the boundary with color \(\text{col} \) be a curved boundary. We specify a function \(\mathbb{R}^d \to \mathbb{R} \) which has the desired curved boundary as zero-iso-contour. For instance if the boundary \(\Gamma \) of the domain should have the shape of a circle with radius \(r \) and midpoint \((m_x, m_y)\), one possible function \(f_{\text{circle}} \) would be

\[
f_{\text{circle}}(x, y) = (x - m_x)^2 + (y - m_y)^2 - r^2.
\]

Whenever an element with boundary nodes on a line with color \(\text{col} \) is refined, the newly generated nodes on the boundary line are then *pulled* onto the zero-iso-contour of the boundary function. This is simply done by solve the root of \(f_{\text{circle}} \) with the Newton method.
In Gascoigne boundary functions are described by the class `BoundaryFunction<Dim>` in
FILE: GAS/src/Mesh/BoundaryFunction. The circle is given by:

```cpp
class Circle : public BoundaryFunction<2> {
    double _r, _mx, _my;
    public:
    Circle(double r, double mx, double my) : _r(r), _mx(mx), _my(my) {
    }
    double operator()(const Vertex2d& v) const {
        return (v.x() - _mx) * (v.x() - _mx) + (v.y() - _my) * (v.y() - _my) - _r * _r;
    }
}
```

The boundary function object has to be passed to the `MeshAgent`. For this, a derived mesh
agent class has to be specified and created in the `Loop`. The following minimal steps have to
be taken:

```cpp
class LocalMeshAgent : public MeshAgent {
    Circle _circle;
    public:
    LocalMeshAgent() : MeshAgent() {
        AddShape(4, &_circle);
    }
};
class LocalLoop : public StdLoop {
    public:
    void BasicInit(const ParamFile* paramfile, 
                   const ProblemContainer* PC, 
                   const FunctionalContainer* FC=NULL) {
```

36
GetMeshAgentPointer() = new LocalMeshAgent();
StdLoop::BasicInit(paramfile, PC, FC);
}

};

In this example, the boundary with color 4 is used as curved boundary.

5.3 Adaptive refinement of meshes

For local refinement, the MeshAgent has the function refine_nodes(nodes). The nvector<int> nodes contains indices of mesh nodes to be refined. If a node is to be refined, all elements having this node as a corner node will be refined.

FILE: ../src/myloop.cc

for (_iter=1; _iter<niter;++_iter)
{
 ...
 Solve(u,f);
 ...
 // Estimate Error
 nvector<int> ref;
 // pick nodes for refinement in ref
 GetMeshAgent()->refine_nodes(ref);
}

5.3.1 Estimating the Energy-Error

The class DwrQ1Q2 contains a function for easy estimation of an energy-like error. It is used as

FILE: ../src/myloop.cc

#include "dwrq1q2.h"

for (_iter=1; _iter<niter;++_iter)
{
 ...
 Solve(u,f);
 ...
 // Estimate Error
 DoubleVector eta;
 DwrQ1Q2 dwr(*GetMultiLevelSolver()->GetSolver());
 dwr.EstimatorEnergy(eta, f,u);
 ...
}
5 Mesh handling

5.3.2 Picking Nodes for Refinement

There are several methods for picking nodes for refinement. Common to all is to choose nodes \(n \) with large estimator values \(\eta[n] \). The class \texttt{MalteAdaptor} uses a global optimization scheme for picking nodes:

FILE: ../src/myloop.cc

```cpp
#include "malteadaptor.h"
...
for (_iter=1; _iter<niter; ++_iter)
{
...
Solve(u, f);
...
// Estimate Error
DoubleVector eta;
DwrQ1Q2 dwr(GetMultiLevelSolver()->GetSolver());
dwr.EstimatorEnergy(eta, f, u);
// Pick Elements
nvector<int> refnodes;
MalteAdaptor A(_paramfile, eta);
A.refine(refnodes);
// Refine
GetMeshAgent()->refine_nodes(refnodes);
}
```
6 Flow problems and stabilization

For the stable discretization of the the Stokes and Navier-Stokes systems finite element pairs for pressure and velocity which fulfill the inf-sup condition are necessary. Gascoigne always uses equal-order elements which are not inf-sup stable. We thus use stabilization techniques by adding local stabilization terms. For dominant convection further stabilization is necessary.

6.1 The function point

To set element-wise constants in Gascoigne, the function point is used:

```cpp
void Equation::
    point(double h, const FemFunction& U, const Vertex2d& v) const
{
}
```

This function is called before every call of Matrix and Form and here the local mesh-size h and the coordinates of the node v are given as a parameter. That way one can specify certain criteria for the equation based on location or local mesh width.

To stabilize a given equation or system of equations (like Stokes and Navier-Stokes) one usually modifies it by adding certain stabilizing terms. These terms often depend on the local mesh width and have therefore to be defined in this function.

Since the function point is defined as const no class members can be altered. Thus, every variable which shall be modified here has to be defined as mutable in the header file:

```cpp
mutable double variable;
```

6.2 Stabilization of the Stokes system

The Stokes equations are given by

\[\nabla \cdot v = 0, \quad -\nu \Delta v + \nabla p = f \text{ in } \Omega. \]
Using piece-wise linear or quadratic finite elements for both velocity and pressure does not yield a stable discretization. Stability is reached by adding terms to the divergence equation like

\[(\nabla \cdot v, \xi) + \sum_{K \in \Omega_h} \alpha_K (\nabla p, \nabla \xi)_K,\]

where \(\alpha_K\) is an element-wise constant usually given by

\[\alpha_K = \alpha_0 \frac{h^2_K}{6\nu}.\]

Hence, the call of the function \texttt{point} should look like this:

```cpp
void Stokes::point(double h, const FemFunction& U, const Vertex2d& v) const
{
    __alphaK = __alpha0 * h*h/6.0/nu;
}
```

The parameter \(\alpha_0\) can be read from the parameter file. The variable \(\alpha_K\) has to be defined as \texttt{mutable} in the header file:

```cpp
mutable double __alphaK;
```

6.3 Stabilization of convective terms

The Navier-Stokes system

\[
\nabla \cdot v = 0, \quad v \cdot \nabla v - \nu \Delta v + \nabla p = f \text{ in } \Omega,
\]

needs additional stabilization of the convective term if the viscosity is low. The full stabilized system reads

\[
(\nabla \cdot v, \xi) + \sum_K (\alpha_K \nabla p, \nabla \xi)_K = 0, \\
(v \cdot \nabla v, \phi) + \nu (\nabla v, \nabla \phi) - (p, \nabla \phi) + \sum_K (\delta_K v \cdot \nabla v, v \cdot \nabla \phi)_K = (f, \phi).
\]

The parameters \(\alpha_K\) and \(\delta_K\) are set to

\[
\alpha_K = \alpha_0 \left(\frac{6\nu}{h^2_K} + \frac{\|v\|_{K,\infty}}{h_K} \right)^{-1}, \quad \delta_K = \delta_0 \left(\frac{6\nu}{h^2_K} + \frac{\|v\|_{K,\infty}}{h_K} \right)^{-1},
\]

where \(\|v\|_{K,\infty}\) is the norm of the local velocity vector. Usually we use

\[\alpha_0 = \delta_0 \approx \frac{1}{2}.
\]

For programming the \texttt{Matrix} it is usually not necessary to implement all derivatives. It should be sufficient to have:
6.4 LPS Stabilization

Another way to stabilize these equations is the so called Local Projection Stabilization (LPS). The idea is to use the difference between the function itself and its projection onto the coarser grid for the stabilizing terms described in the previous chapter.

Therefore the new stabilized terms should now look like this for the Stokes
\[
(\nabla \cdot v, \xi) + \sum_{K \in \Omega_h} \alpha_K (\nabla \pi p, \nabla \pi \xi)_K = 0
\]

and the Navier-Stokes systems
\[
(\nabla \cdot v, \xi) + \sum_{K} (\alpha_K \nabla \pi p, \nabla \pi \xi)_K = 0,
\]
\[
(v \cdot \nabla v, \phi) + \nu(\nabla v, \nabla \phi) - (p, \cdot \nabla \phi) + \sum_{K} (\delta_K v \cdot \nabla \pi v, v \cdot \nabla \pi \phi)_K = (f, \phi).
\]

where \(\pi\) represents the difference
\[
\pi = [id - i_{2h}]
\]

with the projection \(i_{2h}\) onto the coarser grid. \(\alpha_K\) and \(\delta_K\) can again be taken from above.

To implement this difference in Gascoigne, one simply has to use the class \texttt{LpsEquation} instead of \texttt{Equation}. It provides the additional functions

\begin{verbatim}
void lpspoint (double h, const FemFunction& U,
 const Vertex2d& v) const { ... }
void StabForm (VectorIterator b, const FemFunction& U,
 const FemFunction& UP, const TestFunction& Np) const { ... }
void StabMatrix (EntryMatrix& A, const FemFunction& U,
 const TestFunction& Np, const TestFunction& Mp) const { ... }
\end{verbatim}

which have to be used for the stabilizing terms.
6 Flow problems and stabilization

The variables \mathbf{U}^p, \mathbf{N}^p and \mathbf{M}^p represent the difference of \mathbf{U}, \mathbf{N} and \mathbf{M} with their respective projection onto the coarser grid and can therefore be used for π_p and π_v, π_ϕ and the derivatives.

One also has to tell Gascoigne to use these LPS-functions by changing the parameter `discname` in the parameterfile to the appropriate LPS-version. This is done by adding the word `Lps`, e.g. Q_1 has to be changed to Q_1Lps.

As described before for programming the `StabMatrix` it should be sufficient to have:

```cpp
void LpsEquation::StabMatrix(...) {
    // derivative of the convection stabilization terms
    A(1,1) += _delta * (U[1].m() * Mp.x() + U[2].m() * Mp.y()) +
               (U[1].m() * Np.x() + U[2].m() * Np.y());
    A(2,2) += _delta * (U[1].m() * Mp.x() + U[2].m() * Mp.y()) +
               (U[1].m() * Np.x() + U[2].m() * Np.y());
    ...
}
```